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Definition of a Parallel Execution Model with 
Abstract State Machines* 

Zsolt Nemethf 

Abs t rac t 

Languages, architectures and execution models axe strongly related. A 
new architectural platform makes necessary to modify the execution model 
in order to exploit all the advantages of the underlying architecture while 
preserving its main characteristics. The latter issue requires a careful analysis 
of the design process. Abstract State Machines offer a powerful method for 
aiding complex system design. In this paper some aspects of its application 
are presented by taking the redesign process of a parallel Prolog model as an 
example. 

1 Introduction 
The research work presented in this paper aimed at the design of a Prolog inter-
preter on a multithreaded architecture. However, the certain project represents just 
the framework and the goal is more general: investigating how a dataflow based 
model fits a kind of hybrid multithreaded architecture and what the conditions of 
efficient work are. In a wider scope it deals with the relationship of computational 
models and the underlying physical architecture. 

LOGFLOW is a fine-grained all-solution parallel (reduced) Prolog system for 
distributed memory architectures. Its abstract execution model called Logicflow 
[13] can be considered as a sort of macro dataflow scheme, whereas its abstract ma-
chine model is the Distributed Data Driven Prolog Abstract Machine [14] (3DPAM). 
3DPAM tries to make a connection between a dataflow based execution model and 
a kind of von Neumann physical architecture. 

A hybrid multithreaded platform offers the possibility of creating a more effi-
cient Prolog abstract machine. Its ability to hide latencies due to remote memory 
access or synchronisation (multithreading) opens a new way for representing Prolog 
data (heap) and managing the variables. On the other hand, its hybrid feature, 
i.e. support for both the fast sequential and dataflow execution, is close to the 
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macro dataflow model of LOGFLOW and makes possible an efficient realisation 
of dataflow nodes and token flows. To exploit the latter property at the abstract 
machine level, a new abstract execution model is necessary, too. The new execu-
tion model has been derived from the Logicflow in three major steps by changing 
the way how solution streams are separated, the way how solutions are propagated 
and by grouping together elementary nodes [18]. Whereas the gain in efficiency is 
obvious (qualitatively), it is not the case for correctness and semantical equivalence 
of the models. 

The work presented in the paper is a study on the application of a formal method 
called Abstract State Machines in proving the correctness of the redesign. Abstract 
State Machines (Gurevich's ASMs, formerly known as evolving algebras) offer a way 
for the design and analysis of complex hardware and software systems [3] [9]. They 
are similar to Turing machines in a sense that they simulate algorithms yet, they are 
able to describe semantics at arbitrary levels of abstraction. An ASM consists of a 
finite set of transition rules by which the system is driven form state to state, each 
represented by sets with relations and functions (algebras). By refinement steps a 
"more abstract" model can be turned into a "more concrete" one and by relating 
their states and transition rules (by proof mapping) their relative correctness and 
completeness can be proven. In several refinement steps the equivalence of the 
models can be shown. 

The refinement technique is applied at deriving the new execution model via a 
series of submodels. LOGFLOW is modeled as an ASM and modifications are intro-
duced by successive new ASMs where each modification step can be checked. Fur-
thermore, implementation steps, creating an interpreter engine can be conducted 
and checked in the same way. 

In Section 2 the notion of computational models are introduced and the circum-
stances are explained why the modification of Logicflow became necessary. It also 
summarises the main steps of redesign. Section 3 is a brief introduction to ASMs 
and their applications. Section 4 puts the design into the framework of ASMs: 
the initial model and the first derivation are introduced. Finally, in Section 5 the 
correctness of the first modification is shown. 

2 Computational models 
Computational models are considered as a higher level of abstraction above lan-
guages and architectures [22]. In the course of LOGFLOW project a highly ab-
stract, dataflow based parallel and distributed model called Logicflow [13] has been 
derived from Prolog language (Figure l.a). Target architectures were represented of 
parallel von Neumann types, primarily transputers and networks of workstations. 
The abstract execution model cannot be implemented directly on the physical ma-
chine model but a virtual machine, the so called abstract machine layer is intro-
duced between the execution model and the physical machine model. This way of 
execution via abstract interpretation is general in case of Prolog and declarative 
languages. 
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a ) b) 

Figure 1: Levels of abstraction 

However, the semantical gap between the models to be layers is still too big. 
The abstract machine, 3DPAM [14] provides the dataflow features required by the 
execution model at a high cost: token handling, queues, synchronisation, remote 
communication are realised by software. 

