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An Arithmetic Theory of Consistency Enforcement 

Sebastian Link* and Klaus-Dieter Schewe* 

Abstract 

Consistency enforcement starts from a given program specification S and 
a static invariant I and aims to replace S by a slightly modified program spec-
ification Si that is provably consistent with respect to X. One formalization 
which suggests itself is to define Sx as the greatest consistent specialization 
of S with respect to X, where specialization is a partial order on semantic 
equivalence classes of program specifications. 

In this paper we present such a theory on the basis of arithmetic logic. 
We show that with mild technical restrictions and mild restrictions concerning 
recursive program specifications it is possible to obtain the greatest consistent 
specialization gradually and independently from the order of given invariants 
as well as by replacing basic commands by their respective greatest consistent 
specialization. Furthermore, this approach allows to discuss computability 
and decidability aspects for the first time. 

1 Introduction 
In order to capture the semantics of a system, almost all approaches to formal 
specification provide at least static invariants. Then the problem is to guarantee 
consistency. For a program specification 5 and an invariant 1 this means that 
every execution of S starting in a state that satisfies I should always lead to a 
state satisfying I , too. This is usually relaxed so that only terminating executions 
of 5 are considered, in which case the problems of termination and of consistency 
can be handled separately. 

If program semantics is expressed axiomatically by the use of predicate trans-
formers leading to weakest (liberal) preconditions, then consistency leads to the 
well known proof obligation X =>• wlp(S)(I). Verification of such proof obligations 
can then be a very hard task. 

As an alternative consistency enforcement has been considered. In particular, 
in the field of databases, where the complexity of the invariants - usually called 
integrity constraints in this context [9] - is much higher than the complexity of the 
programs themselves, the trigger approach has become very popular, but it can be 
shown that triggers cannot solve the problem in general [7]. 
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Another approach considers greatest consistent specializations (GCSs) [6, 8]. 
Here the goal is to replace a given program specification 5 and a given static in-
variant I by a slightly modified program specification Sj that is provably consistent 
with respect to 1. The modification should guarantee that "effects" of the original 
S are preserved within Si. For this the approach considers the specialization order 
on semantic equivalence classes of program specifications. The existing theory is 
based on infinitary logic C ^ . 

In order to shift the GCS approach from the purely theoretical framework ([6]) to 
an applicable theory we have to investigate computability of GCSs and decidability 
of preconditions that must be built. For these purposes it is preferable to obtain a 
tight connection with classical recursion theory [1]. Therefore, we will replace the 
underlying logic of [6] by first-order arithmetic logic. The paper will introduce a 
new theory of consistency enforcement based on this logic with almost all results 
from [6] carrying over in a modified form. On this basis, effectivity issues can be 
investigated for the first time. 

We start in Section 2 with a brief review of arithmetic logic. Then we show 
the existence of predicate transformers with respect to this logic. In particular, 
relational program semantics becomes equivalent to predicate transformer seman-
tics provided we guarantee the property of universal conjunctivity and the pairing 
condition. We even show in Section 3 that recursion theory can be extended to the 
arithmetic case, at least, if we are restricted to certain WHILE-loops. 

With this background we can show that the GCS approach carries over to arith-
metic logic. This will be done in Section 4. Many of the proofs in [6] only require 
slight changes. Computability cannot be guaranteed in general, since the building 
of least fixpoints requires to test for semantic equivalence, which is undecidable. 
For the case of FOR-loops, however, GCSs are computable. This will be shown in 
Section 5. Furthermore, we show how effective GCSs can be computed. 

We argue that at least for one application field, i.e. databases as already men-
tioned, the restrictions are tolerable. For the general case some other pragmatic 
solutions must be applied [5]. We conclude with a short summary and outlook. 

Due to the compact representations in this paper we recommend reading [3] for 
details. 

2 Arithmetic Logic and Programming Semantics 
Our study is based on first-order arithmetic logic [1, Ch.7], i.e. our logical language 
contains just the function symbols 0, s, + and * of arity 0, 1, 2 and 2. The informal 
meaning is as usual: the constant 0, the succesor function, addition and multipli-
cation. By convenience + and * are written as infix operators. The only predicate 
symbol is the equality symbol =. Variables in our language will be xi, x2, £3, 

We use the notation T for the set of terms and F for the set of formulae. In 
addition, let V denote the set of variables. We allow all standard abbreviations 
including formulae true and false. 

Semantically, we fix a structure with domain N, the set of non-negative integers. 
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Then 0, s, +, * and = are interpreted in the usual way. For an interpretation it is 
then sufficient to consider a function a : V —> N. By the coincidence theorem it is 
even sufficient to be given the values o(xi) for the free variables Xi in a term or a 
formula. In particular, we may always write a as a fc-tuple, if the number of free 
variables is k. 

Finally, a fc-ary relation R C Nfc is called arithmetical iff it can be repre-
sented by a formula Q 6 F in arithmetic logic (with free variables x \ , . . . ,£*,), i.e. 
(ai,... ,ak) £ R holds iff \=a Q holds for the interpretation defined by a(xi) = a* 
(t = l , . . . , fc ) . 

2.1 Predicate Transformers in Arithmetic Logic 
In accordance with the existing theory on consistency enforcement in [6] each finite 
subset X C V is called a state space. Each function a : X —> N is called a state on 
X. Equivalently, a state is always representable by a fc-tuple. For a fixed X let S 
(= S(X)) denote the set of all states over X. 

A formula <p E F with free variables fr(ip) in X is then called an X-formula or 
an invariant on X. In order to emphasize the variables we sometimes write ip(x) 
with a vector x of the state variables involved. 

Then any pair of.formulae (A(S), So(>S)) with 2k and k free variables, respec-
tively, may be considered as defining the relational semantics of a program spec-
ification S: For convenience assume the first k free variables in A (S) to coincide 
with the free variables of S 0 (5). 

According to our notation we sometimes write A ( S ) ( x , y ) and So (S ) ( x ) . So 
A ( S ) can be interpreted by state pairs, whereas So (5) allows an interpretation by 
states. We interpret (a, r) with A(S) as an execution of S with start state 
a and a final state r . Similarly, a state a satisfying So (5) is considered as a start 
state for S, in which a non-terminating execution of S exists. 

Note that the model of relational semantics comprises daemonic non-determi-
nism, non-termination and partial undefinedness. 

In order to come to an axiomatic semantics based on the introduced logic of 
arithmetic, we associate with 5 two predicate transformers wlp(S) and wp(S) - i.e., 
functions from (equivalence classes) of formulae to (equivalence classes) of formulae 
- with the standard informal meaning: 

• wlp(S)(cp) characterizes those initial states a such that each terminating ex-
ecution of S starting in (7 results in a state T satisfying ip. 

• wp(S)(np) characterizes those initial states o such that each execution of S 
starting in a terminates and results in a state r satisfying tp. 

The notation wlp(S)(tp) and wp(S)(ip) corresponds to the usual weakest (liberal) 
precondition of 5 with respect to the postcondition ip. In order to save space we 
shall often use the notation iy(Z)p(5)(^) to refer to both predicate transformers at 
a time. If this occurs in an equivalence, then omitting everything in parentheses 
gives the wp-part, whereas omitting just the parentheses results in the wlp-part. 
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From our introduction of Д(S) and Eo (S) the following definition is straight-
forward. 

Definition 1 The predicate transformers associated with a program specification 
5 on a state space X are defined as 

wlp(S)(v{x)) <S> Vy.A(S)(x,y) v i f f ) and 
wp(S)(v(x)) & (Vy.A(S)(x,y) => tp{y)) Л -So (5 ) ( f ) 

for arbitrary X-formulae <p. • 

The next step is to show that predicate transformers satisfying some nice condi-
tions are sufficient for the definition of program specifications S. The conditions 
are the pairing condition and a slightly modified universal conjunctivity property. 
This gives the equivalence between the relational and the predicate transformer 
semantics. 

We use the standard notation w(l)p(S)*(ip) O- -^w(l)p(S)(~^ip) and refer to 
wlp(S)* and wp(S)* as the dual predicate transformers. 

Proposition 1 The predicate transformers w(l)p(S) satisfy the following condi-
tions: 

wp(S)(ip) О wlp(S)(ip) Awp(S)(true) . and 
:wlp{S){Vy.Q{y)^V{x,f)) Vy.Q(y) wlp(S)(<p(x,y)) 

Conversely, any pair of predicate transformers satisfying these two conditions de-
fines A(S)(x,y) <S> wlp(S)*(x = y) and E 0 ( f ) wp(S)* (false). 

Proof. We first show that w(l)p(S) fulfil both conditions. Due to 

wp(S)(true) & (\/y.A(S)(x,y) true) A^0(S)(x) 
& . -So(S)(x) 

we receive thé pairing condition 

wlp(S)(ip(x)) A wp(S)(true) & (4y.A(S)(x,y) => <p(y)) А -E0(5)(x) 
wp(S)(y(x)) . 

The universal conjunctivity property follows from 

wlp(S)(Vy-Q(y) => 4>(x,y)) & Vz.A(S)(x,^^ {x/z}.(\/y.Q(y)^<p(x,y)) 
О Vz.A(S)(f, z) => (Vy.Q(y) =• <p(z, y)) 
& Vy.Vz.(A(S)(x, ï ) A Q(y) ip{z,y)) 
& Vy-Q(y) => Vf.(A(S)(i , f ) =>• v(2,y)) 
^ УШУ) => V?.(A(S)(x, 2) ^ {x/zj.^x, y)) 
& Vy.Q(y) ^ wlp(S)(<p(x,y)) 
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for the case that {y Q(y)} i 0 holds. If this set is empty then ~<Q(y) holds for 
all y and we have wlp(S)(true) <=> true which is obviously valid. 
Now, let fip and fp be predicate transformers statisfying the pairing condition and 
the universal conjunctivity property. Then it remains to show wlp(S) = fip{S) and 
wp(S) = fP(S). For an arbitrary X—formula ip we have 

\=a <p(x) \=a <p'(x) with ip'(x) &Vy.(x = y^> <p(y)) 

Let a be an arbitrary state with (=CT fip(S)(ip(x)). Then we compute 

K fiv(S)(<fi(X)) N . flp(S)(<p'(x)) 

N . fip{S){Vy-x = y=$ <p(y)) 

N . fiP{S){Vy.^y(y) ^ x ^ y ) 
N . Vy.-«p(y) fiP(S)(x ± y) 
N . Vy.flp(SY(x = y)^<p(y) 

N . Vy.A(S)(x,y) => <p{y) 

N . wlp(S)(tp(x)) , 

therefore the asserted equivalence. Furthermore, we have 

wp(S) (<p) O wlp(S) (ifi) A wp(S) (true) (pairing condition) 
<=> wlp{S)(ip) A-iE0(5)(f) ' (Def: wp{S){true)) 

wlp(S)(<p) A-ifp(S)*{false) (Def. E0(5)) 
^ fiP(S)(<p)A^fP(S)*(false) (wlp(S) = flp(S)) 

f,P(S)(<p) Afp(S)(true) (Def. fP(S)*) 
O fp(S)(<p) , (pairing condition) 

which completes the proof. • 

The next result gives a normal form representation of the predicate transformer 
wlp(S), which will be useful in many proofs. 

