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A PTAS for single machine scheduling 
with controllable processing times 

Petra Schuurman* and Gerhard J. Woeginger* 

Abstract 

We deal with a single machine scheduling problem in which each job has 
a release date, a delivery time and a controllable processing time. The fact 
that the jobs have a controllable processing time means that it is allowed to 
compress (a part of) the processing time of the job, in return for compression 
cost. The objective is to find a schedule that minimizes the total cost, that 
is, the latest delivery time of any job plus the total compression cost. In this 
note we discuss how the techniques of Hall and Shmoys [3] and Hall [1] can 
directly be applied to design a polynomial time approximation scheme for 
this problem. 

Keywords. Scheduling, worst case analysis, approximation algorithm, ap-
proximation scheme, controllable processing time. 

1 Introduction 
We consider a scheduling problem in which n jobs, J\,..., J n , have to be scheduled 
on a single machine. Each job Jj has a processing requirement pj and it becomes 
available for processing at a specific point in time, which we call its release date 
rj. After its processing, J j needs some delivery time (independent of the machine) 
before it is completed (e.g. cooling off or transportation time); we denote this 
delivery time by qj. We assume that no preemption is allowed, i.e. once a job has 
been started, it must be completed without interruptions. The goal is to minimize 
the latest job delivery completion time, which we call the length of the schedule. 
This scheduling problem with release dates and delivery times is usually denoted 
by 11 Tj | Lm a x . 

In this paper we consider a more difficult variation of problem 11 r3- | Lm a x : 
There are situations where one can and wishes to board out part of the work. In 
case part of the work of job Jj is boarded out, we say that Jj is compressed. The 
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amount J j is compressed is denoted by Xj, and the maximum possible compression 
of Jj is denoted by UJ. Here XJ is a decision variable with 0 < XJ < UJ\ note 
that Xj does not need to be integral. We call the amount of processing time of a 
job J j after compression, its shortened processing time ctj. Clearly, (ij = pj — Xj. 
Of course compressing a job J j results in extra costs, so-called compression costs. 
We denote the compression cost per unit of Jj by Cj. The total compression cost, 
denoted by C, satisfies C = cjxj- The objective is now to find a schedule a 
that minimizes the total cost T(a), that is the length L(a) of the schedule plus the 
total compression cost C(a). 

For the computational complexity of the single-machine problem, the following 
is known. Let us first discuss the cases where all delivery times are equal. Then de-
termining a schedule with minimal length of an instance of 11 r j | Lm a x comes down 
to finding a schedule with minimal makespan, where the makespan is the com-
pletion time of the latest job. In this case, determining a schedule with minimal 
makespan can be done in polynomial time by ordering the jobs in nondecreasing 
order of release date. The compressible processing time variant also admits a poly-
nomial time algorithm in case of equal delivery times: After sorting the jobs in 
nondecreasing order of release date, we start compressing the jobs with compres-
sion cost less than 1 in order of nonincreasing compression costs, where we only 
compress a job in case the length of the schedule thereby decreases. Now let us 
turn to the cases with arbitrary delivery times. Lenstra, Rinnooy Kan & Brucker 
[5] proved that 11 rj \ LmSLX is AiV-hard in the strong sense. Therefore, the single 
machine problem with compressible processing times, which encloses 11 r j | Z/max as 
a special case, is also strongly MV-haid. 

These later observations justify the search for approximate solutions by means 
of polynomial time approximation algorithms. We say that such an approximation 
algorithm has worst case performance guarantee p, or is a /^-approximation algo-
rithm for short, if it always delivers a solution with value at most p-OPT. Here, 
OPT denotes the value of an optimal solution, which will also be denoted by T* in 
our case. For a strongly NV-haxd problem, the best that we can hope for, is the 
existence of a polynomial time approximation scheme, a PTAS for short. A PTAS 
is a family of polynomial time (1 + e)-approximation algorithms for all e > 0. 

Already in 1971 Schräge [8] developed a 2-approximation algorithm for 
11>j'| Lmax based on a simple heuristic. During the eighties various improvements 
upon Schrage's heuristic were designed to obtain better performance guarantees. 
First Potts [7] modified the heuristic of Schräge into a f-approximation algorithm, 
and then Hall and Shmoys [3] on their turn improved Potts' heuristic to get a f -
approximation algorithm. In 1989, Hall and Shmoys [2] developed a new idea, that, 
among others, helped them in designing an approximation scheme for 11 t j | Z/max-
Hereby the approximability status of 11 r j | Lm a x was determined. The results of 
Hall and Shmoys [2] were even stronger, since they extended to the problem with 
precedence constraints. 

