
Acta Cybernetica 15 (2001) 369-378.

A PTAS for single machine scheduling
with controllable processing times

Petra Schuurman* and Gerhard J. Woeginger*

Abstract

We deal with a single machine scheduling problem in which each job has
a release date, a delivery time and a controllable processing time. The fact
that the jobs have a controllable processing time means that it is allowed to
compress (a part of) the processing time of the job, in return for compression
cost. The objective is to find a schedule that minimizes the total cost, that
is, the latest delivery time of any job plus the total compression cost. In this
note we discuss how the techniques of Hall and Shmoys [3] and Hall [1] can
directly be applied to design a polynomial time approximation scheme for
this problem.

Keywords. Scheduling, worst case analysis, approximation algorithm, ap-
proximation scheme, controllable processing time.

1 Introduction
We consider a scheduling problem in which n jobs, J\,..., J n , have to be scheduled
on a single machine. Each job Jj has a processing requirement pj and it becomes
available for processing at a specific point in time, which we call its release date
rj. After its processing, J j needs some delivery time (independent of the machine)
before it is completed (e.g. cooling off or transportation time); we denote this
delivery time by qj. We assume that no preemption is allowed, i.e. once a job has
been started, it must be completed without interruptions. The goal is to minimize
the latest job delivery completion time, which we call the length of the schedule.
This scheduling problem with release dates and delivery times is usually denoted
by 11 Tj | Lm a x .

In this paper we consider a more difficult variation of problem 11 r3- | Lm a x :
There are situations where one can and wishes to board out part of the work. In
case part of the work of job Jj is boarded out, we say that Jj is compressed. The

*Email: petrafflwin.tue.nl . Department of Mathematics and Computing Science, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

tEmail: gvoegiff lopt .math. tu-graz.ac.at . Institut fur Mathematik B, TU Graz, Steyrergasse
30, A-8010 Graa,-/Austria, and Department of Mathematics, University of Twente, 7500 AE En-
schede, The Netherlands. Supported by the START program Y43-MAT of the Austrian Ministry
of Science.

369

370 Petra Schuurman and Gerhard J. Woeginger

amount J j is compressed is denoted by Xj, and the maximum possible compression
of Jj is denoted by UJ. Here XJ is a decision variable with 0 < XJ < UJ\ note
that Xj does not need to be integral. We call the amount of processing time of a
job J j after compression, its shortened processing time ctj. Clearly, (ij = pj — Xj.
Of course compressing a job J j results in extra costs, so-called compression costs.
We denote the compression cost per unit of Jj by Cj. The total compression cost,
denoted by C, satisfies C = cjxj- The objective is now to find a schedule a
that minimizes the total cost T(a), that is the length L(a) of the schedule plus the
total compression cost C(a).

For the computational complexity of the single-machine problem, the following
is known. Let us first discuss the cases where all delivery times are equal. Then de-
termining a schedule with minimal length of an instance of 11 r j | Lm a x comes down
to finding a schedule with minimal makespan, where the makespan is the com-
pletion time of the latest job. In this case, determining a schedule with minimal
makespan can be done in polynomial time by ordering the jobs in nondecreasing
order of release date. The compressible processing time variant also admits a poly-
nomial time algorithm in case of equal delivery times: After sorting the jobs in
nondecreasing order of release date, we start compressing the jobs with compres-
sion cost less than 1 in order of nonincreasing compression costs, where we only
compress a job in case the length of the schedule thereby decreases. Now let us
turn to the cases with arbitrary delivery times. Lenstra, Rinnooy Kan & Brucker
[5] proved that 11 rj \ LmSLX is AiV-hard in the strong sense. Therefore, the single
machine problem with compressible processing times, which encloses 11 r j | Z/max as
a special case, is also strongly MV-haid.

These later observations justify the search for approximate solutions by means
of polynomial time approximation algorithms. We say that such an approximation
algorithm has worst case performance guarantee p, or is a /^-approximation algo-
rithm for short, if it always delivers a solution with value at most p-OPT. Here,
OPT denotes the value of an optimal solution, which will also be denoted by T* in
our case. For a strongly NV-haxd problem, the best that we can hope for, is the
existence of a polynomial time approximation scheme, a PTAS for short. A PTAS
is a family of polynomial time (1 + e)-approximation algorithms for all e > 0.