Lemma 1 It is always possible to write wlp(S)(<p) in the form 

wlp(S)(<p(x)) & Vz.wlp(S)*(x = z) =><p(z) 

Proof: 
Obviously, we have <p(x) Vz.x = z (p(z) Vz.-}(p(z) =>• x ^ z. Then the 

lemma follows immediately by applying the universal conjunctivity property. • 

2.2 Guarded Commands 
We now introduce the familiar language of guarded commands [4]. We use skip, 
fail, loop and parallel assignment x^ :— tit | | . . . ||a;ifc := hk with variables Xi- e V 
and terms Ui € T as basic commands. The informal meaning, of the first three 
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in this list is to change nothing, to be completely undefined and to do only non-
terminating executions, respectively. 

Complex commands are constructed from sequences S\; 52, choices Si OS2, re-
stricted choices S1 S2, unbounded choice @xj • S and preconditioning V -> S. 

To define the semantics we simply have to define the predicate transformers. 
These are given as follows: 

w(l)p(skip)((p) <p 
w(l)p(fail){ip) & true 
w{l)p(loop){<p) O- false(Vtrue) 

w(l)p{xh := t^W-.-Wx^ :=iij(<p) {xiJtil,...,xiJtik}.ip 
w(l)p(S1]S2)(V>) O i0(i)p(Si)(t«(Op(S2)foO) 
w(l)p(SiOS2)(tp) & w(l)p(Si)(<p)*rv{!)p{S2)(<p) 

w(/)p(5i B S2)(y) «• w(l)p(Si){<p) A (wpiSiYitrue) V w{l)p(S2)(<p)) 
w(l)p(@xj • S)(<p) Vxj.w(l)p(S)(<p) 
w(l)p(V ->• S)(<p) w(l)p(S){<p) 

Here {xil /¿¿x , . . . , Xik /Uk} denotes the simultaneous substitution of the variables Xij 
by the terms Uj. We do not want to dispense with the restricted choice-operator 
[2 since it is needed to define IF S FI and DO 5 OD commands. For a deeper 
justification, please see [4]. Of course, we might always write S\ Owp(Si)( false) —• 
S2 instead of S\№S2. However, this violates the orthogonality property of guarded 
commands which we want to maintain. 

It is easy to verify the pairing condition and the universal conjunctivity property 
for these predicate transformers. 

We say that S is an X-command for some state space X iff w(l)p(S)(<p) •<=> tp 
hold for each ^-formulae <p, where XC\Y = 0, and X is minimal with this property. 

3 Recursion 

In the last section we introduced the language of guarded commands together with 
an axiomatic semantics expressed via predicate transformers in arithmetic logic. So 
far, this language covers straightline non-deterministic partial programs extended 
by unbounded choice. We would like to go a bit further and investigate recursive 
programs expressed as least fixpoints p,T.f{T) with respect to a suitable order 
This order will be the standard Nelson-order [4]. 

Unfortunately, we are not able to carry over the very general recursion theory 
from [4]. We have to restrict ourselves to simple WHILE-loops, i.e. f(T) — V -> 
5 ; T D - i V s k i p , where the variable T does not occur within S. For convenience, 
we introduce command variables T i , T 2 , — Throughout this section, we will use 
f(T) to denote simple WHILE-loops as above. 
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3.1 The Nelson-Order 
The idea of the Nelson-order is that whenever Si ^ S2 holds, then each terminating 
execution of Si is preserved within S2 , but a terminating execution in S2 may be 
"approximated" in Si by a non-terminating execution. This leads to the following 
definition. 

Definition 2 The Nelson-order is defined by 

Si < S2 o (wlp(S2)(tp) wlp(Si)(ip)) A (wp(Si)M =» wp(S 2 )M) 

for all Lp. • 

Particularly, we are interested in chains { f l ( l o o p ) } i w i t h respect to •<. Therefore, 
we define next a Godel numbering g of guarded commands, which exteinds the 
Godel numbering of terms and formulae from [1, p.327f.]. Let h denote this Godel 
numbering for our logic. Recall the following definition: 

/i(0) = l , h{Xi)=3\ h(s(t))= 2 - 3 / l « , h{h + t2) = 4 • 3h^ - 5 ^ , 

h(ti *t2)= 8 • 3 h ( t l ) • 5h{t2\ h(ti = t2) = 16 • 3 h ( t l ) • 5f t ( t2), = 32 • 

h(<Pi <p2) = 64-3' l (v ' l ) •5' ,(¥,2) and h(Vxi.<p) = 26+i-3h^l 

In the same way we define 

g(fail) - 1, giloop) = 2, g{skip) = 4, 
k 

g(xh := th ||... ||zij: := tik) = 8 • J | prim{ij)Hui], 
j=i 

ff(Si;S2) = 16-3 f f ( 5 l ) -55 ( S 2 ) , 5(SiDS2) = 32-35 ( S l ) -5 s ( S 2 ) , 

ff(Si BS 2 ) = 6 4 - 3 9 ( S l ) -5S(S2), 

g(V S) = 128 • 3h(v) • 5 s ( s ) , and g(@Xj • S) = 256 • 3j • 5 s ( s ) 

with the primitive recursive function prim taking n to the n'th prime number. 
First we show that with this Godel numbering g we may express all formulae 

w(l)p(fl(loop))((p) by two arithmetic predicate transformers. 

Lemma 2 Let f(T) = V —• S; TD-iV.—• skip such that T does not occur within S. 
Then for each j € N, there exist predicate transformers T\ ( j ) and r(j) on arithmetic 
predicates such that the following properties are satisfied: 

1. for each arithmetic predicate <fi{x), the results of applying these predicate 
transformers are arithmetic predicates in i and x, say 

x)(i,x) = ri(j){if(x)) and Xj{i,z) = T(j){y>( £)) 
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2. for j = h((p) we obtain 

Vi .Vi. M ( i , f ) wlpifiloop))^))) 
Vi-Vi. (xj(i ,£) <S> wp(fl(loop))(v{x))) 

and 

with x = Xi *h • 

Proof. It is sufficient to prove the lemma for the case of S not containing loops 
itself. In general, program specifications can only have finitely many loops, so we 
can find the claimed predicate transformers 7j(j) and r(j) for the innermost loop 
first. Here, the involved program specification S, say So, is non-recursive. Having 
proven the lemma for this case, we obtain valid predicate transformers wlp(Si) and 
wp(Si) for the innermost loop Si by Lemma 3. Hence, without loss of generality 
we can assume that S in f{T) = V —» 5; TC\->V —> skip is non-recursive. 
For arbitrary program specifications T with g(T) = i and arbitrary formulae 
(p(x) with h(ip) = j let us write Q'i{i,j,x) = wlp(T)(ip(x)) and Q'2(i,j,x) — 
wp(T)(ip(x)). If i,j are not Godel numbers of programs or formulae, respectively, 
we may extend Q[ and Q2 arbitrarily. Let prex(i, j) be the primitive recursive func-
tion that gives the exponent of the j + 1-st prime number in the prime factorization 
of i. Then, we have 

Q'i(i,3,x) = 

true 
true 
h-'U) 
{xiJh-i(jl),...,xiJh-1(jk)}.h-1(j) 

Q[(prex(i,l),Q'1(prex{i,2),j,x),x) 
Q[ (prex(i, 1 ),j, x) A Qi (prex(i, 2), j, x) 
<2i(prez(i, 1 ),j, x) A (Q'2(prex(i, 1), 7, x) 

=!> Q[{prex{i,2),j,x)) 
h~l{prex{i, 1)) => Q[(prex(i, 2),j, x) 
Vxprex(i,i)-Q'i{prex(i, 2),j, x) 

,prex(i, 0 ) = 0 
,prex(i, 0) = 1 
,prex(i, 0) = 2 
,prex(i,0) = 3 
prex(i,i{) = ji 
with 1 < I < k 
,prex(i, 0) = 4 
,prex(i, 0) = 5 

,prex(i, 0) = 6 
,prex(i, 0) = 7 
,prex(i, 0) = 8 

We obtain a similar equation for Q'2(i,j,x) which does not depend on Q[. As this 
is a recursive definition, Q[ is not an arithmetic predicate. Note, however, that if 
we fix i and j, i.e., the program specification T and the formula <p, we can turn the 
equation into a formula of arithmetic logic. 
Let us now consider just the case T = fh(loop) for our fixed mapping / on program 
specifications. For k = 0 we have wlp(loop)(ip(x)) o true. Furthermore, we get 
wlp{fk+1(loop))(<p(x)) <£> (OP wlp{S)(wlp(fk(loop)){ip(x)))) A ( i P >p(x))). 
Thus, we may define a primitve recursive function g with g(0) = g(loop) and 

g(k + 1) = g(fk+1 {loop)) = 32-3 128 16 • *9(S). 5g(k) -128 

such that 
Q[(mj,x) = wlp(fk(loop))(ip(x)) 
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is satisfied. Now define an arithmetic formula Q(i,j,x) such that we have 

Q(h(iP),h(ip),x) ((V^wlp(Sm)AhV=><p)) 

for arbitrary ip,(p € F. As 5 is fixed and recursion-free we just take the right-
hand side of the equivalence as the definition for Q(i,j,x) for Godel numbers i : j 
of formulae and extend this to all i,j. If we take Qi(k,j,x) = Q[(g{k),j,x), we 
obtain (for k > 0) 

Qi(k,j,x) = Q(h(tp),j,x) 

with ip(x) = wlp{fk~l (loop)){ip(x)). Hence, also 

Qi(0,j,x) = true and 
Qi{k + l,j,x) = Q(h{Q1(k,j,x)),j,x). 

Taking n(j)(ip(x)) = Xj(k,x) = Qi(k,j,x) (for fixed j), this shows that x) (k, ¿0 
is arithmetic, as Q is arithmetic and arithmetic predicates are closed under prim-
itive recursion. An analogous argument leads to arithmetic predicates %2(fc, a?) = 
T(j)(f(x)) for fixed j, thus proving the first part of the lemma. The equivalence in 
the second part follows immediately from the construction. • 

With help of the arithmetic predicate transformers r; ( j ) and r(j) from Lemma 2 
we can now define a limit operator S = limkeN fk (loop) via 

wlp{S){ip(x)) & Vfc.Xft(v)(fc,x) and 

wp(S)(<p(x)) O 3 k.xlM(k,x) . 

FOR Xi[v){k,x) = TI(h(ip))(ip(x)) and xlM(k,x) = T(h{tp))(<p(x)). 

L e m m a 3 The definition of S = limi€pj ft(loop) is sound. 