In 1991, Zdrzalka [9] designed a + ^-approximation algorithm for the single-
machine problem with compressible processing times; Here, r is the performance 
guarantee of the best approximation algorithm for 11 r j | Lm a x . Hence the approx-



A PTAS for single machine scheduling with controllable processing times 371 

imation algorithm of Zdrzalka has performance guarantee arbitrarily close to | . 
Nowicki [6] improved on this result by constructing a ( | + e)-approximation algo-
rithm, where e > 0 can be arbitrarily small. 

In this note we apply the ideas of Hall and Shmoys [2] for 11 r-j | Lmax"and some 
of the ideas of Hall [1] for the flowshop problem, to design an approximation scheme 
for minimizing the latest delivery time under controllable processing times. 

2 The approximation scheme 
Clearly the total cost is a combination of two opposing objectives: On the one hand 
we want to minimize the total length and on the other hand we wish to minimize 
the total compression cost. Therefore, it seems logical to separate these costs when 
attacking the problem. It comes in hand to express the minimal compression costs 
as a function of the length of the schedule; to that end we define Copt(L) to be the 
minimal compression costs of a schedule of length L. Note that the minimal total 
cost, T*, equals min^(L + Copt(L)). We start with the following observation. 

Observation 2.1 The minimal compression costs of a schedule Copt(L) is nonin-
creasing in its length L. • . • 

Before giving a detailed description of the approximation scheme, we start With 
a global explanation of the ideas behind the scheme. Our approach consists of 
finding a schedule with nearly optimal costs given a fixed length. We construct an 
algorithm Ae (L) that, given a feasible schedule length L, produces a schedule of 
length at most (1 + f ) L and costs at most Copt(L). 

As introduced by Hall and Shmoys in [2] and used in various papers later on, 
we make use of a so called outline scheme. An outline scheme is a partition of the 
feasible schedules into sets. This partition is done in such a way that schedules in 
the same sets, share the same characteristics. The idea of the outline scheme is 
to generate a good schedule for each set and then to take the best among these 
generated schedules to be the approximate solution. For this idea to work, the 
following two conditions are necessary: First, the partition has a polynomial number 
of sets, and second, for each set, we are able to find a schedule that is nearly as 
good as the best schedule within that set, in polynomial time. 

To satify the first condition, as one usually does in designing a PTAS, we distin-
guish between big jobs and small jobs. We call a job big if its shortened processing 
time is at least 62L, otherwise we call a job small. Note that, in contrary to the 
usual definition, this definition is schedule dependent. 

Each set in the outline scheme is characterized by, what we call, a skeleton. 
Roughly speaking, this skeleton determines the approximate position of the big 
jobs in a schedule; an exact characterization of a skeleton is given in Section 2.2. 
Our algorithm Ae(L), which is based on building a good schedule for each skeleton, 
consists of two stages. Given a candidate length L, we first guess the approximate 
position of the big jobs in an optimal schedule by enumerating all possible skeletons. 
In the second stage, we construct a schedule for each skeleton by fitting in the small 
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jobs. The best among all those schedules will be the output of our approximation 
algorithm. 

Below we describe the various steps of our approximation scheme in detail: 
First, in Section 2.1, we indicate for which lengths L we construct an approximate 
solution; the characteristics of a skeleton are described in Section 2.2; in Section 
2.3 we show how we have incorporated the small jobs to obtain good schedules. 
Finally, in Section 2.4, we show that our algorithm indeed produces a near-optimal 
solution, i.e. a solution with cost at most (1 + e)T*. 

2.1 Fixing the length of the schedule 
As we want our algorithm to have polynomial running time, we only evaluate a 
constant number of different lengths L. In order to determine suitable lengths, we 
start by computing natural lower and upper bounds on the length of a schedule. By 
means of the approximation scheme of Hall and Shmoys [2], we get a lower bound 
on the length of a schedule by computing an approximate schedule in case all jobs 
are compressed upon their maximal compression Uj. We choose the parameters in 
the approximation scheme of Hall and Shmoys such that the approximate length 
of this schedule, which we denote by L0(e), is at most (1 + | ) times the length of 
an optimal schedule in which all jobs are maximaly compressed. 

Analogously, we determine a natural upper bound on the length of a schedule 
by finding an approximate schedule for the problem in which no job is compressed. 
The approximate length of this schedule is denoted by Lco(e), where L00(e) is less 
than (1 + | ) times the length of an optimal schedule in which no job is compressed. 
Clearly, we only consider schedules with length between Lq(e) and L00(e). 