Already in 1971 Schräge [8] developed a 2-approximation algorithm for
11>j'| Lmax based on a simple heuristic. During the eighties various improvements
upon Schrage's heuristic were designed to obtain better performance guarantees.
First Potts [7] modified the heuristic of Schräge into a f-approximation algorithm,
and then Hall and Shmoys [3] on their turn improved Potts' heuristic to get a f -
approximation algorithm. In 1989, Hall and Shmoys [2] developed a new idea, that,
among others, helped them in designing an approximation scheme for 11 t j | Z/max-
Hereby the approximability status of 11 r j | Lm a x was determined. The results of
Hall and Shmoys [2] were even stronger, since they extended to the problem with
precedence constraints.

In 1991, Zdrzalka [9] designed a + ^-approximation algorithm for the single-
machine problem with compressible processing times; Here, r is the performance
guarantee of the best approximation algorithm for 11 r j | Lm a x . Hence the approx-

A PTAS for single machine scheduling with controllable processing times 371

imation algorithm of Zdrzalka has performance guarantee arbitrarily close to | .
Nowicki [6] improved on this result by constructing a (| + e)-approximation algo-
rithm, where e > 0 can be arbitrarily small.

In this note we apply the ideas of Hall and Shmoys [2] for 11 r-j | Lmax"and some
of the ideas of Hall [1] for the flowshop problem, to design an approximation scheme
for minimizing the latest delivery time under controllable processing times.

2 The approximation scheme
Clearly the total cost is a combination of two opposing objectives: On the one hand
we want to minimize the total length and on the other hand we wish to minimize
the total compression cost. Therefore, it seems logical to separate these costs when
attacking the problem. It comes in hand to express the minimal compression costs
as a function of the length of the schedule; to that end we define Copt(L) to be the
minimal compression costs of a schedule of length L. Note that the minimal total
cost, T*, equals min^(L + Copt(L)). We start with the following observation.

Observation 2.1 The minimal compression costs of a schedule Copt(L) is nonin-
creasing in its length L. • . •

Before giving a detailed description of the approximation scheme, we start With
a global explanation of the ideas behind the scheme. Our approach consists of
finding a schedule with nearly optimal costs given a fixed length. We construct an
algorithm Ae (L) that, given a feasible schedule length L, produces a schedule of
length at most (1 + f) L and costs at most Copt(L).

As introduced by Hall and Shmoys in [2] and used in various papers later on,
we make use of a so called outline scheme. An outline scheme is a partition of the
feasible schedules into sets. This partition is done in such a way that schedules in
the same sets, share the same characteristics. The idea of the outline scheme is
to generate a good schedule for each set and then to take the best among these
generated schedules to be the approximate solution. For this idea to work, the
following two conditions are necessary: First, the partition has a polynomial number
of sets, and second, for each set, we are able to find a schedule that is nearly as
good as the best schedule within that set, in polynomial time.

To satify the first condition, as one usually does in designing a PTAS, we distin-
guish between big jobs and small jobs. We call a job big if its shortened processing
time is at least 62L, otherwise we call a job small. Note that, in contrary to the
usual definition, this definition is schedule dependent.

Each set in the outline scheme is characterized by, what we call, a skeleton.
Roughly speaking, this skeleton determines the approximate position of the big
jobs in a schedule; an exact characterization of a skeleton is given in Section 2.2.
Our algorithm Ae(L), which is based on building a good schedule for each skeleton,
consists of two stages. Given a candidate length L, we first guess the approximate
position of the big jobs in an optimal schedule by enumerating all possible skeletons.
In the second stage, we construct a schedule for each skeleton by fitting in the small

372 Petra Schuurman and Gerhard J. Woeginger

jobs. The best among all those schedules will be the output of our approximation
algorithm.