Proof. We first verify the universal conjunctivity property by direct calculation, 
namely 

wlp{S)(Vz.P(z) tp{x,z)) <£> Vi.Xh(vz.P(2-)=>v,(i,?))(i'f) 

O Vi.wlpifiloopWVz.Piz) => <p(x,z)) 
& Vi.yz.Pizl^wlpifiloopMipix,?))) 
<=> Vz.P(z) (Vi.wlpifiloop))^,?))) 
& Vz.P(z)^Vi.XiM(i,( x,z)) 
& Vz.P(z) =>wlp(S)(<p(x,z)) . 

For the second part of this Lemma, we first observe that 

wp{S){tp(x)) & 3 i.xlM{i,x) 

<£> 3i.wp[fl (loop))(ip(x)) 
• o 3i.wlp(fx(loop))((p(x))'Awp(fl(loop))(true) 



388 Sebastian Link and Klaus-Dieter Schewe 

holds. In order to derive the pairing condition we verify both implications sepa-
rately. Let us first show 

wp(S)(ip) wlp(S)(ip) A wp(S)(true) . 

For a state q with (=„ wp(S)(<p) it follows that \=a wp(f%0(loop))(tp) holds, 
i.e. |=a wlp(fio(loop))(ip) and \=a wp(f'°(loop))(true) for a particular i0 G N. 
From wp(S)(true) O 3i.wp(fl(loop))(true) we conclude wp(S)(true) and 
since {fl(loop)}içN is a chain it must be the case for every i € N that either 
fi(loop) •< fio(loop) or fl°(loop) fx(loop) holds which means either 

K wlp(fi0(loop))(tp) wlptf^loop))^) 

or 
N. ™P(f°(loop))(tp) wlp(f{loop))(<p) . 

In every case, we have \=a wlp(fl (loop))(ip) for arbitrary i £ N, therefore 
Vi.wlp(F(loop))(ip), too and this is equivalent to \=„ wlp(S)(ip). 
For the reverse direction 

wlp(S)(<p) A wp(S)(true) => wp(S)(tp) 

we assume that (=ff Vi.wlp(fl(loop))(<p) A 3i.wp(f'(loop))(true) holds. From this 
we derive \=c wlp(f'°(loop))(ip) A wp(f10 (loop))(true) for some io € N, i.e. 
wp(fio (loop))(ip) by the pairing condition of / t 0 (loop). Finally, the assertion follows 
from wp(S)(tp) <£> 3 i .wp( f l ( loop))( ip) . • 

3.2 Least Fixpoints 
Now, we are going to show how to obtain the semantics for WHILE-loops. It is 
easy to see that the function f(T) = V S; TO->V —• skip on guarded commands 
is monotonie in the Nelson order [4]. Then an immediate consequence of the last 
lemma is the existence of a least upper bound, which is just given by the limit 
operator. 

L e m m a 4 The chain {fl(loop) \ i £ N} has a least upper bound, namely 
lim i6N fl(loop). • 

Proof. We have already seen in the proof of Lemma 3 that 

wlp(\imf'(loop))((p) O Vi.wlp(fl(loop))(<p) 
¿6 N 

holds which means we receive w/p(linij6N f'(loop))(ip) => wlp(fk(loop))(ip) for all 
k € N. In addition, we have obtained 

uip(lim f'(loop))((p) 3i.wp(f%(loop))(ip) 
ig N 
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and because of that wp(fk(loop))(ip) => wp(limigN fl(loop))(ip) for all A; £ N. Con-
sequently, limjgN fl(loop) is an upper bound of the chain {fl(loop) \ i £ N} with 
respect to the Nelson-order. 
Now, let T be an arbitrary upper bound of {fl(loop) \ i 'E N}. Then we have to 
show limieN P(loop) < T but this follows immediately from 

wlp(T)(<p) wlp(fl (loop))(ip) for all i 6 N o wlp(lim fl(loop))((p) t€N 

and 

wp(\im f^loop))^) O wp(fl(loop))(<p) for some i € N =>• wp(T)(tp) . 
IG N 

Thus, limigN f%{loop) is the least upper bound as asserted. • 

In the following we use the notation p.T.f(T) to denote the least fixpoint of / 
provided it exists. We now restrict ourselves to WHILE-loops. 

Proposition 2 Let f(T) = V —> S\TO^V —• skip. Then f has a least fixpoint 
with respect to <, which is p,T.f(T) = l im i €wf l ( loop) . 

Proof. First of all {fx(loop) \ i £ N} is a chain with respect to the Nelson-order 
since loop is a minimum and / is monotonic. Therefore, 5 = l i m f l ( l o o p ) is the 
least upper bound according to Lemma 4. At this point we want to verify that S 
is a fixpoint with respect to / . Due to 

O (V wlp(T)(wlp{S){<p))) A (pP => ip) 
O (V =>. wlp(T)(Vi.i £ N wlp(f(loop))(<p))) A (-i7> =>• tp) 
& (V =>• (Vi.i £ N wlp(T)(wlp(f\loop))(<p)))) A {pP tp) 
O (Vi.i e N (V => wlpiT^wlpifiloop))^))) A {p"P => i f ) 

Vi.i £ N =>. (V => wlp(T)(wlp(f{(loop))(y)) A {pV => <p)) 
& Vi.i £ N => wlp(V T; f(loop)apV skip)(ip) 
O Vi.i € N^io /p i / i / ' i /oop)) )^) 
<S> Vi.i € N =>• wlp(f* (loop)) (ip) 
O- w/p(lim fl(loop))((p) 

O- tulp(S)(<p) , 

it remains to show wp(f (S))(true) O wp(S)(true). From the monotonicity of / it 
follows that / ( 5 ) is a further upper bound of (f'(loop) | i £ N} with respect to the 
Nelson-order, so we can conclude S < f(S), especially 

wp(S)(tp) => wp(f(S))(tp) 

wlp(f(S))(<p) 
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receive 

(V 
O (V => 

(V =• 
wp(V 
wp(V 

O wp(P 

wp(f(S))(<p) & (V =>• wp(T)(wp(S)(<p))) A (-P 
uip(T)(3i.i £ N A wp(fi(loop))(<p))) A (->V =>• <p) 
wp(T)(wp(fi (loop))(ip))) A (~>V => 93) for some i £ N 
-»• T; ft(loop)a-i'P —> skip)(np) for some i £ N 
-> T; /'(Zoop)d-iT7 skip)(<p) for some z £ N 

1+1(Zoop))(y>) for some i € N , 

i.e. as to be shown 

wp(f(S))(<p) => 3i.i £ N A wp(fi(loop))(ip) o wp(S)(ip) . 

Let T be an arbitrary fixpoint with respect to / . Since /oop is a minimum with 
respect to the Nelson-order we have loop •< T. Applying the monotonicity of / 
with respect to ^ again we obtain fn(loop) < fn(T) = T for arbitrary n £ N, so T 
is an upper bound of { f l ( l oop ) | i £ N} with respect to the Nelson-order. But S is 
the least upper bound, thus 5 ^ T holds. • 

Finally, in order to support also nested loops, we extend the Godel numbering g to 
command variables and fixpoint expression letting 

g(Tj) = 512 • 3j and g(nTj.f(Tj)) = 1024 , • 59inTi)) . 

For the extension of Q[ and Q'2 from the proof of Lemma 2 we then need a function 
i(x,j, k), which associates with the Godel number x = g(f(Tj)) the Godel number 
g(fi(loop)). We omit the details. 

4 Greatest Consistent Specializations 
Now the foundations are laid to develop the theory of consistency enforcement on 
top of first-order arithmetic logic. 

4.1 Consistency and Specialization 
First we have to define consistency and the specialization preorder. This can be 
done in complete analogy to the case in [6]. 

Definition 3 Let I be an invariant on the state space X. Let S and T be 
commands on the state spaces Z and Y, respectively, with Z C Y C X. 

• S is consistent with respect to 1 iff I wlp(S)(l) holds. 

• T specializes S (notation: T C S) iff w(l)p(S)(<p) => w(l)p(T)(<p) holds for 
all Z-formulae ip. • 
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Due to the pairing condition it is sufficient to consider only = true for the uip-part 
in the specialization definition. The wlp-part can also be simplified in the known 
way. The proof of the next proposition is shifted into Appendix A. The result will 
play an important role in the proof of Theorem 2. 

Proposition 3 Let S and T be commands on the state spaces X and Y, respec-
tively, with X C.Y. Then wlp(S)(<p) =>• wlp(T)(<p) holds for all X-formulae iff 

{z/x}.wlp{T')(wlp(S)*(x = z)) 

holds, where z is a disjoint copy of x and T' results from T by renaming each Xi 
into Zi. • 

Next we introduce the central notion for consistency enforcement, the GCS. 

Definition 4 Let S be a y-command and I an invariant on X with Y C I . The 
greatest consistent specialization (GCS) of S with respect to I is an X-command 
Si with Si C 5, such that Si is consistent with respect to X and each consistent 
specialization T Q S satisfies T C Si. • 

First we show the existence of GCSs and their uniqueness up to semantic equiva-
lence. Furthermore, GCSs with respect to conjunctions can be built successively. 
In both cases, the proofs from [8, 6] carry over without significant changes. Never-
theless, we will give the proofs in Appendix B. 

Proposition 4 The GCS Si of S with respect to 1 always exists and is unique 
up to semantic equivalence. We can always write 

Si = [1 (5; • 2 := z1; 1 skip)) IS ( - £ (S; • z := z')) , 

where z refers to the free variables in I not occurring in S. 
Furthermore, for two invariants 2 and J we always obtain that I A J —> SI^J 

andlAj—t (SI) j are semantically equivalent. • 

The normal form of S i of Proposition 4 should be read as follows. Whenever I 
holds, we execute S and permit arbitrary assignments to state variables that are 
not affected by 5. Subsequently, we test whether I was indeed invariant under 
the execution of S and these assignments. For the case that 1 does not hold, we 
do not need to check I again. Using the normal form of Proposition 4, we may 
derive wp(Sx)(true) O wp(S).(true) by direct computation. In fact, this is already 
obtainable from the definition of greatest consistent specializations. Anyway, this 
result allows us to concentrate on the predicate transformer wlp(S). 

4.2 An Upper Bound for GCSs 
For practical applications the form of the GCS derived in Proposition 4 is almost 
worth nothing, since it involves testing the invariant after non-deterministic selec-
tion of arbitrary values. However, the form is useful in proofs. 
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A suitable form of the GCS should be built from GCSs of the basic commands 
involved in S. Let the result of such a naive syntactic replacement be denoted by 
S'j. In general, however, S'x is not the GCS. It may not even be a specialization of 
S, or it may be a consistent specialization, but not the greatest one. An example 
for the latter case is S = x := x — a; x := x + a with some constant a > 1 and 
I = x>l. 

We now formulate a technical condition which allows us to exclude this situa-
tion. Under this condition it will be possible to show that S i Q S j holds. The 
corresponding result will be called the upper bound theorem. 