We would like subsequent lengths to differ at most a multiplicative factor of 
1 + | . For this purpose the range of [Lo(e), L ^ (e)] could be too wide, therefore we 
need to construct better lower and upper bounds. 

The work of Zdrzalka [9] and Nowicki [6] gives us good lower and upper bounds 
on the total cost T* of an optimal schedule. Consider a |-approximation algorithm 
for the problem, obtained by the approach of Nowicki. Let T ( a x ) be the cost of 
schedule crv produced by this algorithm. Clearly, we do not execute AE(L) for 
lengths L with L > T(AJ^F). Furthermore, in case L < ~ET(AJ^)) tha;t is, L < |ET*, 
we also do not execute AE(L). 

Concluding: We execute algorithm AE(L) for a constant number of lengths L, 
starting with max(Lo(£), ^£T(a//)) , increasing the length every time with a factor 
(1 + | ) until the value exceeds min(L00(e),T(crJv)). The structure of our scheme is 
as follows. 

Scheme 
INPUT: A n u m b e r e < 1. 

Compute schedules <7o and Awith lengths Lq(e) and Loo(e) respec-
tively, by means of the approximation scheme of Hall and Shmoys. 
Construct a schedule o^f, with cost T(ax) , by a |-approximation algo-
rithm obtained by the approach of Nowicki. 
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L := max(L0(£),§eT(atf)); 
WHILE L < MIN(LOO(e),T(au)) DO 

Construct an approximate schedule a by algorithm Ae(L)\ 

E N D WHILE 

O U T P U T : A schedule a for which the total cost T(a) is minimal among 
all constructed schedules. 

The algorithm AE(L) consists of two stages, which are explained in the next two 
sections. 

2.2 Stage 1: Characterising the skeleton of a schedule 
Following the idea of the outline scheme, the first stage of Ae (L) consists of grouping 
together schedules with the same skeleton. We first characterize such a skeleton, 
after which we enumerate all feasible skeletons in order to build one good schedule 
from each of these skeletons in the second stage. • .• 

Given a candidate length L and a constant e, we divide the interval [0, L) in | 
intervals h, i — 1 , . . . , j , of equal length, i.e. Ii = [(i - 1 )L5, iL5), where 5 = —e. 
For each interval /¿, we.would like to know which jobs are started in this interval 
and the amount of time that they occupy the machine. As in e.g. Hall & Shmoys 
[3] and Hall [1], we do not determine the corresponding starting interval for all jobs, 
but only for the big jobs. The only difference between our problem and for example 
the flowshop problem studied by Hall, is that, due to the possibility of compressing, 
we do not know beforehand which jobs are big and which jobs are small. However, 
we can easily overcome this difference:, a straightforward extension of the approach 
in Hall and Shmoys [3], leads to a PTAS. 

We characterize a skeleton by the following: 

• For each interval i = 1 , . . . , we specify a set of big jobs Bi. The cardi-
nality of each set Bi is at most j and Bi D Bi = 0 for all rand /. 

• For each job Jj in a set Bi, we specify its approximate shortened processing 
time ay, aj is between S2L and L, and is a multiple of 63L. 

• For each interval /¿, i = 1,..''., j , we specify the approximate total shortened 
processing time Ai of the small jobs in the interval /¿; A{ is a multiple of S2L. 

We can represent a skeleton by a vector y, where yi — (Bi,{a,j\Jj 6 Bi},Ai). 
Although the number of different skeletons is polynomial (see the proof of Lemma 
2.2 in Section 2.4), .we restrict our attention to those skeletons for which there 
possibly exists a feasible schedule, i.e. so-called feasible skeletons that satisfy the 
following conditions. 

• Every big job can be compressed up to aj, that is, for every job Jj in a set 

L:= L( 1+f) 

Bi-. 
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• Every big job is assigned to a compatible starting interval, i.e. for every job 
Jj e Bi -. 

Tj < i5L and (i — 1 )SL + dj + qj < ^ S3L. 

• No interval is overloaded, i.e. for every interval U and for all 1 < I < i 

i 
+ _ maxfij < (i - I + 1 )(6L + 262L), 

k=i jeBk
 jeB' 

the additional 2S2L is due to the rounding of the shortened processing times. 
Our approach consists in enumerating all feasible skeletons. In the next section 

we explain how to transform a feasible skeleton y into a feasible schedule a (y). 