Below we describe the various steps of our approximation scheme in detail:
First, in Section 2.1, we indicate for which lengths L we construct an approximate
solution; the characteristics of a skeleton are described in Section 2.2; in Section
2.3 we show how we have incorporated the small jobs to obtain good schedules.
Finally, in Section 2.4, we show that our algorithm indeed produces a near-optimal
solution, i.e. a solution with cost at most (1 + e)T*.

2.1 Fixing the length of the schedule
As we want our algorithm to have polynomial running time, we only evaluate a
constant number of different lengths L. In order to determine suitable lengths, we
start by computing natural lower and upper bounds on the length of a schedule. By
means of the approximation scheme of Hall and Shmoys [2], we get a lower bound
on the length of a schedule by computing an approximate schedule in case all jobs
are compressed upon their maximal compression Uj. We choose the parameters in
the approximation scheme of Hall and Shmoys such that the approximate length
of this schedule, which we denote by L0(e), is at most (1 + |) times the length of
an optimal schedule in which all jobs are maximaly compressed.

Analogously, we determine a natural upper bound on the length of a schedule
by finding an approximate schedule for the problem in which no job is compressed.
The approximate length of this schedule is denoted by Lco(e), where L00(e) is less
than (1 + |) times the length of an optimal schedule in which no job is compressed.
Clearly, we only consider schedules with length between Lq(e) and L00(e).

We would like subsequent lengths to differ at most a multiplicative factor of
1 + | . For this purpose the range of [Lo(e), L ^ (e)] could be too wide, therefore we
need to construct better lower and upper bounds.

The work of Zdrzalka [9] and Nowicki [6] gives us good lower and upper bounds
on the total cost T* of an optimal schedule. Consider a |-approximation algorithm
for the problem, obtained by the approach of Nowicki. Let T (a x) be the cost of
schedule crv produced by this algorithm. Clearly, we do not execute AE(L) for
lengths L with L > T(AJ^F). Furthermore, in case L < ~ET(AJ^)) tha;t is, L < |ET*,
we also do not execute AE(L).

Concluding: We execute algorithm AE(L) for a constant number of lengths L,
starting with max(Lo(£), ^£T(a//)) , increasing the length every time with a factor
(1 + |) until the value exceeds min(L00(e),T(crJv)). The structure of our scheme is
as follows.

Scheme
INPUT: A n u m b e r e < 1.

Compute schedules <7o and Awith lengths Lq(e) and Loo(e) respec-
tively, by means of the approximation scheme of Hall and Shmoys.
Construct a schedule o^f, with cost T(ax) , by a |-approximation algo-
rithm obtained by the approach of Nowicki.

A PTAS for single machine scheduling with controllable processing times 373

L := max(L0(£),§eT(atf));
WHILE L < MIN(LOO(e),T(au)) DO

Construct an approximate schedule a by algorithm Ae(L)\

E N D WHILE

O U T P U T : A schedule a for which the total cost T(a) is minimal among
all constructed schedules.

The algorithm AE(L) consists of two stages, which are explained in the next two
sections.

2.2 Stage 1: Characterising the skeleton of a schedule
Following the idea of the outline scheme, the first stage of Ae (L) consists of grouping
together schedules with the same skeleton. We first characterize such a skeleton,
after which we enumerate all feasible skeletons in order to build one good schedule
from each of these skeletons in the second stage. • .•

Given a candidate length L and a constant e, we divide the interval [0, L) in |
intervals h, i — 1 , . . . , j , of equal length, i.e. Ii = [(i - 1)L5, iL5), where 5 = —e.
For each interval /¿, we.would like to know which jobs are started in this interval
and the amount of time that they occupy the machine. As in e.g. Hall & Shmoys
[3] and Hall [1], we do not determine the corresponding starting interval for all jobs,
but only for the big jobs. The only difference between our problem and for example
the flowshop problem studied by Hall, is that, due to the possibility of compressing,
we do not know beforehand which jobs are big and which jobs are small. However,
we can easily overcome this difference:, a straightforward extension of the approach
in Hall and Shmoys [3], leads to a PTAS.