Multithreaded architectures offer a solution for fundamental issues of distributed 
computing: eliminating idling at remote memory access and synchronisation [2]. 
An emerging class called hybrid dataflow/von Neumann tries to combine the speed 
of sequential execution and the simplicity and performance of dataflow scheduling 
[20]. The runtime model of hybrid dataflow/von Neumann architectures is close 
to that of Logicflow therefore, a natural step is making an attempt to replace the 
architecture to a hybrid one. 

Hence the direction of engineering is reverse with respect to that of the 
LOGFLOW system: how the abstract engine can exploit the advantages of the 
architecture. Then how the execution model should be modified in order to fit the 
abstract engine making a real connection between the language and the architecture 
(Figure l.b)? 

The multithreaded and the hybrid properties of the architecture are completely 
independent. Multithreading enables remote memory accesses and thus, allows a 
new way of Prolog data layout. The main points of the new variable handling arid 
some performance considerations have been presented in [16] and [17]. The hybrid 
property gives an opportunity for a new and efficient realisation of a Logicflow based 
model, where all the dataflow features are supported by the architecture. These 
features can be exploited at abstract machine level but accordingly, the Logicflow 
model must be be modified, too. The main steps of the modification in the abstract 
execution model has been presented in [18]. 

Yet, a set of very important questions remains open: how the original Logicflow 
and the modified Hybrid (Multithreaded) Logicflow models are related. Are they 
functionally equivalent? Does the Prolog Abstract Machine exactly what the exe-
cution model requires? Is the model sound? In this paper a part of the design is 
introduced in the framework of ASMs that shows how these issues can be handled 
and how the design process can be made precise and well documented by a proper 
formal method. 
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Figure 2: Elements of a DSG graph: Unify (A), And (B), Or (C) and Unit (D) 
nodes. 

2.1 The Logicflow concept 

The Logicflow model is a higher abstraction of dataflow principles [13] for a mas-
sively parallel (Or and pipeline-And) all-solution execution of Prolog programs 
on distributed memory architectures. Prolog programs are transformed into a 
Dataflow Search Graph (DSG, Figure 2). Nodes in this graph represent specific 
Prolog activities like unification, facts, handling alternatives, etc. Essentially they 
group together elementary dataflow nodes. As a consequence, DSG nodes can have 
inner state and one token is always enough to make a node fire. 

In this model a clause is represented by a so called Unify-And ring. The Unify 
node (A in Figure 2) represents the head and the unification, And nodes (B) stand 
for the body goals and prepare the call. Alternative clauses are connected by Or 
nodes (C). The example graph in Figure 2 consists of 3 alternatives. Finally, group 
of consecutive facts are depicted by Unit nodes (D). 

Logicflow is a Prolog model without backtrack. Request tokens (representing a 
query) are propagated from top to bottom. Or nodes duplicate the request tokens 
and thus, alternative branches of a predicate can be activated simultaneously. In 
this way Or-parallelism can be exploited. When request tokens reach the Unit 
nodes, they generate all the possible solutions to the request. Solution tokens form 
a stream flowing in the Unify-And ring. This ring can be considered as a pipeline: 
its different stages can process different tokens in the same stream in turn and thus, 
pipeline And-parallelism can be exploited as well. Solutions are propagated from 
bottom to top. Nodes must separate different token streams and manage their flow. 
Due to the all-solution property, there can be hundreds or thousands different token 
streams, each consisting of several tokens. 
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2.2 The hybrid dataflow/von Neumann Logicflow concept 

The target architecture of the current Multithreaded Prolog Abstract Machine 
(MPAM) implementation is the Kyushu University Multimedia Processor on 
Datarol (KUMP/D) [24]. KUMP/D is a successor of multithreaded Datarol.[l] and 
Datarol-II [15] machines. It is a hybrid dataflow / von Neumann one, i.e. it can 
support both program counter based sequential execution and dataflow scheduling. 
More precisely, the Datarol execution model distinguishes the short term and long 
term execution. Short term execution means sequential processing whereas long 
term execution is dataflow based scheduling of the sequential threads. In such a 
way there are threads that run exclusively until the termination point sequentially. 
At the end the next thread is scheduled on dataflow principles. In other words it 
is a kind of macro dataflow model, too. 

In this model a program consists of simultaneously existing function instances. 
A function instance has its own context (frame) and shared code. Note, that the 
function instance and the thread are not the same: a function instance may consist 
of multiple threads. They belong to the same context. According to the definition 
of the thread, in a single context they do not work concurrently, rather the function 
can be considered as a set of consecutive threads. A thread is terminated whenever 
a synchronisation or remote memory access causes latency. At this point a fast 
context switch allows the processor to go on eliminating idle cycles; it is the essence 
of multithreading. 