We need the notion of a deterministic branch S+ of a command S, which requires 
S+ C S, wp(S)*(true) O wp(S+)*(true) and wlp{S+)*(ip) =>• wp(S+)(<p) to hold 
for all tp. Herein, the last condition expresses that S+ is indeed deterministic, 
i.e., whenever |=(CT,T) A(x,y) then \=a ~>£o(x) and whenever (=(0-^,) &(x,y) and 
\=(aiT2) A(x ,y ) hold then T\ ( X ) = T 2 ( X ) . Together, a deterministic branch S+ of S 
is a deterministic specialization of S which comprises executions if and only if S 
does. 

Furthermore, we need the notion of a S-constraint for an X-command S. This is 
an invariant J on X\JX' with a disjoint copy X' of X, for which {x1 /x}.wlp(S')(J) 
holds, where S' results from S by renaming all Xi to x\. Thus, ¿-constraints are 
exactly those formulae which are interpreted by state pairs and satisfied by a spec-
ification. 

Finally, we write ipa for the characterizing formula of state a. 

Definit ion 5 Let S = Si\S2 be a y-command such that Si is a Y{-command 
for Yi C Y (i = 1, 2). Let X be some X-invariant with Y C X. Let X - Yx = 
{yx,... ,ym}, Yi = {xi , . . . ,xi} and assume that {x^,. . . ,x[} is a disjoint copy of Y\ 
disjoint also from X. Then S is in 8-X-reduced form iff for each deterministic branch 
S± of S\ the following two conditions - with x = (xi,... ,xi), x' = (x[,... ,x\) -
hold: 

• For all states a with ->X we have, if ipa =i> {x/x'}.(Vy 1 ...ym.X) is a 
¿-constraint for S]+, then it is also a ¿-constraint for 5j+ ; S2-

• For all states 0 with |=CT X we have, if yv {x/x'}.(Vyi.. .ym.->I) is a 
¿-constraint for S^, then it is also a ¿-constraint for Sf ; S2- • 

Informally, ¿-Z-reducedness is a property of sequences Si; S2 which rules out oc-
curences of interim states that wrongly cause an enforcement within any branch 
of Si but which is not relevant for the entire specification. If we for instance look 
again at the example above, then the GCS of S — x :— x — a\ x := x + a with respect 
to X = x > 1 is certainly skip, but (x := x —a)i = (x = 0 V x > a) x := x — a. A 
simple replacement of basic commands by their respective GCSs leads in this case 
to (x = 0 V x > a) x := x — a; x := x + a which is just a proper specialization of 
skip. The reason for this is, that 5 is not in X-reduced form. 
Arbitrary programs 5 are called X-reduced iff all occurences of sequences within 5 
are ¿-X-reduced. 
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Definition 6 Let S be an y-command and I some X-invariant with Y C X. S 
is called T-reduced iff the following holds: 

• If 5 is one of fail, skip, loop or an assignment, then S is always Z-reduced. 

• If 5 = Si; 52, then S is Z-reduced iff Si and are I-reduced and S is 
(5-I-reduced. 

• If S is one of V ->• T, @y • T, SiOS2 or Si H S2, then S is Z-reduced iff Si 
and S2 or T respectively are Z-reduced. 

• If S = pT.f(T), then S is Z-reduced iff fn(loop) is Z-reduced for each n 6 N. 
• 

With these technical preliminaries we may now state and prove the upper bound 
theorem. The proof itself is done by lengthy structural induction on guarded com-
mands and therefore shifted to Appendix C. 

Theorem 1 Let 1 be an invariant on X and let S be some 1-reduced Y-command 
with Y C X . Let S'x result from S as follows: 

• Each restricted choice S\ S2 occurring within S will be replaced by S\ • 
wlp(Si)(false) ->• S2. 

• Then each basic command, i.e. skip, fail, loop and all assignments, will be 
replaced by their GCSs with respect to I. 

Then T C S'x. holds for each consistent specialization T C S with respect to I. • 

4.3 The General Form of a GCS 
Theorem 1 has a flavour of compositionality, but it does not yet give the GCS. The 
idea of the main theorem on GCSs is to cut out from the upper bound S'z those 
executions that are not allowed to occur in a specialization of S. This is accom-
plished by adding a precondition V whose meaning becomes obvious by Proposition 
3. This leads to the following theorem. 

Theorem 2 Let I , S and S'T be as in Theorem 1. Let Z be a disjoint copy of the 
state space Y. With the formula 

V(S,I,x') = {z/y}.wlp(S'x, z = x' -> skip)(wlp(S)*(z = y)) , 

where S'-[ results from S'z by renaming the Y to Z, the GCS Si is semantically 
equivalent to 

•V(S,l,x') -> (S'x-,y = x1 skip) . 
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Proof. We take the form claimed in the theorem as a definition and verify the 
conditions in the definition of the GCS. If v? is an arbitrary y-formula, we use the 
definition of dual predicate transformers to validate 

wlp(Si)* (<p) & 3 f .V[S,I,&) Awlp(S'xy(y = f A<p) . 

IfP(S,l,x') holds, then 

wlp(Sj)*(y = X1 A <p) =» wlp(S)*(ip) 

is true for all ^-formulae ip by Proposition 3. But then it follows immediately that 
wlp{Si)*{<p) =>• wlp(S)*(<p) holds, hence Si C S. 
Consistency can be verified easily, since S'x is already consistent with respect to I , 
namely 

wlp(S'x)(l) . 
wlp(S'x)(y = x1 =$> wlp(skip)(l)) 
wlp(S'i)(wlp(y = £'—>• skip)(I)) 
wlp(S'i,y = x1 —> skip)(T) 
Vf , P ( S , 2 , f ) => wlp(S'i\ y = x1 -t skip)(I) 
wlp(@tf •V(S,l,x') -4 S'i,y = x1 skip)(l) 
wlp(Si)(l) . 

Therefore we have the consistency of Si with respect to I . Note, that the second 
implication in the computation' above holds due to the monotonicity of wlp(S'x) 
applied to 1 => (y = x ' I ) . 
Finally, let T be an arbitrary consistent specialization of S. We assume without 
loss in generality that wp(T)(true) O true holds. From Theorem 1 we already get 
T C Sx. From this we compute 

w(l)p(S'i\y — x! skip)(ip) w(l)p(S'x)(w(l)p(y = f.->• skip)(ip)) 
v ' 

s f 
=>• w(l)p(T)(w(l)p(y = x1 skip)((p)) 
& w(l)p(T; y = x'-> skip)((p) , v ' 

Jx' 

i.e. Ts' C S f . At this point it suffices to show wp(T3')* (true) V(S,2,x'), 
because 

w(l)p(V(S,l,x') ^ S^')(ip) <* V(S,l,xl) u>(Z)p(Sf')(<p) 

=> wp(Ts')*(true) =• w(l)p(S%)(<p) 

=> wp(Ts')* (true) =>• w(l)p(Ts' )(<p) 

& w(l)p(wp(T£')*(true) ->T£')(<p) v ^ ' 
rpS' 
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implies immediately T* C V(S,I,x') -> Sf ' and we obtain Vf • Ts' C Vf • 
V(S,l,x') —Sf , consequently. The formula on the left-hand side is equivalent to 
T, whereas the one on the right-hand side is equivalent to Si. 
Assume there is a state a, in which V(S,l,x') does not hold. From Proposition 3 
we get the existence of a state b with 

('wlp(S)(y ¿b)=> wlp(S'x; y = x1 skip)(y ± &)) , 

which is equivalent to 

K wlp(S)(y ± b) A pwlp(Si)(y = f y f b) 

and this, finally, to 

\=swlp(S)ti?$)Awlp(S'x)*(y = f Ay = b) . 

Hence x' = b must hold by definition of characterizing state formulae. On the other 
hand we receive wlp(T)(y ^ b) due to T Q S and together with 

wlp(Ts')(false) <£> wlp(T)(y = x1 => false) 
& wlp(T)(y¿x1) 

wlp(T)(y^b) 

we conclude (=g wlp(Tx'^(false). From the pairing condition wp(Tx )(false) 
wlp(Ts')(.false) A wp(Ts )(true) and 

wp(Ts')(true) O wp{T)(y = x1 => true) wp(T){true) <£> true 

follows (=5 wp(Tx )(false), which is equivalent to [=3 pwp(Tx )*(true). • 

Note that if we consider deterministic branches as a pragmatic approach suggested 
in [6], then the unbounded choice in Theorem 2 disappears. We omit further details. 

The charaterization of GCSs according to Theorem 2 makes it formally possible 
to reduce consistency enforcement to a simple syntactical replacement (the forming 
of S'x) and to an investigation of a guard, namely V(S,l,x'). 

5 Computability and Decidability 
We have now reached the stage, where we can say that the GCS approach could 
have been succesfully developed with respect to arithmetic logic. Thus, we can turn 
to the original intention of this paper: computability and decidability issues. 

Taking the general form of the GCS in Theorem 2 we may now ask, whether 
we can find an algorithm to compute the GCS. We may further ask, whether the 
result is effective. In general it will not be possible to compute the GCS, but we 
will identify subcases, for which effective GCSs can be computed. 
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5.1 The Computability of GCSs 
First consider the computability problem. Taking our Gödel numberings h for terms 
and formulae and g for commands, we have already exploited their inversibility. 
From this we obtain the following immediate consequence. 

Lemma 5 For each n G N it is decidable, whether n is the Gödel number of a 
term, a formula or a guarded command. • 

Next we consider the upper bound S'x that occurs in the GCS. Since this is only 
a syntactic transformation, we may now conclude that (5, X) >-> S'x is computable. 
Hence it is sufficient to investigate the computability for the precondition V(S, X, x') 
for arbitrary x'. 

These conditions involve the predicate transformers wlp(S) and wlp(S'x). Ac-
cording to our definition of axiomatic semantics for commands, we know that build-
ing these predicate transformers is simple done by syntactic replacement operations. 
By exploiting our Gödel numbering h again, we conclude that for recursion-free S 
the mapping 

: ( S , I , x ' ) ^ V { S , I , x ' ) 

- and hence (5, X) ^ Sx, töo - is computable. 
However, if S involves a loop, then S'x also involves a loop. In order to determine 
uilp(S) and wlp(Sx) we have to use the limit operator. For a loop f.iTj.f(Tj) this 
means to build wlp(fl (loop)) for all i G N. This is only possible, if there is some 
n 6 N such that wlp(fn(loop)) = %ulp(fm,(loop)) holds for all m > n, m 6 N. This 
means that we have a bounded loop (or equivalently a FOR-loop). 
Proposi t ion 5 If recursive guarded commands are restricted to bounded loops, 
then GCSs are computable, i.e. the function (S,X) Sx is computable. In general, 
however, the GCS cannot be computed. • 

5.2 Effective GCSs 
Even, if the GCS Sx can be computed from a given command S and the invariant 
X, the result still contains the preconditions V(S,X,x'). If such a precondition is 
undecidable, then the GCSs will not be effective. We will demonstrate how effective 
GCSs can be computed. 