We characterize a skeleton by the following:

• For each interval i = 1 , . . . , we specify a set of big jobs Bi. The cardi-
nality of each set Bi is at most j and Bi D Bi = 0 for all rand /.

• For each job Jj in a set Bi, we specify its approximate shortened processing
time ay, aj is between S2L and L, and is a multiple of 63L.

• For each interval /¿, i = 1,..''., j , we specify the approximate total shortened
processing time Ai of the small jobs in the interval /¿; A{ is a multiple of S2L.

We can represent a skeleton by a vector y, where yi — (Bi,{a,j\Jj 6 Bi},Ai).
Although the number of different skeletons is polynomial (see the proof of Lemma
2.2 in Section 2.4), .we restrict our attention to those skeletons for which there
possibly exists a feasible schedule, i.e. so-called feasible skeletons that satisfy the
following conditions.

• Every big job can be compressed up to aj, that is, for every job Jj in a set

L:= L(1+f)

Bi-.

374 Petra Schuurman and Gerhard J. Woeginger

• Every big job is assigned to a compatible starting interval, i.e. for every job
Jj e Bi -.

Tj < i5L and (i — 1)SL + dj + qj < ^ S3L.

• No interval is overloaded, i.e. for every interval U and for all 1 < I < i

i
+ _ maxfij < (i - I + 1)(6L + 262L),

k=i jeBk
 jeB'

the additional 2S2L is due to the rounding of the shortened processing times.
Our approach consists in enumerating all feasible skeletons. In the next section

we explain how to transform a feasible skeleton y into a feasible schedule a (y).

2.3 Stage 2: Incorporating the small jobs
Given a feasible skeleton y, we know the approximate total amount of shortened
processing time of the small jobs for each interval h and both the starting interval
and the approximate,shortened processing time of the big jobs. Since we have
rounded the shortened processing times, we need to enlarge the intervals /¿. We
therefore define intervals i = 1 , . . . , where U = [(t — 1)(SL + 3S 2L), i (6L +
352L)). We now determine the starting interval I{ and the shortened processing
time for the small jobs. Analogous to Hall [1], we determine this data by means of
a linear program.

To that end, we define decision variables a,ij, where aij represents the shortened
processing time of job J j in the interval /¿. The set of small jobs is denoted by
S. In fact our linear program assigns different pieces of the same job to different
intervals, which corresponds to the construction of a preempted schedule. The first
two inequalities in the LP-formulating below, express the bounds on the amount
of compression Xj. Equalities three and four impose natural constraints on the
intervals each (piece of) job is processed in, whereas inequalities five and six bound
the total amount of shortened processing time for each machine and each job,
respectively. The goal is of course to minimize the total compression cost.

LP
min -
s-t- pj-Eian > o V i e s

Pi - < uj Vj e s
a^ = 0 if r j > iSL Vi = 1 , . . . , i , Vj £ S
aij — 0 if L - qj < (i - 1)8L Vi = 1 , . . . , V? € S

T , j a i j < h Vi = l , . . . , i
Ei aij < 82L V j t S

a i j > 0 Vi = 1 , . . . , j , Vj G S

A PTAS for single machine scheduling with controllable processing times 375

The LP may not give a solution, in this case it is clear that there is no schedule
corresponding to the skeleton y. Otherwise, we construct a feasible schedule as
follows.

Instead of assigning different pieces of a small job to different intervals, as the
LP-solution suggests, we assign the job as a whole, that is, the total shortened pro-
cessing time a ' j a s determined by the LP, to a single interval /¿. We recursively
determine the jobs that have starting interval /1, /2 , • •. /1. In each step i, we first
compute Ri, which denotes the subset of small jobs that have not been assigned to
/1, /2, • • • U-1 and for which there is a I < i with a/j > 0. Then, we order the jobs
in Ri in increasing order of their delivery time. Finally, we assign the jobs in Ri
one by one to 7j until the total shortened processing time exceeds Ai.