In the MPAM model each DSG node could be represented by a frame, where 
its own context is stored, furthermore it also has registers for token information. 
There is a thread (or more threads) attached to the frame. In such a way a node 
is represented as a function instance: the function code is realised by the threads 
whereas arguments and local variables of the function are kept in the frame. 

A running function instance can activate (call) another function. It can pass 
arguments just like in case of procedure call of other programming models. When 
the new instance is ready to run, the scheduler may select it for execution. However, 
at this point, the caller instance remains as it is, its content is not stored in a token 
(in contrast with 3DPAM model). The new instance can proceed without load 
operations, because all the necessary data are available as arguments. A passive 
instance is waiting for some results. When the specified results are ready, it can be 
awaken on dataflow principles, where no load instructions are necessary: the state 
is the same as it was before, the results are local variables. 

These are the principles of the MPAM working model that ensure an efficient 
interpretation of Prolog programs on the new architecture. However, the abstract 
execution model must be modified, too in order to narrow the semantical gap. 
There are three significant steps of redesign that enable the changes in the abstract 
machine model: creating node instances, optimised paths at alternatives and the 
introduction of aggregate nodes [18]. 

In Logicflow token streams form a central concept. Streams are maintained (and 
different streams are separated) by a colouring scheme and at abstract machine level 
the context tables that are needed for keeping consistent the colouring represent 
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some restrictions. However, the separation of streams could be defined in another 
way at abstract execution level. Obviously, if it could be guaranteed, that a node 
emits only one request token, there are no multiple reply streams and thus, they 
need not be separated. The key is in the Unify-And ring where And nodes prepare 
calls to predicates, i.e. they emit tokens towards Or, Unify or Unit nodes. If 
for each token in the stream a new instance of And node is created, the called 
node beneath it will receive a single request token. The Unify node merges the 
answer streams from the last And nodes within the ring. They belong, however, to 
the same stream representing the answer to the single request token of the Unify 
node. In such a way the token streams are separated physically without the need 
of colouring. 

Or nodes (handling alternatives) do nothing at merging solution streams but 
maintain the correct colours. If the token colouring scheme can be eliminated, 
according to previous principles, there is no need to propagate solutions through 
the cascade of Or nodes, they can reach their root in one step. 

As it was set forth the goal is to create an execution model, where nodes can be 
mapped to function instances easily. Although, it is possible at the present stage, 
increased granularity would reduce the cost related to instance (frame) management 
and data transfer between frames. The granularity can be increased by grouping 
together DSG nodes, resulting aggregate nodes. By a formal analysis 8 types of 
aggregate node have been defined as: unit, unify, or-unit, or-unify, and-or-unit, 
and- or-unify, and-unit, and-unify (Figure 3). In an aggregate node the component 
nodes share context and register information in a single frame saving significant 
time associated with frame set-up, communication, argument passing, intranode 
dataflow and so on. Thus, the unit of execution is an aggregate node that can be 
handled as a function instance with all the optimisations introduced before. 

3 System design with ASMs 
The idea of transforming the original Logicflow model has been presented in [18]. 
Yet, it is a rather informal description of the principles. The scope of current 
investigation is the verification of those transformation steps, in a broader sense, 
the question should be answered if the Logicflow and the Hybrid Multithreaded 
(HM) models of Prolog execution are semantically the same. Next, MPAM must 
be defined in such a way that it is equivalent to the HM Logicflow model. Abstract 
State Machines are proven to be capable, powerful and especially useful for solving 
this problem. They are able to deal with the very high level of abstraction of 
execution models and at the same time they are flexible enough to deal with MPAM 
at a significantly more concrete (with respect to implementation) level. 

3.1 Abstract State Machines 
Abstract State Machines represent a mathematically well founded framework for 
system design and analysis [3][6] introduced by Gurevich as evolving algebras [9]. 
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Figure 3: An example DSG graph where aggregate nodes are depicted as grey 
rectangles. The graph consists of 16 nodes instead of 30. All 8 types of aggregate 
nodes can be seen here (a). A snapshot of a possible execution showing node 
instances and optimised return paths (b). 

The motivation for defining such a method is quite similar to that of Turing ma-
chines (TM). However, while TMs are aimed at formalising the notion of com-
putable functions, ASMs are for the notion of (sequential) algorithms [12]. Fur-
thermore, TMs can be considered as a fixed, extremely low level of abstraction 
essentially working on bits, whereas ASMs exhibit a great flexibility in supporting 
any degree of abstraction. 