Therefore, we consider the proof of the upper bound theorem (see Appendix C) 
again. The next result shows that we have already proven more than we needed. 

Lemma 6 Let T be a program specification on Y and X a static constraint on X 
withYÇX. 

1. IfT = P ^ S , then TX = P^> Si. 

2. IfT = SiOSa, then TX = (Si)iO{S2)i-

3. IfT = @y • S, then Tx = @y Si. 
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Proof. The Propositions 7, 8 and 9 show the specialization intone direction. For thé 
reverse specialization, one shows straightforwardly that P —> Si, (SI)IE(S2)I and 
@y • Si are Z-consistent specializations of P -»• S, S1OS2 and @y • S, respectively. 
• 
Note, that Lemma 6 does not hold for the case of sequences, even if they are Ô-1-
reduced. Although Proposition 11 gives us of course specialization in one direction, 
the reverse specialization does not hold in general. The reason why (S\) i ; (82)1 is 
not a specialization of Si ; S2 is that wlp(S2)(<p) is not necessarily a state formula 
of the underlying S\ state space. 

The next lemma will give us a computation of effective GCSs for program spec-
ifications S that only use basic commands, choices, guards and sequences. We 
dispense with the case of restricted choices. 

Lemma 7 Let S be a program specification on X built of basic commands, choices, 
guards with decidable preconditions and sequences. If ip is a decidable state formula 
on X, then wlp(S)(if) and wlp(S)* (ip) are decidable as well. 

Proof. . The proof is a straightforward structural induction that makes use of the 
closure.properties for decidable arithmetical predicates. • 

It it well-known that every first-order predicate formula <p is equivalent to a for-
mula Q1X1... QkXkwhere Qi £ {V,3} for i = 1 , . . . ,k and ip is quantifier-free. 
This result carries immediately over to guarded commands with respect to the 
@-operator. 

Lemma 8 Each guarded command S, whose occurences of loops are all bounded, 
can be written in the form • ... @xn • S" such that S' does not contain an 
unbounded choice operator 

Proof. The only interesting case is the one for bounded loops. Applying the 
predicate transformer wlp here results in a finite conjunction, whereas wp gives a 
finite disjunction. • 

Let us all bring together and consider a program specification S for which all 
occurences of loops are bounded and all preconditions are decidable. In a first 
step, we replace all occurences of the restricted choice operator S in the usual way. 
Then we apply Lemma 8 that provides us with a specification T = @y\ • . . . @yn • R 
that is semantically equivalent to S. Lemma 6 tells us then not to worry about 
the occurences of unbounded-choice operators, i.e., Xz.= @y\ « . . . @yn • Ri. We 
apply the main theorem (Theorem 2) to compute Ri and conclude by Lemma 7 
that all preconditions of the form V(S',1, x') are decidable. Finally, we obtain the 
following result. 

Proposit ion 6 Let S be a program specification such that every loop is bounded 
and all preconditions are decidable. Let T be a decidable static constraint. Then we 
can compute the GCS Si in the form Si = @yi • ... @yn • Ti, where Ti has the 
form of Theorem 2 with all preconditions V(T' ,I,x') being decidable. • 
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6 Conclusion 
In this article we considered the GCS approach to consistency enforcement .pre-
sented in [6]. We could show that the underlying theory of predicate transformers 
could be carried over from an infinitary logic to first-order arithmetic logic. We 
were even able to do this for recursive program specifications by exploiting Godel 
numberings for terms, formulae and guarded commands. However, the used recur-
sive program specifications are slightly restricted with respect to the more general 
theory in [4]. 

Then we could show that the existence and uniqueness of GCSs, the commuta-
tivity result from [8] and the fundamental compositionality result carry over to the 
new logic. This allows to study computability and decidability issues. We could 
show that the GCS is computable for program specifications where all loops are 
bounded. Moreover, effective GCSs can be computed when preconditions within 
guards and the given static constraint are decidable. 

There are at least three more problems we would like to approach next. Firstly, 
we would like to study the Goldfarb classification [2] and its impact to GCS con-
struction. More precisely, we look for a characterization of those static invariants X 
for which Z-reducedness is decidable. Secondly, we would like to look at weakened 
approaches to consistency enforcement, e.g. the one presented in [5] and to discuss 
computability and decidability for this approach as well. Thirdly and finally, we 
would like to address the problems of GCSs - and weakened approaches - with 
respect to basic commands. In particular, it would be nice to see how GCSs for 
various classes of relational constraints would look like. 

A Appendix A: Proof of the Normal Form for Spe-
cialization 

Proposition 3. Let S and T be commands on the state spaces X and Y, re-
spectively, with X CY. Then wlp(S)((p) => wlp(T)((p) holds for all X-formulae 
iff • 

{z/x}.wlp(T')(wlp{S)*(x = z)) 

holds, where z is a disjoint copy of x and T' results from T by renaming each Xi 
into ZI. 
Proof. The normal form representation from Lemma 1 gives for wlp(T') the equiv-
alence from wlp(T')(wlp(S)*(x = z)) to 

Vz'.wlp(T')*{z = z1) {z/z'}.wlp{Sy(x = z). 

Now, S is defined on X which results in 

{z/z,}.wlp(S)*(x = z) & wlp(S)*(x = z1) . 

Hence, it is sufficient to show the equivalence between 
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1. wlp(S)(ip) => wlp(T) (up) for all X-formulae <p and 

2. {z/x}.(\/z'.wlp(T,Y{z = ?) ^wlp{S)*{x = !•)). 

Let us assume that (1) holds. By renaming, wlp(S')(ip) => wlp(T')(tp) holds for all 
Z-formulae (p. In particular, if ip = z — a for some state a, then wlp(S')(z = a) O 
{x / z} .wl'p(S)* (x = a). But then, 

Vz'.(wlp(T')*(z=.z') => {x/z}.wlp{S)*(x = z1)) 

must be valid and this implies (2). 
Suppose that (2) holds. Again, Lemma 1 can be employed to show the equivalence 
of wlp(T)*(ip) with arbitrary X-formula ip to 

3z'.({z/x}.wlp{Tly(z = z1) Aipiz1)) . 

With Vz'.{wlp(T'y(z = ?)=> {x/z'}.wlp(Sy(x = ?)) follows immediately 

{z/x}.(3z'.(Wlp(Sy(x = z')A<f(z'))) , 

which is equivalent to wlp(S)*(ip) by Lemma 1. This gives the proof. • 

B Appendix B: Existence, Normal Form Repre-
sentation and Commutativity of GCSs 

In the appendix we give a detailed proof of Proposition 4. 
Proposition 4. The GCS ST of S with respect to X always exists and is unique 
up to semantic equivalence. We can always write 

Sz = ( I - t :=/;!-»• skip))E (-Z(5;@f • 2 := ? ) ) , 

where z refers to the free variables in I not occurring, in S. 
Furthermore, for two invariants T and J we always obtain that IA J —• SXAJ 

and X A J —> (Si) j are semantically equivalent. 
Proof. First we show the existence and uniqueness up to semantic equivalence of 
GCS. We set 

T = {T \T C S and T is consistent with respect to 1} . 

If the least upper bound Si of T with respect to the specialization C exists, then this 
must be the GCS. Therefore, we have the uniqueness up to semantic equivalence. 
We now verify the conditions from Definition 4 for the program specification S i 
above. Let ip be an arbitrary state formula on Y. Then we receive 

wlp{Siy(ip) O (XAwlp(Sy(3z'.{z/z'}.{XAip)))\/ 
(nlA wlp(Sy(3z'.{z/z'}.ip)) 

& ( I A wlpiSyi^.iz/z1}.!) A ip)) V (-iZ A wlp(Sy(ip)) 
=> (XAwlp(Sy{ip))V(~^lAwlp(Sy(ip)) 
«• wlp(S)*(ip) . 
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Doing this we have made use of the dual predicate transformers' monotonicity 
property and the fact that variables Zi do not occur within tp. Then the asserted 
specialization Si Q S follows from the same computation for wp instead of wlp. 
Next we consider 

wlp(Si){l) O (l=>wlp(S)(Vz'.{z/z'}.(l =>!))) A 
(pi => wZp(S)(Vz'.{z/z'}.Z)) 
->Z => i«Zp(5)(Vf .{z/z1 }.Z) 
IV pwlp(S)(V?.{?/?}.!) . 

and obtain Z => wlp(Si)(l) which means that the above S i is indeed consistent 
with respect to Z. 
Let x — y be a characterizing state formula and T C S a n arbitrary, but Z-consistent 
specialization of S. Then we ditinguish two cases. 
Case 1. We assume x = y => ->Z and therefore we conclude wlp(T)*(x = y) =>• 
wlp(T)*(->Z) => --Z using the monotonicity of wlp(S)* and consistency of T. More-
over, it follows 

wlp(T)*(x = y) plAwlp(S)*(x = y) 

=>• wlp(Si)*(x = y) . 

For the first implication we simply use the specialization T C 5, for the second we 
refer to the monotonicity applied to x = y =>• 3z* .{z/z1 }.x = y and the last one 
follows from the first line of the computation of wlp(Si)* 
Case 2. Starting from x = y => Z gives wlp(T)*(x = y) <=>• wlp(T)*(l Ax = y), 
subsequentely. We compute the following using T C. S and the monotonicity of 
wlp{Sy 

wlp(T)*(x = y) => wip(5)*(3f ' .{f/z '}.(lA® = »))A 
wlp{Sy{3z'.{z/z'}.x = y) 

=> (ZAiuZp(S)*(3f .{z / f }.(Z A f = j/))) V 
( - Z A wlp(Sy(3z'.{z/z'}.x. = y)) 

O. wlp(Siy(x = y) . 

This first step has brought us to wlp(T)*(x = y) => wlp(Si)*(x = y), i.e. 
wlp(Si)(x ^ y) => wlp(T)(x ^ ,y). For arbitrary state formula (p we have 
<p(x) Vy.-np(y) => x ^ y and therefore 

wlp(Si)(ip(x)) Vy-~«p(y) => u>lp(Si)(x ± y) 
=>• Vy.p(p(y) =>• wlp(T)(x ± y) 

wlp(T)(ip(x)) , 

using the universal conjunctivity property of wlp. Thus, we obtain wlp(T)*(tp) 
wlp(Sxy(ip) for all On top of that wp(T)*(false) =i> wp(S)*(false) => 
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wp(Sx)* (false) holds as well, due to the specialization T C S and the first line of 
the computation of wlp(Si)* above. Indeed, we have proved that T is a specializa-
tion of Si. 
Let us now consider the asserted commutativity result. Since (Szi)z2 in-
consistent by definition we have 

Z2 =• wlp((SXl)xJ(l2) . 

On the other side we can use the definition of GCS and consistency as well as 
(SIx)I2 C Sij in order to receive 

Zi wlp(SXl)(Ii) => wlpttSi^^Xh) . 