Given the starting intervals of the jobs,'we order the jobs in each interval Ii as
follows. First we schedule the small jobs (in arbitrary order), then we schedule the
big jobs in order of nondecreasing shortened processing time. We only allow idle
time between two jobs with different starting intervals. In order to obtain a feasible
schedule, that is, to ensure that each job is started at or after its release time, we
introduce an idle interval with length SL at the beginning of the schedule. Hence
the intervals Ii are shifted by 5L time units. We call the schedule constructed above
a(y). It is easy to check that a(y) is a feasible schedule.

Summarizing: the structure of our algorithm Ae(L) is as follows.

Algorithm Ae(L)
INPUT: A number e < 1 and an integer L.

s ••=&•>
Divide the interval [0, L) into | intervals of equal length;
Enumerate all feasible skeletons y;
FOR each feasible skeleton y DO

Compute the compression cost Cfl(y) for the big jobs in y
Solve the LP;
IF the LP has a solution with value Cs(y)

THEN construct a schedule a(y) with length at most
' (1 + |)L and compression cost Cs{y) + Cs(y).

E N D FOR

O U T P U T : A schedule a with total minimal cost among all constructed
schedules a(y).

2.4 The analysis
We start this section by showing that Ae(L) runs in polynomial time. Then, we
conclude that, since the number of executions of Ae(L) is constant, as stated in
Lemma 2.3, our scheme has polynomial running time. Finally, by means of Lemmas
2.4 and 2.5, we prove that our scheme produces a near-optimal solution.

Lemma 2.2 Algorithm Ae(L) runs in polynomial time.

376 Petra Schuurman and Gerhard J. Woeginger

Proof. Since the LP described in Section 2.3'clearly runs in polynomial time and
the procedure to construct o(y) is also polynomial, the key factor is the number of
different skeletons. If'the latter is polynomial, then so is Ae(L).

As the number of big jobs per interval is at most j , we have at most n* different
Bi's. For each job Jj we have at most js choices for its approximate shortened
processing time ay, hence, there are at most ^ ^ different sets {a.j\Jj G 5;}. Finally,
there axe j different choices for Aj. Concluding: the number of different skeletons
is a,t most

and therefore Ae(L) runs in polynomial time. •

Lemma 2.3 The number of times A£(L) is executed is a constant that depends on
e.

Proof. Let K be the number of times we execute algorithm Ae(L) and let Ljirst
and Liast be the first and last length, respectively, for which algorithm Ae(L) is
executed. Clearly, LfiTSt > \eT(a^f) and Liast — (1 + !) K - 1 £/ i rs t < T(ax).
Hence,

that is,

(1 + ~)K 1Lfirst < T((Jtf) < —Lfirst,

l o g (¿)
« < í — / i F \ + • l og (l + |)

From the previous two lemmas it follows that our scheme runs in polynomial
time. It now remains to prove that a e , the output of our scheme, has value at most
(1 +e)T*. To that end, we first prove that algorithm Ae(L) outputs a near-optimal
schedule.

Lemma 2.4 The algorithm Ae(L) produces a schedule with length at most (1 + |) L
and cost-at most Copt(L).

Proof. Let o be a schedule with length at most L and cost at most Copt(L). We
divide [0, L) in | intervals U of equal length and we define Si to be the set of small
jobs that start in /¿. Next, we construct a skeleton y, with yi = (B i , { a j \ J j €
Bi}, i4i), where

• S j is defined to be the set of big jobs that start in /¿;

• for each job Jj € Bi, we define its approximate shortened processing time a,j
to be f ^ "] 53L;

• Äi is defined to be equal to (E,,. eS; AJ

A PTAS for single machine scheduling with controllable processing times 377

After first enlarging each interval h by a multiplicative factor of '1 + 6 (i.e.- an
absolute increase of SL), to compensate the rounding of the big jobs, and then
enlarging each U by SL, to compensate for the rounding of the small jobs, it is
clear that every big job can still be started within its assigned interval.

Given the skeleton y, we construct a feasible schedule, oe(y), as described in
Section 2.3. Thanks to the additional S2L units of space in each interval we can
also cope with an additional small job that is possibly assigned to /¡. Furthermore,
since no big job is compressed more than in the original schedule (we have rounded
up the shortened processing times) and the small jobs are compressed in such a
way that the compression cost are minimized, the compression cost of <rE(y) is at
most Copt(L).