2.3 Stage 2: Incorporating the small jobs 
Given a feasible skeleton y, we know the approximate total amount of shortened 
processing time of the small jobs for each interval h and both the starting interval 
and the approximate,shortened processing time of the big jobs. Since we have 
rounded the shortened processing times, we need to enlarge the intervals /¿. We 
therefore define intervals i = 1 , . . . , where U = [(t — 1 )(SL + 3S 2L), i (6L + 
352L)). We now determine the starting interval I{ and the shortened processing 
time for the small jobs. Analogous to Hall [1], we determine this data by means of 
a linear program. 

To that end, we define decision variables a,ij, where aij represents the shortened 
processing time of job J j in the interval /¿. The set of small jobs is denoted by 
S. In fact our linear program assigns different pieces of the same job to different 
intervals, which corresponds to the construction of a preempted schedule. The first 
two inequalities in the LP-formulating below, express the bounds on the amount 
of compression Xj. Equalities three and four impose natural constraints on the 
intervals each (piece of) job is processed in, whereas inequalities five and six bound 
the total amount of shortened processing time for each machine and each job, 
respectively. The goal is of course to minimize the total compression cost. 

LP 
min -
s-t- pj-Eian > o V i e s 

Pi - < uj Vj e s 
a^ = 0 if r j > iSL Vi = 1 , . . . , i , Vj £ S 
aij — 0 if L - qj < (i - 1)8L Vi = 1 , . . . , V? € S 

T , j a i j < h Vi = l , . . . , i 
Ei aij < 82L V j t S 

a i j > 0 Vi = 1 , . . . , j , Vj G S 
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The LP may not give a solution, in this case it is clear that there is no schedule 
corresponding to the skeleton y. Otherwise, we construct a feasible schedule as 
follows. 

Instead of assigning different pieces of a small job to different intervals, as the 
LP-solution suggests, we assign the job as a whole, that is, the total shortened pro-
cessing time a ' j a s determined by the LP, to a single interval /¿. We recursively 
determine the jobs that have starting interval /1, /2 , • •. /1. In each step i, we first 
compute Ri, which denotes the subset of small jobs that have not been assigned to 
/1, /2, • • • U-1 and for which there is a I < i with a/j > 0. Then, we order the jobs 
in Ri in increasing order of their delivery time. Finally, we assign the jobs in Ri 
one by one to 7j until the total shortened processing time exceeds Ai. 

Given the starting intervals of the jobs,'we order the jobs in each interval Ii as 
follows. First we schedule the small jobs (in arbitrary order), then we schedule the 
big jobs in order of nondecreasing shortened processing time. We only allow idle 
time between two jobs with different starting intervals. In order to obtain a feasible 
schedule, that is, to ensure that each job is started at or after its release time, we 
introduce an idle interval with length SL at the beginning of the schedule. Hence 
the intervals Ii are shifted by 5L time units. We call the schedule constructed above 
a(y). It is easy to check that a(y) is a feasible schedule. 

Summarizing: the structure of our algorithm Ae(L) is as follows. 

Algorithm Ae(L) 
INPUT: A number e < 1 and an integer L. 

s ••=&•> 
Divide the interval [0, L) into | intervals of equal length; 
Enumerate all feasible skeletons y; 
FOR each feasible skeleton y DO 

Compute the compression cost Cfl(y) for the big jobs in y 
Solve the LP; 
IF the LP has a solution with value Cs(y) 

THEN construct a schedule a(y) with length at most 
' (1 + |)L and compression cost Cs{y) + Cs(y). 

E N D FOR 

O U T P U T : A schedule a with total minimal cost among all constructed 
schedules a(y). 

2.4 The analysis 
We start this section by showing that Ae(L) runs in polynomial time. Then, we 
conclude that, since the number of executions of Ae(L) is constant, as stated in 
Lemma 2.3, our scheme has polynomial running time. Finally, by means of Lemmas 
2.4 and 2.5, we prove that our scheme produces a near-optimal solution. 

Lemma 2.2 Algorithm Ae(L) runs in polynomial time. 
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Proof. Since the LP described in Section 2.3'clearly runs in polynomial time and 
the procedure to construct o(y) is also polynomial, the key factor is the number of 
different skeletons. If'the latter is polynomial, then so is Ae(L). 

As the number of big jobs per interval is at most j , we have at most n* different 
Bi's. For each job Jj we have at most js choices for its approximate shortened 
processing time ay, hence, there are at most ^ ^ different sets {a.j\Jj G 5;}. Finally, 
there axe j different choices for Aj. Concluding: the number of different skeletons 
is a,t most 

and therefore Ae(L) runs in polynomial time. • 

Lemma 2.3 The number of times A£(L) is executed is a constant that depends on 
e. 