In summary, this results in 

Z iAZ 2 wlp((Six)l2)(h) A wlp((Sz,)^)(l2) O wlp((SXl)Xa){h AZ2) , 

so we have proved the consistency of (SXl)z with respect to I\ A I 2 . From C S 
and (5i j ) j2 C S i j we derive 

wlp(S)(ip) w/p(SXl)(<,?) =• wlp((SiJX2)(<p), 

i.e. the specialization (SzJx C 5. Consequentely, definition 4 yields (Si, ) j2 C 
SZXAZ2

 a n d we obtain 

wlp(li AZ2 SilAi2)(<p) & Zi AZ2 wlp(SXlAi2)(<p) 
. h M2 ^ wlp((Si,)l2)(y) 

wlp(l1Al2-^(Si1)X2)(ip) 

for arbitrary tp which means Zi A Z2 (SX l) l 2 C Zi A Z2 —> Sj l Az2- Thus, it 
remains to show the reverse specialization. 
From Si, Az2 E S follows 

. ZI A Z 2 — S Z , AI 2 C S . (1) 

In addition, Sz lAz2 consistent with respect to Zi A Z2 of definition, so we have 
not only Zi A Z2 => wZp(SzlAzJ(Z1) but also 1\ A12 => wlp(SilAi2)(l2). Next we 
consider 

ZI =>• W/p(Z! A Z2 SXl aZ2 ) (ZJ ) O ZI A Z2 => wZp(S2l AZ2 ) (ZI ) (2) 

and 

Z2 => wlp(h A X2 Sz lAz2)(Z2) ^ Zi AZ2 =>• wlp(SilAi2)(l2) . (3) 

From equation (2) we obtain the consistency of Zi A Z2 —» Sz lAz2 with respect to 
Zi- and using equation (1) yields 

Zx A Z 2 S i l A z 2 C SXl . (4) 
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From equation (3) follows the consistency of Zi A -» Sjl Az2 with respect to Z2 

and using equation (4) we conclude 

h A l i - > S z l A l 2 C ( 5 I J 2 2 . (5) 

Finally, we compute 

w(l)p{lx A Z 2 ( S z J ^ X y ) ZL AZ2 ^ ( / M S z J z J M 
Zx A ( l ) p { h AI2 Sz, AZ2 ) (V) 

<S> Zi A Z2 (Zx A Z2 w(l)p(SiiAZ2)M) 
<3> Zi A Z2 =i> u;(/)p(5z1 A Z 2 ) ( v ) 

<S> W(Z)p(Z! A Z 2 5 Z I A I 2 ) ( V ) 

the specialization Zi AZ2 —> 5z lAz2 Q 2] AI2 (Si1 ) j 2 , where we just make use 
of equation (5) in the appearing implication. This completes the proof. • 

C Appendix C: Proof of the Upper Bound Theo-
rem 

Recall the strategy, to obtain a new specification S'j from a given complex program 
specification 5 and static invariant Z by replacing all basic commands, i.e. skip, fail, 
loop and in particular assignments, within 5 by their respective GCSs. The upper 
bound theorem 1 proposes that this yields an upper bound for Sx with respect to 
the specialization order C, i.e., Sx E S'z. 

The result is only provable if we assume that S is in Z-reduced form. We use 
structural induction on guarded commands and start with — • , @ and El. We will 
deal with the more difficult cases of sequences and recursion in subsections. 

Proposition 7 Let S' = P —> S be a specification on Y and I a static constraint 
on X with Y CX. IfTQS' is 1-consistent, then TQP Sx-

Proof. First w(l)p{S){<p) (P =>• w(l)p(S){<p)) establishes S' C S, hence T Q S 
by assumption and transitivity of C. Moreover, the Z-consistency of T gives us 
even T C Si . From 

wp(S')(false) O P =>• wp{S)(false) <£> ->P V wp{S)(false) 

we receive -<P =>• wp(S'){false). As the specialization T Q S' means in particular 
wp(S')(false) wp(T)(false), we conclude ->P =>• wp(T)(false) or equivalently 
wp(T)*(true) => P. But then 

w{l)p(V Si){<p) ^ P ^ w(l)p{Sx)(tp) 
P w(l)p(T)(<p) 

=> wp(T)*(true) w(l)p(T)(ip) 
O w(l)p(wp(T)*(true) —> T)(ip) 
& w(l)p(T)(ip) , 
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holds and therefore the desired specialization T Ç P - t Sx- • 

Proposition 8 Let S = S1OS2 be a program specification on Y and X a static 
invariant on X with Y C X. IfTQSis X-consistent, then T Ç (Si)zO(S2)z-

Proof. We start showing the semantic equivalence of T to T'UQ —• loop with 
wp(T')(true) true, wlp(T')((p) O wlp(T)(ip) for arbitrary <p and Q O 
wp(T)*(false). Namely, 

wlp(T'UQ loop) ( ( f ) wlp(T')(ip) A (Q wlp(loop)(ip)) 
wlp(T)(ip) A true 
wlp(T)(ip) and 

wp(T'OQ loop) (if) wp(T')(ip) A(Q=> wp(loop)(ip)) 
wlp(T')(<p) A wp(T')(true) A -<Q 

<3- wlp(T)(ip) A ->wp(T)*(false) 
wlp(T)(ip) A wp(T)(true) 

0 wp(T)(<p). 

From 

w(l)p(S)(ip) => w(l)p(T)(ip) w(l)p(T')((p) A w(l)p(Q -)• loop)(<p) 

we obtain Q —> loop C S and therefore also 

Q loop = (Qi -> Zoop)a(Q2 Zoop), 

with Qj loop C S» for 1 = 1,2. We show T" C (Si)xD(S2)z since this implies 

T C (S^iDiQ! ^ loop)a(S2)iO(Q2 ^ loop) 
> v ' > v ' 

(S2)'x 

with (Si)'x C (Si)x for i - 1,2. Namely, Qi loop C Si, (Si)z C Si implies 
(Si)'x C Si and from the I-consistency of (Si)'x follows (Si)'x C (S,)z. 

Without loss in generality we assume that wp(T)(true) true holds. For each 
state a on Y we define Ta = T\(y = a skiv). Then T° is a deterministic 
specialization of T as. 

wlp(T3)*(y = b) 

wp(Ts)*(y = b) 

wlp(T)*(y = a Ay = b) 
wlp(T)*(y = a) for 6 = a 
false otherwise 

wlp(T)*(y = b) and 

wp(T)*(y = aAy = b) 
wp(T)*(y = a) for b = a 
wp(T)* (false) otherwise 

wp(TY(y = b) . 
{ 
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The last implication in the second case follows from the monotonicity of wlp(T)* 
applied to false =>• y = b. Besides, we obtain w(l)p(Ts)* (R) => w(l)p(T)*(R) for 
arbitrary <p. From ip(y) <=> Vz.-«p(z) => y ^ z we derive 

wlp{T)(ip(y)) & wlp(T)Çiz.-np(z) y ^ z) 
O Vz.-*p(z) => wlp(T)(y ± z) 
=>• Vz.-^(z) wlp(Ts)(y ± z) 

wlp{Ts)(Vz.-.<p(z) y ^ z) 
wlp(Ts)(tp(y)) , 

i.e., the specialization Ta Ç. T, as the lop-part can be obtain similarily. Here, in 
case of an empty index set we use wp(Ta)(true) O wp(T)(true). The proof that 
Ta is deterministic uses 

wlp(T5)*(y = b) & wlp(T)*(y = bAy = a) 

and the distinction into two cases. If b ̂  a holds, then 

wlp{T)*(y = bAy = a) & wlp{T)*(false) O false wp{Ta)(y = b) 

and if b — a is valid, then 

wp(Ta)(y = a) wp(T)(y = a => y = a) O true 

implies wp(Ta)(y = b). Together wlp(Ta)*(ip) => wp(Ta)(ip) for arbitrary tp means 
that Ta. is deterministic. Using wlp's monotonicity, we conclude I =>• wlp(T)(l) => 
wlp(T)(y = a => I ) =>• wlp(Ta)(l) and therefore that Ta is also Z-consistent. As 
we have just proven that T° is deterministic, it is also semantically equivalent to 
TfCITf with Tf Ç St for i — 1,2. More precisely, we have Tf = Pf Ts with 

Pi ^ {z/y}-^P({y/^}-TS)(z = a^wlp(Sir(z = y)). 

Using Proposition 3 we have 

P 3 VP 2
S {z/y}.wlp({y/z}.Ts)(y = a^wlp(S)*(z = y)) true , 

where T s Ç 5 is applied. Moreover, T 3 = (Pf V Pi) T 3 = Pf -> T3DP2
3 ->• T 3 

holds. Since Tf is Z-consistent for ¿ = 1,2, the GCS definition gives us Tf C (Sj)! 
and therefore T 3 C (5 i ) z a (5 2 ) i . 

Finally, the least upper bound of all T" with respect to Ç must be a special-
ization of (Si ) id(S 2 ) i . But this least upper bound is T and the proof is done. 
• 

The case of unbounded choice can be proven similarily to the last case. 

Proposi t ion 9 Let S' = • S be a specification on Y and Z a static constraint 
on X with Y ÇX. IfTÇS' is 1-consistent, then TQ@ySx. • 
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Proposition 10 Let S — Si B S2 a specification on Y and 1 a static constraint 
on X with Y QX. IfTQSisI consistent, then 

T C (S1)xOwp(S1)(false) (S2)x C (Si)z El (S2)x. 

Futhermore, T C (Si)x^wlp(Sx)(false) ->• (S2)x holds. 

Proof. We define Ti = wp(Si)*(true) T and T2 = wp(Si)(false) T. Let tp 
be an arbitrary ^-formula. Then we have 

w(l)p(TiOT2)((p) & (wp(Si)*(true) A w(l)p(T)* (tp)) V 
(wp(S1)(false)Aw(l)p(Ty(ip)) 

& (wp(Si)*(true) V wp(Si)(false)) A w(l)p(T)*(ip) 
& w(l)p(T)*(tp) , 

that is T and T\OT2 are semantically equivalent. By assumption T C Si HS2 holds, 
and hence 

w(l)p(T)*(<p) w(l)p(Si)*(cp) V (wp(Si)(false) A w(l)p(S2)*(<p)) 

is valid, too. Besides, we can proof 

w(l)p(Ti)*(tp) <3> wp(Si)*(true) A w(l)p(T)* (tp) 
=i> (wp(Si)*(true) Aw(l)p(Si)*(<p)) V 

(wp(Si)*(true) A wp(Si)(false) Aw(l)p(S2)* (tp)) 
V 

ofalse 

But this means Ti C Si. Even more, 

w(l)p(T2)* (ip) o wp(Si)(false)Aw(l)p(Ty(V) 
(wp(S1)(false)Aw(l)p(S1y(tp))\/ 
(wp(Sl)(false) A w(l)p(S2)* (<p)) 

=i> (wp(Si)(false) A wp(Si)*(true)) V v * ' 
•»false 

(wp(Sy)(false) A w(l)p(S2)*(tp)) 
& w(l)p(wp(S1)(false) ^ S2)*(tp) 

gives us T2 C wp(S\)(false) S2. Herein, the second implication is due to 
->wp(Si)*(irue) =» -^wp(Si)*(tp) and wlp(Si)*((p) it;p(Si )*(<£>). 
As Ti and T2 are I-consistent, we have Ti C (5i) j . Due to Proposition 7 and 
(Si)x C Si, we derive T2 C wp(Si)(false) ->• (S2)z C wp((Si)x)(false) (S2)x, 
i.e., by definition of the predicate transformers 

TiDT, C (Si)xEhvp(Si)(false) —> (S2)x 
Q (S1)xOwp((S1)x)(false)^(S2)i = (S^x^iS^j. 
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This gives the first statement, the second one becomes obvious when we look at 
wp(Si)(false) => wlp(Si)(false). p 

C.l The Case for Sequences 
We come now to the case of sequences. Herein, the definition of ¿-X-reducedness 
will become more apparent. But first, we will show the following lemma. 