Let us now compute the length of cre(y). We have already argued that no
interval It is overloaded, that is, the jobs assigned to U can actually be started in

Because our algorithm has shifted all jobs SL units to the right, no job is started
before its release time. But a job might complete after L. Let us reason how much
this additional delay might be. Consider a big job in oe (y) that starts at a time
tj £ h. In cr this job starts at time tj £ / j i.e. tj > (i — 1)SL. As tj + cij + qj < L,

tj + a,j + qj < SL + i(SL + 3 S2L) + aj + qj
< 2SL + ZiS2L + tj + (1 + S)a,j + qj
< bSL+{I+6)L
< (1 + 6 6)L

=

Hence, the delivery completion time of each big job is at most (1 + |) L . A similar
analysis can be made for each small job. Concluding: L(ae(y)) < (1 + 6S)L =
(1+ I)L and C(ae(y)).<C0pt(L). •

Lemma 2.5 The scheme proposed in the previous sections computes a solution
with value at most (1 + e)T*.

Proof. Let a* be an optimal schedule. We now distinguish two cases.
In case (i), the length L(o*) of schedule a* is less than | e T*. We know that

the algorithm A e(|T*) outputs a schedule o\ with total cost at most (1 + |) | e T * +
Copt(L(a*)) < eT* + T* = (1 + e)T*. This settles the first case.

In case (ii), the length L(a*) of schedule a* is at least | e T * . Then there exists
an integer k > 0 such that (1 + f)* - 1 ̂ first <L(o*) < (1 + f) k L firsts where LfiTSt
is defined as in Lemma 2.3. Our scheme computes 4 e ((l + 1) L/irst), which delivers
a solution 02 with length at most (1 + |) k + l L S i r s t < (1 + §)2L(a*) < (1 +e)L(a")
and cost at most Copi(L(<7*)).

To conclude, in either case our approximation algorithm outputs a schedule
with cost at most (1 + e)T*. •

Our final theorem summarizes the main result of this paper.

378 Petra Schuurman and Gerhard J. Woeginger

T h e o r e m 2.6 The single-machine problem with release dates, delivery times and
compressible processing times with objective to minimize the maximal job delivery
completion time possesses a PTAS. •

References
[1] L.A. HALL. Approximability of flow shop scheduling. Mathematical Programming

82, 1998, 175-190.

[2] L . A . HALL AND D . B . SHMOYS, Approx ima t ion schemes for cons t r a ined schedu l ing
problems, in Proceedings of the 30th IEEE Symposium on Foundations of Computer
Science, 1989, 134-140.

[3] L.A. HALL AND D.B. SHMOYS. Jackson's rule for single-machine scheduling: Malting
a good heuristic better. Mathematics of Operations Research 17, 1992, 22-35.

[4] D . S . HOCHBAUM AND D . B . SHMOYS. Using dua l a p p r o x i m a t i o n a lgo r i t hms for
scheduling problems: Theoretical and practical results. Journal of the ACM 34, 1987,
144-162.

[5] J . K . LENSTRA, A . H . G . RINNOOY KAN, AND P . BRUCKER. Complex i ty of m a c h i n e
scheduling problems. Annals of Discrete Mathematics 1, 1977, 343-362.

[6] E . NOWICKI. An a p p r o x i m a t i o n a lgor i thm for a s ingle-machine schedul ing p r o b l e m
w i t h release t imes , delivery t imes a n d control lable process ing t imes . European Journal
on Operations Research 72, 1994, 74-81.

[7] C . N . POTTS. Analys is of a heur is t ic for one m a c h i n e sequenc ing w i t h re lease d a t e s
a n d del ivery t imes . Operations Research 28, 1980, 1436-1441.

[8] L. SCHRAGE. Obtaining optimal solutions to resource constrained network scheduling
problems. Unpublished manuscript, 1971.

[9] S. ZDRZALKA. Scheduling jobs on a single machine with release dates, delivery times
and controllable processing times: Worst-case analysis. Operations Research Letters
10, 1991, 519-523.

Received May, 2002

