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Closed On-Line Bin Packing 

E. Asgeirsson* U. Ayestaf E. Coffmanf J. Etra§ 
P. Momcilovic*, D. Phillips*, V. Vokhshoori*, Z. Wang? 

and J. Wolfe* 

Abstract 

An optimal algorithm for the classical bin packing problem partitions 
(packs) a given set of items with sizes at most 1 into a smallest number of 
unit-capacity bins such that the sum of the sizes of the items in each bin is 
at most 1. Approximation algorithms for this NP-hard problem axe called 
on-line if the items axe packed sequentially into bins with the bin receiving 
a given item being independent of the number and sizes of all items as yet 
unpacked. Off-line algorithms plan packings assuming full (advance) knowl-
edge of all item sizes. The closed on-line algorithms are intermediate: item 
sizes are not known in advance but the number n of items is. The uniform 
model, where the n item sizes axe independent uniform random draws from 
[0,1], commands special attention in the average-case analysis of bin packing 
algorithms. In this model, the expected wasted space produced by an opti-
mal off-line algorithm is ©(%/"), while that produced by an optimal on-line 
algorithm is 0(%/"Tog~n)- Surprisingly, an optimal closed on-line algorithm 
also wastes only Q(y/n) space on the average. A proof of this last result is the 
principal contribution of this paper. However, we also identify a class of op-
timal closed algorithms, extend the main result to other probability models, 
and give an estimate of the hidden constant factor. 

1 Introduction 
An instance of the one-dimensional bin packing problem is a list Ln = 
(a i ,a2 , • • - , a n ) of items t ha t must be packed into, i.e., partit ioned among, a 
minimum-cardinality set of bins Bi,B2,--. subject to the constraint tha t the set 
of items in any bin fits within tha t bin's capacity. In the usual way, we will take 
the bin capacity to be 1 for convenience, so a set of items fits into a bin if and only 
if the item sizes sum to no more than 1. The unused space in Bi is called a gap 
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and is denoted by pj. The sum of the gaps in the occupied bins of a packing is the 
wasted space of the packing. 

The bin packing problem has countless applications in operations research and 
engineering. To name just a few, we mention storage allocation for computer net-
works, assigning advertisements to newspaper columns, assigning commercials to 
station breaks on television, writing a collection of files to several floppy disks, 
packing trucks with a given weight limit, and the cutting-stock problems of various 
industries like those producing lumber and cable. 

Let A denote an arbitrary approximation algorithm for the NP-hard bin packing 
problem and let OPT denote an algorithm that produces optimal packings. Let 
A(Ln) and OPT(Ln) denote the numbers of bins used by algorithms A and OPT. 
In the classical analysis of bin packing approximation algorithms, combinatorial 
methods are used to derive worst-case performance ratios 

RA := sup{4(L)/0PT(L)} 
L 

and their asymptotic variants. Less often, probabilistic studies that are typically 
quite difficult are conducted in order to obtain average-case performance. The 
average-case approach is followed in this paper. The item-size distribution is taken 
to be the uniform distribution on [0,1], denoted as usual by ¡7(0,1). This is the 
distribution of choice in bin packing analysis, along with the assumption that item 
sizes are independent. For general coverage of the probabilistic analysis of bin 
packing algorithms, see the monograph by Coffman and Lueker(1991). 

A bin packing algorithm is called on-line if it packs every item a; solely on 
the basis of the sizes of the items aj, 1 < j < i, i.e., without any information on 
subsequent items. The decisions of an on-line algorithm are irrevocable; packed 
items cannot be repacked at later times. Two classical on-line algorithms are First 
Fit and Best Fit. Each of these algorithms begins by putting ai into B\. Thereafter, 
First Fit places the next item into the lowest indexed (first) gap no smaller than 
the item, and Best Fit puts the next item into a smallest gap no smaller than the 
item with ties resolved in favor of the lowest indexed bins. 

A bin packing algorithm that can use full knowledge of all items in packing Ln 
is called off-line. One of the first results in the average-case theory was a proof 
by Lueker(1982) that an optimal off-line algorithm has the following asymptotic 
bound. 

£ O P T o / / i i n e ( L n ) = ! + 

where Q(y/n) bounds the expected wasted space, since the expected total item size 
gives the n /2 term. More recently, Shor(1991) proved that on-line packings must 
produce greater expected wasted space by at least a log factor. In particular, he 
showed that 

£OPTo n ; i r j e(L„) = ^ + Q(Vnlogn). 