In every state based systems the computational procedure is realised by tran-
sitions among states. In contrast with other systems, an ASM state is not a single 
entity or a set of values but ASMs states are represented as (modified) logician's 
structures, i.e. basic sets (universes) with functions and relations interpreted on 
them. Experience showed that any kind of static mathematic reality can be rep-
resented as a first-order structure [12]. These structures are modified in ASM so 
that dynamics is added to them in a sense that they can be transformed. 

Applying a step of ASM M to state (structure) A will produce another state A' 
on the same set of function names. If the function names and arities are fixed, the 
only way of transforming a structure is changing the value of some functions for 
some arguments. The transformation can depend on some condition. Therefore, 
the most general structure transformation (ASM rule) • is a guarded destructive 
assignment to functions at given arguments [3]. 

ASMs are especially good at three levels of system design [3]. First, they help 
elaborating a ground model at an arbitrary level of abstraction that sufficiently 
rigorous yet easy to understand, defines the system features semantically and inde-
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pendent of further design or implementation decisions. Then the ground model can 
be refined towards implementation, possibly through several intermediate models 
in a controlled way. Third, they help to separate system components. ASM is not 
a paper theory but it has been applied in various industrial and scientific projects 
like verification of Prolog [4] and Occam [5] compilers, Java virtual machine [23], 
PVM specification [7], ISO Prolog standardisation, validating various security and 
authentication protocols, VLSI circuits, and many more. The definition of ASMs 
is written in [8] and [11] and a tutorial can be found in [9]. A brief summary is 
presented here in order to make the paper self-contained. 

A vocabulary (or signature) is a finite set of function names, each of fixed arity 
furthermore, the symbols true, false, undef, =, the usual Boolean operators and 
the unary function Bool. A state A of vocabulary T is a nonempty set X together 
with interpretations of function names in T on X. X is called the superuniverse 
of A. An r-ary function name is interpreted as a function from Xr to X, a basic 
function of A. A 0-ary function name is interpreted as an element of X. 

In some situations the state can be viewed as a kind of memory. Some appli-
cations may require additional space during their run therefore, the reserve of a 
state is the (infinite) source where new elements can be imported inside the state. 

A location of A (can be seen like the address of a memory cell) is a pair I = (/, a), 
where / is a function name of arity r in vocabulary T and a is an r-tuple of elements 
of X. The element / (a ) is the content of location./. 

An update is a pair a = (l,b), where I is a location and b is an element of X. 
Firing a at state A means putting b into the location I while other locations remain 
intact. The resulting state is the sequel of A. It means that the interpretation of a 
function / at argument a has been modified resulting in a new state. This is how 
transition among states can be realised. An update set is simply a set of consistent 
updates that can be executed simultaneously. 

ASMs are defined as a set of rules. The simplest rule is the skip that does not 
do anything. An update rule f(a) := b is a rule and causes an update ( ( f , a ) , b ) , 
i.e. hence the interpretation of function / on argument a will result b. It must be 
emphasised that both a and b are evaluated in A. 

A conditional rule R of form 

if c then 
R1 

e l se 
R2 

end if 

is a rule. To fire R the guard c must be examined first and whenever it is 
true R\ otherwise, Ri must be fired. A block of rules is a rule and can be fired 
simultaneously if they are mutually consistent. 

An import rule of form 

import v 
R 
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endimport 

is a rule for introducing new elements from the reserve and firing rule R. 
The following construct 

e x t e n d U by vi,...vn w i t h 

R 
e n d e x t e n d 

is a shorthand notation for 

import vi,...vn 
U(vi) true 

U(vn) := true 

R 
endimport 

that is new elements are imported from the reserve and they are assigned to 
universe U and then rule R is fired. 

There are further rules introduced for convenience but these are the inevitable 
ones that will be used thoroughly in this paper. The basic sequential ASM model 
can be extended in various ways like nondeterministic sequential models with the 
choice construct, first-order guard expressions, one-agent parallel and multi-agent 
distributed models. The latter is applied in modeling Logicflow, therefore a very 
brief introduction follows. 

A distributed ASM consists of , 

• a finite set of single-agent programs IIn called modules 

• a vocabulary T, which includes each Fun(Yln) — {Self}, i.e. it contains all 
the function names of each module but not the nullary Self function 

• a collection of initial states 

The nullary Self function allows an agent to identify itself among other agents. 
It is interpreted differently by different agents (that is why it is not a member of the 
vocabulary.) An agent a interprets Self as a while an other agent cannot interpret 
it as a. The Self function cannot be the subject of updates. 