Lemma 9 Let S — Si; S2 be a program specification on Y with SI on YJ C Y 
for i = 1,2. Let I be a static invariant on X = {x i , . . . , x s} with Y C X. Be-
sides, X-YI-Y2 = {yi,... ,ym}, X-YI = {yi,... ,ym,ym+i,... ,yn}, X-Y2 = 
{yi, • • -,ym,xi-1-1,... ,xk), YI = {xi , . . . ,xi, XI+I, .... ,xk} and {x i , . . . ,x'k) a dis-
joint copy 0/Y1 with Y{ fl Y = 0. If S is 5-1-reduced and Si deterministic, then 

1. for all states a and b with \=s. |=£ and [=5 wlp(S)*(3yi,... ,ym. 
x = b), for which 

x = a =>.{x/x}.(Vyi ,..., y„.wlp{S2)*(3yi,... ,ym,xi+1,..., xk.x = b) => I ) 

is a 5-constraint for Si, x = a => {x/x'}.Vyi,... ,yn.l is a 5-constraint for 
S. 

2. for all states a and b with |=5 X, X and (=5 wlp(S)*(3yi,... ,ym. x — b), 
for which 

x = a {x/x}.(Vyi,...., y„.wZp(S2)*(3yi,. ..,ym, ®i+i, • • • ,xk.x = b) => -> 1) 

is a 5-constraint for Si, x = a => {x/x'},\/yx,..., yn.-*l is a 5-constraint for 
S-

Proof. We will show (i) only. The proof for (ii) is completely analogously. Let a 
and b be states with (=5 ->X, |=g -X und |=s wlp(S)*(3yi,..., ym• x = b) and 

x = a =>{x/x'}.(V2/i,..., yn-wlp(S2)*( 

3yi,...,ym,xi+i,...,xk.x = b) =>1) (*) 

a ¿-constraint for Si. Then 

|=a wlp(S)*{3yi,.. .,ym.x = b) o |=5 wlp(Si)* (wlp(S2)* (3yx,.. .,ym.x = b)) 
=> 1=5 wp(Si)(wlp(S2y (3yi,... ,ym.x = b)) 
=• [=5 wlp(Si)(wlp(S2)*(3yi,... ,ym.x = b)) 

holds, using the definition of wlp(S), Sx being deterministic and the pairing condi-
tion. Moreover, we conclude 

|= {x1 /x}.wlp({x/x'}.Si)(x = a 

wlp({x/x'}.S2y(3yi,...,ym.{x/x'}.x=b)) (**) 
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by definition of wlp(Si). By definition of a ¿-constraint, (*) implies 

|= {x1 /x}.wlp({x/x'}.Si)(x = a => 

{x/x1} .Vyi , . . . , yn.wlp(S2)* (3j / i , . . . , ym,xi+i ,...,xk.x = b) =>!)) 

and together with (**) further 

{x1/x}.wlp({x/x'}.Si)(x = a => { f / f }.Vyi,... ,yn.l) . 

Hence, x = a => {x/x'}.Vyi,... ,yn.l is a ¿-constraint for Si. As 5 is ¿-Z-reduced 
by assumption, x = a => {x/x'}^iyi,... ,yn-2 is also a ¿-constraint for S. p 

Proposition 11 Let S = Si ; S2 be an 1-reduced specification on Y with T be-
ing a static constraint on X with Y Ç X. If T Q S is I-consistent, then 
T C ( S i ) i ; ( S 2 ) z . 

Proof. Without loss in generality we assume that wp(T)(true) O true holds. Then 
it suffices to show wlp(Sz)*(x = a) => wlp((Si)i-,{S2)i)*(x = a) for all state 
characterising formulae x = a. Namely, 

wlp{(Si)i)(wlp((S2)i)(v>m) O wlp((Si)i)(wlp((S2)i)(Vz.^<p(z) ^ X j i z ) ) 
O wlp((Si)x)(Vz.-i<p(z) =• wlp((S2)i)(f ? z)) 
O V z . ^ ( f ) => wlp((Si)i)(wlp((S2)i)(x ± z)) 

Vz.^ip(z) => wlp{Sj)(x ± z) 
wlp(Si)(yz.^ip(z) => x ^ £) 

O iu/p(Sz) (¥>(£)) 

holds for all X-formulae 
As Si is the least upper bound of its deterministic branches with respect to Ç, 

we can further assume without loss in generality that Si is deterministic. Therefore, 
we are able to use the stronger properties from Lemma 9. 

First, we compute both sides of of the implication above using the GCS normal 
form from Proposition 4. We obtain 

wlp{Si)*(x = a) & (lA3iwlp(Sy({y/Q.lA{y/Q.x = a))V 
(pi A 3Ïwlp(S)*({y/£}.x = a)) (6) 
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as well as 

wlp((S1)r,(S2)ir(x = a) o ( lAu»/p (5i )*(3y 1 > . . . , i /n . ( lA 
wlp((S2)i)'(x = a)))) V (pl A wlpiS^i 

... ,yn.wlp((S2)i)*(x = a))) 
& (Z A wlp(Si)* (3yx,.. ,,yn.{l A wlp(S2)*( 

3yi,---,ym,XL+i,...,Xk(I/\X = S))))) V 

(-Ü A wlp(Si)* (3yi,.. .,yn.(l A wlp(S2)*( 
^yi,---,ym,xi+i,...,xk(lAx = a)))))V 

(-iZ A wlp(Si)* (3yi,..., yn. (-. 1A 
wlp(S2)*(3yi,...,ym,xi+i,...,xk.x = a)))) 

and this is equivalent to 

3 6 . . . . , < £ n . 3 £ i Í Í + 1 , • • • , a . ( w l p ( S i ) * { { y / t } . l A 
{y/S}.wlp(S2y({yl?}.(l Ax = a))))V 

3 6 , • • • , fn-3f i , • • • 1» • • • ^ - " " ^ A 
A {y/0-wlp(S2)*({y/?}.x = a))) 

(7) 

Case 1. We assume x = a =$> ->1. Then wlp(Sj)*{x = a) => wlp(Sx)*(~"Z) => ->Z 
follows as 5 j is Z-consistent. Since we also rulp(Si)*(x = a) assume, we look at 
the second line of formula (6). We show, that we can derive the second subformula 
of (7). Assuming consistency, we are allowed to neglect ->Z, i.e., we need to derive 

(wlp(Si)*{p{y/£}.l A {y/£}.wlp(S2)*({y/£'}.x = a)))) 

Suppose, (8) does not hold. Then, there is a state b with 

|=5 wlp(Si)(V£i,..., tn.{y/t}.(wlp(S2y 

• • •, C . ii+1, • • •, = 3) Z))). 

We compute that (9) is equivalent to 

|=5 {x'/x}.wlp({x/x'}.S1)({x/x1}. 

V6, • • •, Zn-{y/£}.(™ip(S2Tm,..., , . . . , e k : { f f / ? } . s = 3)=> Z)) 
v V 

R 

and therefore to 

(=5 {x,/x}.{Vx!l.wlp{{xlx!}.Sly{x! = f") { f / £ " } . { x / f 

(8) 

0 ) 
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applying Lemma 1 to wlp({x/x'} .Si)({x / x1} .R). From this, we derive the equiva-
lence to • ' 

2 = b=> {x'/x}.(W.wlp({x/x'}.S1)*(x' = x") =» {f/£"}.{x/f}.R) o 
{x'/x}.(W.wlp({x/x'}.S1y(x' = x") =>• {x = b=> { f / f " } . { f / f } . / ? ) ) o 
{x'/£}.wlp({£/tf}.Si)(£=b=> {x/x'j.R). 

But then 

x = {x/f}.(V£i,...,£„. 

.. ,C> • • , = 3) =» I ) ) (10) 

is a ¿-constraint for Si. As not only ->Z, but also [=3 ->I is valid, Lemma 9 (i) 
implies that 

f = i = » { i / f } . ( v e 1 , . . . J e n . { j / / D . i ) (11) 

is a ¿-constraint for 5. We conclude 

{xf/x}.wlp({x/x'}.S)(x = b^ {f/f}.(V^,...,e„.M}.2)) 

and this is equivalent to 

hs {x'/x}.wlp({x/x'}.S)({x/x'}.(^i,... ,tn.{y/(}.l)) 
\=twlp(S)(Vyi,...,yn.l) . . (12) 

following a similar computation as above. On the other hand, we apply monotonic-
ity on the assumption x = a ->1 and use S% C S to compute 

wlp(Sz)*(x = a) => wlp(Sx)*{-^T) 
^ wlp{S)*(-^l) 

wlp{S)*{3yi,...,yn^l) . 

But this is a contradiction since 

wlp(S)*(3yi,...,yn.^l) <£> -^wlp(S)(Vyi,...,yn.l) 

holds. 
Case 2. Now we assume x = a => 1 and |=j wlp(Sx)* {x = a). Following (6) we 
distinguish further. 
Case 2.1. We suppose |=£ ->Z A 3£.wlp(S)*({y/£}.x = a). For state & we have 

3Z.wlp{Siy(wlp{S2)m(W$.2 = 3})& 
3lwlp(Siy((lV-,l)Awlp(S2y({y/£}.x = a))& 

• 3lwlp(Siy(lAwlp(S2y({y/$.(x = aAl)))\/ 
3£.wlp(Siy(^l A wlp(S2)'({y/(}.x = a)) 
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and therefore (7). This gives the proof of case 2.1. 
Case 2.2. We suppose X A 3£.wlp(S)*({y/£}.(! A x = a)) and show that 

|=f , . . . , £n-3£j,. . . , C , tf+i > • • • • ft -HP(5I)*({¿r/D-i A 

{y/Z}.wlp(S2y({y/?}.(l A f = a)))) (13) 

follows. This implies the first subformula in (7). According to case 1, we assume 
that (13) does not hold. Similar to the computations above, we conclude that 

{y/£}.(-wlp(S2y(3Z[,..., C> . • •, = <!)=*• -x)) 

is a ¿-constraint for Si. Using Lemma 9 (ii) as well as X and |=j X, we can 
conclude that 

2=b=> {S/x1 }.(V£i,..., tn.{y/i}.-<r) 

is a ¿-constraint for S. We derive 

{x'/S}.wlp({x/x'}.S)(x = {x/x1 }.(V&, • • .,tn.{y/&.-<[)) 

and further 

{x'/x}.wlp({x/x'}.5)({x/f }.(V&,..., Zn.{y/Q.^l)) , 

i.e., equivalence to 

1=6 vulp(S)iyyi,..., yn-->T). (14) 

Due to our assumptions and x = a X we can also conclude that 
, . wlp{Sxy{x = a) => wlp(Si)*(i) 

=> wlp{Sy(l) 
wlp(S)*{3yi,...,yn.l) 

<=$> ->wlp(S)(Vyi,...,yn.-<X) 

holds, a contradiction to (14). This gives the proof for case 2.2. • 

C.2 The Recursive Case 
In this appendix we prove the upper bound theorem for recursive operations re-
stricted to simple WHILE-loops in the form of f(S) = V -> T; SD-^V skip for 
which we know the existence of least fixpoints according to subsection 3.2. For this 
we need some additional lemmata. 