Although there is no known simple algorithm for achieving this bound, the Best 
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Fit (BF) algorithm comes close in that (see Shor(1986)) 

£BF(L n ) = ! + 0 (v^ log 3 / 4 n) 

The closed on-line algorithms are intermediate between the classes of on-line 
and off-line algorithms: item sizes are not known in advance, but the number n of 
items is. As noted by Shor(1986), it is surprising that one can produce an algorithm 
that achieves O(^fn) expected wasted space without knowing item sizes in advance. 
However, the algorithm must know n, i.e., it must be a closed on-line algorithm. 
According to one such algorithm, which we call Closed Best Fit (CBF), the first 
[n/2] items are packed one to a bin and the remaining [n/2J items are packed by 
Best Fit. The claim is that CBF wastes at most 0(y/n) space on average, and so 
the following bound on closed on-line packing holds. 

Theorem 1 Tl 
EOPTclosed(Ln) = - + 

We have seen no proof of this result, and while it is true that standard techniques 
may be applied in such a proof, the way in which they are applied has novel features. 
For this reason, and because the improvement possible in closed on-line bin packing 
is indeed unexpected, the next section sets down for the record a proof of Theorem 
1: Still more reasons are provided by the additional results to which the analysis 
leads. For example, we derive a compact upper bound on the hidden constant factor 
from the analysis of a random walk. Further, as discussed in Section 3, Theorem 
1 will be seen to apply to a number of practical matching algorithms, and to be 
extendible to distributions other than the uniform. 

2 Proof of Theorem 1 
For convenience, we assume hereafter that n is even; this will not affect our asymp-
totic results. Let L ^ and Ln\ be the sublists of the first n/2 and last n/2 items of 
Ln, respectively. We begin by proving 0(y/n) wasted space for the modification of 
CBF which closes any bin Bj, j < n/2, after it receives a second item, and closes 
any bin Bj, j > n/2, after it receives its first item. Denote the modified algorithm 
by CBF». An example is shown in Figure 1(a). After proving that Theorem 1 holds 
for CBF*, we will show that CBF«(Ln) > CBF(Ln) for all Ln, thus completing the 
proof of Theorem 1. 

We begin with a key property of CBF, packings. 

Lemma 1 Let Ln and L'n differ only in the permutations of their last n /2 items. 
Then CBF»(Ln) = CBFt (L'n). 

Proof. Consider the ordered CBF, packing of Ln in which the bins are arranged so 
that the first n/2 items are in decreasing size order, as illustrated in Figure 1(b). 
We say that this packing is a canonical packing if in addition the last n/2 items 
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a) CBF b) Ordered CBF, c) Canonical packing 

Figure 1: An example with items 1 through n = 12 having sizes 

.26, .78, .82, .48, .08, .68, .57, .8, .12, .84, .5, .11. 

are in increasing size order. Roughly speaking, CBF, attempts to pack bins with 
matched items, one large and one small. However, ordered matchings (packings) 

(2) 

are not necessarily canonical unless Ln is in increasing size order. For example, in 
Figure 1(b) a canonical matching requires that items ag and a 12 be interchanged. 

On the other hand, the CBF» packing can be put into canonical form without 
changing CBF,(I/„). To see this, suppose items ¿1,¿2 are in and matched 
with j i , j 2 , respectively, in bins of the ordered CBF* packing. If a,j1 > a j 2 and 
a.ij > a,i2 then aj1 + a^ < aj1 + a^ < 1 and aj2 -I- a¿j < aj1 + a^ < 1, so we 
can interchange items j \ and without exceeding bin capacity. Iterating these 
interchanges at most 0(n2) times brings the CBF, packing into canonical form 
up through Bn/2• Trivially, the items in the singleton bins beyond Bn/2 can then 
be sorted into increasing order, at which point the entire packing is a canonical 
packing. In addition, the set of items in singleton bins can not have changed, since 
the Best Fit rule depends only on gap sizes and not on the bin (gap) indexing. We 
conclude that the cardinality of the CFB» packing is left unchanged at the end of 
the ordering process. It remains only to observe that CBF, packings for lists Ln 
and L'n that differ only in the permutation of their last n/2 items will converge 
under the ordering process to the same equal-cardinality canonical packing. • 

We now prove that Theorem 1 holds for CBF», and in the process, find the 
hidden constant factor. 

Lemma 2 

ECBF»(Ln) 

as n - > 00. 