Proof. Let K be the number of times we execute algorithm Ae(L) and let Ljirst 
and Liast be the first and last length, respectively, for which algorithm Ae(L) is 
executed. Clearly, LfiTSt > \eT(a^f) and Liast — (1 + ! ) K - 1 £/ i rs t < T(ax). 
Hence, 

that is, 

(1 + ~)K 1Lfirst < T((Jtf) < —Lfirst, 

l o g ( ¿ ) 
« < í — / i F \ + • l og ( l + | ) 

From the previous two lemmas it follows that our scheme runs in polynomial 
time. It now remains to prove that a e , the output of our scheme, has value at most 
(1 +e)T*. To that end, we first prove that algorithm Ae(L) outputs a near-optimal 
schedule. 

Lemma 2.4 The algorithm Ae(L) produces a schedule with length at most (1 + | ) L 
and cost-at most Copt(L). 

Proof. Let o be a schedule with length at most L and cost at most Copt(L). We 
divide [0, L) in | intervals U of equal length and we define Si to be the set of small 
jobs that start in /¿. Next, we construct a skeleton y, with yi = ( B i , { a j \ J j € 
Bi}, i4i), where 

• S j is defined to be the set of big jobs that start in /¿; 

• for each job Jj € Bi, we define its approximate shortened processing time a,j 
to be f ^ " ] 53L; 

• Äi is defined to be equal to (E,,. eS; AJ 
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After first enlarging each interval h by a multiplicative factor of '1 + 6 (i.e.- an 
absolute increase of SL), to compensate the rounding of the big jobs, and then 
enlarging each U by SL, to compensate for the rounding of the small jobs, it is 
clear that every big job can still be started within its assigned interval. 

Given the skeleton y, we construct a feasible schedule, oe(y), as described in 
Section 2.3. Thanks to the additional S2L units of space in each interval we can 
also cope with an additional small job that is possibly assigned to /¡. Furthermore, 
since no big job is compressed more than in the original schedule (we have rounded 
up the shortened processing times) and the small jobs are compressed in such a 
way that the compression cost are minimized, the compression cost of <rE(y) is at 
most Copt(L). 

Let us now compute the length of cre(y). We have already argued that no 
interval It is overloaded, that is, the jobs assigned to U can actually be started in 

Because our algorithm has shifted all jobs SL units to the right, no job is started 
before its release time. But a job might complete after L. Let us reason how much 
this additional delay might be. Consider a big job in oe (y) that starts at a time 
tj £ h. In cr this job starts at time tj £ / j i.e. tj > (i — 1 )SL. As tj + cij + qj < L, 

tj + a,j + qj < SL + i(SL + 3 S2L) + aj + qj 
< 2SL + ZiS2L + tj + (1 + S)a,j + qj 
< bSL+{I+6)L 
< (1 + 6 6)L 

= 

Hence, the delivery completion time of each big job is at most (1 + | ) L . A similar 
analysis can be made for each small job. Concluding: L(ae(y)) < (1 + 6S)L = 
(1+ I)L and C(ae(y)).<C0pt(L). • 

Lemma 2.5 The scheme proposed in the previous sections computes a solution 
with value at most (1 + e)T*. 

Proof. Let a* be an optimal schedule. We now distinguish two cases. 
In case (i), the length L(o*) of schedule a* is less than | e T*. We know that 

the algorithm A e( |T*) outputs a schedule o\ with total cost at most (1 + | ) | e T * + 
Copt(L(a*)) < eT* + T* = (1 + e)T*. This settles the first case. 

In case (ii), the length L(a*) of schedule a* is at least | e T * . Then there exists 
an integer k > 0 such that (1 + f )* - 1 ̂ first <L(o*) < (1 + f ) k L firsts where LfiTSt 
is defined as in Lemma 2.3. Our scheme computes 4 e ( ( l + 1 ) L/irst), which delivers 
a solution 02 with length at most (1 + | ) k + l L S i r s t < (1 + §)2L(a*) < (1 +e)L(a") 
and cost at most Copi(L(<7*)). 

To conclude, in either case our approximation algorithm outputs a schedule 
with cost at most (1 + e)T*. • 

Our final theorem summarizes the main result of this paper. 
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T h e o r e m 2.6 The single-machine problem with release dates, delivery times and 
compressible processing times with objective to minimize the maximal job delivery 
completion time possesses a PTAS. • 
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