For recursive guarded commands the monotonicity of all operation constructors 
with respect to the Nelson-order is fundamental [4]. Unfortunately, a similiar 
result does not hold for the specialization order C. More precisely, the result is 
false for the H-constructor in its first component. 
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Lemma 10 Let f(S) be a guarded-command expression with the program variable 
S in which restricted choice El does not occur. Then f is monotonie with respect 
to the specialization order Ç. 

Proof. The proof is done by structural induction. For each constructor it is 
completely analogous to the corresponding proof for the Nelson-order in [4]. We 
omit the details. • 

In [6, Proposition 20, p.120] we have seen that S'T may contain the choice-
constructor instead of restricted choice, provided we include some guard. Replacing 
within a recursive operation some S\ £3 S2 by (51) z E3-(S2)x would destroy the re-
quired result. 

The next lemma follows from taking together the cases in the upper bound 
theorem for preconditionings —choices • , unbounded choices @ and restricted 
choices 

Lemma 11 Let T be a consistent specialization of some 1-reduced f(S') with re-
spect to T, where f(S) is an expression built from the constructors of guarded com-
mands. Construct fi(S) from f(S) as follows: 

(i) Each restricted choice S\ S3 S2 occuring within f(S) will be replaced by 
Si Dwl'p(Si ) (false) -)• S2 • 

(ii) Then each basic operation, i.e. skip and assignments will be replaced by their 
GCSs with respect to 1. 

Then we have T Q fx(S'x). • 

We must now face the main difficulty to bring together two different partial orders, 
namely the specialization order C which is fundamental for GCSs and the Nelson-
order required for recursion. 

In order to accomplish this we will need to make use of another limit operator 
linitgN fl(loop)x- Semantics is completely analogously assigned as for the case of 
limjgN f'iloop). Therefore, we receive a corresponding result to Lemma 2 which can 
be obtained by using Proposition 4. It then is straightforward to verify counterparts 
for Lemma 3 and Lemma 4, finally. 

Lemma 12 Let 1 be a static constraint and f(T) = V —> S;TOPV —> skip such 
that T does not occur within S. Then for each j E N, there exist predicate trans-
formers r f ( j ) and T1 ( j ) on arithmetic predicates such that the following properties 
are satisfied: 

(i) for each arithmetic predicate <p(x), the results of applying these predicate 
transformers are arithmetic predicates in i and x, say 

X)'X(i, x) = TÏ(j){<p{x)) and X f Z ( i , x) = TT{j){ip(x)) 
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(ii) for j = h(ip) we obtain 

Vx.Vi. fxj'Z(»i & wip(/'(/oop))(¥>(f))) and 

Vx.Vi. (x2j'X(i, x) wp(fx (loop))(<p(x))) 

with x — «Ctj j • • • > Xik' 

Proof. We follow closely the proof Lemma of 2 where we obtained a primitve 
recursive function g such that 

Q'i(mj^) = wlp(fk{loop)){v{x)) 

is satisfied. Herein, g(k) gives us the Godel number of fk(loop). Using the normal 
form for GCSs from Proposition 4, we can easily derive a further primitive recursive 
function s such that the composition of s with g yields the Godel number (s o g)(k) 
for fk(loop)x. Notice, that loopx = loop holds. In particular, we obtain 

Qi((sog)(k),j,x) = wlp(fk(loop)x)(<p(x)). 

Then, we define predicates Qf(k,j,x) = qx((s o g)(k),j,x) and an extension of 
Qx{h(ip),h(<p),x) (CP => wlp(S)(ip)) A (pV ip)) with ip,<p £ F. We conclude 

Ql(k,j,x) = gf((s°s)(fc),j,x) = Qx{h(ip),h(<p),x) , 

where h(<p) '= j and ip(x) = wlp(fk~l (loop)z)(ip(x)) = Qx(k — l,j,x). In summary, 
we receive 

Qx(0,j, x) = true and 
Q?(fc + i,j,x) = Qx{h(Qx(k,j,x)),j,x). 

Now we take tf(j)(ip(x)) = x] ' Z ( fc ,x) = Qx{k,j,x) and conlcude as in Lemma 2. 
• 

We now define limit operators limigpj fl(loop)x with help of the predicate trans-
formers rx(j) and rx(j): 

wlp^imf'iloop)!^ {(p(x)) O Vi.xl^v)(i,x) and 

wp ^lim/l(/oop)i^ (<p(x)) & 3i.x2
hfv)(i,x) 

for Xl
hfv)(i,Z) = T-?{h(<p))(<p(x)) and xlf^ih*) = TX(.h(ip))(ip(x)). 

Lemma 13 The definition of limits lim^ fl (loop) x is sound. 

Proof. The proof follows exactly the one from Lemma 3. We just need to mention 
that {fl{loop)x | i 6 N} is a chain with respect to the Nelson-order •<. As loopx — 
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loop is the ^-minimum, we have loopx < f(loop)x• Since {fl(loop) \ i € N} is a 
chain and therefore fl(loop) < f1+1 (loop) holds, we can finally derive fl(loop)x •< 

The following lemma gives us the corresponding result to Lemma 4. The proof is 
again completely analogous. 

Lemma 14 The chain {fl(loop)x | i € N} has a least upper bound, namely 

We are now prepared to bring specialization- and Nelson-order together. 

Lemma 15 Let T und S be Y-operations. Furthermore, let 1 be an invariant on 
X for Y C X. Then we have: 

(i) IfT <S holds, then Tx < Si follows. 

(ii) (limigN fi(loop))x Ç limieN(/ ,(Zoop))x. 

Proof, (i) Here we use the normal form of a GCS given in Proposition 4. The first 
result follows immediately, because all constructors are monotonie in the Nelson-
order •<. 

(ii) First, limi6N fl(loop) is the least upper bound of {f'(loop) \ i 6 N} with respect 
to the Nelson-order according to Lemma 4, i.e. especially fl(loop) lim^N fl(loop) 
holds for arbitrary i € N. From this and (i) we get fl(loop)x (limi(EN fl{loop))J, 
i.e. (limjgN fl(loop))x is an upper bound for {fl(loop)x \ i € N}. Using Lemma 
14, lim izw fl(loop)x is the least upper bound of the chain {fl(loop)x | i 6 N } which 
means that l i m ^ fl(loop)x ^ (lim^gN fl(loop))x must hold. Therefore, we receive 

f1+1 (loop)x (see also Lemma 15). • 

linUgN P(loop)x- • 

according to the definition of the Nelson-order. 
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Once again we make use of Proposition 4 in order to compute 

wlp ^lim fl (loop)z J ( f ) 

Vi.i é N = > wlp (/'(loop)i) (</?) 

Vi.i G N => wlp({l /'(Zoop); @z* • z := z"; J skip)® 

( - . ! -> Á Z o o p ) ; ^ . . ? : = . ? ) ) M 

Vi.» E N ( ( Í => iw¿p(/i(ioqp))(V5'.{5y5'}.X => <p))A 
( - 1 WZp(/i(Zoop))(V,r.{z/z'}.<¿))) 

( I Vi.i e N wlpifiloop))^? .{z/z1}.! => v>))A 
( - 1 => Vi.i € N => wlp(fi(loop))(Vz'.{z/z'}.<p)) & 

( I wZp (limfiloop^j (Vz'.iz/z'}.! =>-<p))A 

(-.1 => wlp (\imf(loop)j {¥?.{?/?}.?)) ^ 

«j/p( ( Í lim 7 ¿ (Zoop) ; • z : = z1 ; I ->• sfcip) El 

( - 1 lim f(loop)-, . z := f))(<¿>) igN 

wlp M lim/*(Zoop)J J (cp) ' , 

i.e. 

wlp ^lim fl (loop) j^j (ip) wlp ^ ^lim /'(Zoop)^ ^ M 

supplies the asserted specialization. • 

We are now able to give the main proof. 

P ropos i t i on 12 Let S' = p,Tj.f(Tj) with f(Tj) = V T ^ D - V P s/cip be an 
X-reduced y-operation and T Q S' a consistent specialization with respect to some 
X-invariant I with Y C X. Then we have T C p.Tj.fx(Tj), where fx{Tj) is built 
as in Lemma 11. 

Proof. Since S" is a fixpoint we have S' = f(S'). T is an I-reduced consistent 
specialization of S' by assumption, so the specialization 

T C fi(Si) = fx (( j im/ '(Zoop) 

follows by Lemma 11. Due to the monotonicity of fx and because of Lemma 15 (ii) 
we derive further 
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( T » \ 
/ x ( ( l i m № 0 p ) ) J C h Hm (f(looP))x 

\ £ 7 
We set Tu — f j(loop) and show Tu C Tu for all i G N by induction. The case i = 0 
gives Tio = loopx = loop = T2Q. In the case i > 0 we can assume TIJ C T2j for all 
j < i. Tu is an I-consistent specialization of fl(loop) = f ( f 1 - 1 (loop)), hence we 
conclude 

Tu E fx {{rHloop))^ = h (T1( i_1}). 

by Lemma 11. Now, we apply the induction hypothesis and the monotonicity of 
fx in order to obtain fx ( T ^ ^ ) C fx = T2i, i.e. together Tu Q T2i as 
asserted. 
For T2 = limjgN fx(loop) follows 

wlp(T2)(<p) & Vi.i G N =>• wlp(T2i)(<p) 
=> Vi.i G N =>• wlp(Tu)(ip) 
O wlp(T\) (tp) 

and 

wp(T2)(ip) o 3i.i G N A wp(T2i)(ip) 
=> Bi.i G N A wp(Tu)(tp) 
O wp(Ti)(y) , 

thus the specialization 7\ QT2 . Finally, we receive by applying Lemma 10 

T C / i f f i ) C fx(T2) =T2= PTvfx(TJ) , 

where we use the fact that T2 is a fixpoint. • 
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