Proof. By Lemma 1 we need consider only canonical CBF* packings. Let N\(y) be 
the number of items in Ln ' with sizes less than y and let N2(y) be the number of 
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items in Ln ^ with sizes greater than 1 — y. Define 

S(y) := N2(y) - N^y) 

and note that maxo<y<i S(y) > ¿(0) = 0. It is easy to see that 

C B F , ( L n ) = max S(y). (1) i 0<y<l 

As an example, note that maxo<y<i 6(y) = 1 in Figure 1(b), and that S(y) achieves 
its maximum for any y € (1 — an ,a$) . TO verify (1), one can argue in terms 
of the number of singleton bins beyond Bn/2 in the CBF, packing, which is just 
CBF«(Ln) - n/2. To the right of the rightmost singleton bin Bj with j < n/2, the 
number of items from L ^ less the number of items from lJrP gives the maximum 
of 8(y) over [0,1] and is equal to the number of singleton bins beyond Bnj2. 

We now interpret S(y) as a random walk that evolves as y increases from 0 to 
1. For each size a in Ln^ a plus is plotted at point a, and for each size a in Ln ^ a 
minus is plotted at point 1 — a. For each minus encountered as y increases from 0 
to 1, S(y) steps down by 1, and for each plus encountered, S(y) steps up by 1. Let 
Si, 0 < i < n, be the position of this random walk after the ith jump. As can be 
seen, {<5j} is a classical n-step symmetric random walk with the constraint that its 
paths start and end at the origin, i.e., ¿o = <5n = 0. Letting n = 2v, the number 
of such paths is (2

J/"). By the reflection principle (see e.g, Feller(1968), p. 72), the 
number of such paths that hit or exceed k is , 0 < k < v, and so 

1 E ' 
\<k<v 

By the binomial theorem, the sum evaluates to |(22"— (2„")), so routine applications 
of Stirling's formula yield 

17T72 
E max 5(y) = E max Si ~ \ — 

0<y<l 0<i<n V 8 

as n —> oo. • 

We will be done once we have proved 

Lemma 3 
C B F t ( L n ) > CBF(Ln). 

Proof. Let ae 1 , . . . , aek be the subsequence of items in L„. that are packed by CBF 
into bins Bj, j < n/2, that already have at least two items, or bins Bj, j > n/2, 
that already have at least one item. Remove these items from the CBF packing 
and repack them best-fit into the singleton bins Bj, j < n/2. That is, item a^ is 
put into a singleton bin Bj, j < n/2, with the smallest gap no smaller than 1 — at 
if such a bin exists; if no such bin exists, a^ is put into an empty bin (necessarily 

E max Si = -iw-r ( 
1 Kk<v x 
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beyond Bn/2). In either case, the bin receiving ati is then closed. The final packing 
is a CBF, packing of a list L'n that can differ from Ln only in the permutation of 
the last n /2 items. Moreover, the final packing has a cardinality at least that of 
the original CBF packing. In particular, CBF*(L'n) - CBF(L„) > 0 is the number 
of new singleton bins produced in the new packing. By Lemma 1 we can then 
conclude that 

CBF.CLiJ = CBF,(Ln) > CBF(Ln) 

which proves the lemma. • 

3 Final Remarks 
Consider the closed on-line algorithm that (i) packs the first n /2 items one to a 
bin, (ii) sorts the bins so that the items are in decreasing order, and (iii) packs the 
remaining items First Fit. This is the algorithm actually proposed by Shor(1986). 
Let us call this algorithm Closed First Fit (CFF) and define CFF* just as we defined 
the variant CBF* of CBF (limiting bins to at most two items). In comparing CFF* 
and CBF*, we observe that packing best fit is like packing first fit into a decreasing 
sequence, so the two algorithms give, for all Ln, exactly the same packing. 

. Theorem 1 is easily generalized to any distribution symmetric around 1/2 that 
is not concentrated entirely at 1/2. Further, we can apply the same ideas to distri-
butions U(0,1 /p), with p an integer. For example, suppose p = 3. Then we take 
n/6 bins and divide each into thirds. The top thirds of these bins are packed as 
before as if'they were bins themselves; only the scaling by a factor of 3 has any 
effect. Similarly, the middle thirds are packed after top thirds and then the bottom 
thirds are packed last. Bins beyond Bn/6 are introduced as needed and packed as 
if they consisted of 3 bins with capacity 1/3. The extension of Theorem 1 follows 
easily. 
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