A run of a distributed ASM is a partially ordered set M of moves x of a finite 
number of sequential ASM agents A(x) which 

• consists of moves made by various agents during the run. Each move has 
finitely many predecessors. 

• The moves of any single agent are linearly ordered. 

• Coherence: each initial segment X of M corresponds to state cr(X) which for 
every maximal element x 6 X is obtainable by firing A(x) in a(X — {x}). 
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?(R) 

Figure 4: Principle of refinement. 

3.2 Model refinement 
Refinement is defined as a procedure where a "more abstract" and a "more con-
crete" ASMs are related according to the hierarchical system design. At higher 
levels of abstraction implementation details have less importance whereas they be-
come dominant as the level of abstraction is lowered giving rise to practical issues. 
The goal is to find a controlled transition among design levels that can be expressed 
by a commuting diagram. 

Let us assume ASM M has been refined to ASM M ' by a partial abstraction 
function T that maps certain states of M ' to M so that the diagram commutes 
in Figure 4. To put in another way, if the refinement is correct, it is the same 
if ASM M ' moves from B to B' and then the corresponding state of ASM M is 
taken or first T(B) is taken and then the rule corresponding to R is fired. In both 
cases the result should be A'. However, the notion of equivalence, correctness and 
completeness strongly depends on the system designer's needs as it will be shown 
later. 

4 From Logicflow to HM Logicflow model of exe-
cution 

ASM represents the framework for proving the correctness of the new HM Logicflow 
model with respect to its predecessor Logicflow. Although the refinement procedure 
was introduced before as a transition between design levels, it is just a consequence 
of its "traditional" application. In fact, refinement is a method to relate any two 
ASMs of any level of abstraction. In our case Logicflow and HM Logicflow models 
that represent the same design levels, are related. 

What has not been mentioned before is the considerable amount of intuition 
that is necessary at making a refinement step. Making a suitable mapping between 
corresponding states and rules is a hard task, if not impossible in case of complex 
systems. Instead, the gap between the two models should be divided by introducing 
submodels that differ only in one or two properties from the previous one and thus, 
a simple one-to-one mapping can be applied to some of the rules and states whereas 
the rest of mapping can be conceived by reasoning. 
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Logicflow HM Logicflow 

( ASM1 ]—•( ASM2 )—•( ASM3 )—»( ASM4 }—•( ASMS }—»[~ASM6 )—>(~ASM7 ) 

( ASMx) 

Prolog Abstract 
Engine 

Figure 5: From Logicflow to HM Logicflow by a series of refinement steps. 

As it was introduced earlier, the HM Logicflow model can be derived from 
Logicflow in three transformation steps. Yêt, these steps from model to model 
are still to big because transformations involve the modification or replacement of 
many features at a time. Finally, a proper set of five submodels was found where 
the mapping can be done with reasonable efforts (Figure 5). 

ASM1 is the original Logicflow model. In ASM2 a new kind of synchronisation 
is introduced in the Unify-And ring. As a consequence, in ASM3 instances of And 
nodes can be created. It yields that every node receives just one request token thus, 
there is no need for token colouring in ASM4. If there are no colours, the cascades 
of Or node can be optimised in ASM5. In ASM6 the concept of frames are brought 
into existence whereas ASM7 is the model for the HM Logicflow with all its details 
[19]. As it can be seen in Figure 5, all these models are at the same level of design 
abstraction. 

The design of MPAM completely fits the same methodology. (It is entirely out 
of the scope of this paper and can be found in [19].) By successive refinement steps 
the abstract HM Logicflow model can be turned into a model of the engine that is 
much closer to the implementation level. The instructions of MPAM can be derived 
from groups of instructions of the ASM that describes it. It should be emphasised 
that in this scheme in Figure 5 both the model describing the principle of execution 
and the implementation details can be designed in the same formal framework of 
ASMs. 

4.1 Description of the Logicflow model by an ASM 
Logicflow is a distributed, dataflow and thus, indeterministic execution scheme that 
can be modeled as a distributed multi-agent ASM. There are two questions to be 
clarified: 

1. From which point of view should the model be described, i.e. what entities 
should be the agents? The system could be modeled as the graph nodes are 
agents and react to the incoming tokens. Another possibility, that was chosen 
finally, is where tokens are agents and they make the nodes fire. Although 
this issue must be clearly answered before building the model, the decision is 
rather the question of taste. 
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2. What should the ASM describe? In [13] the function of each DSG node is 
described and it is claimed that every Prolog program can be compiled to a 
set of such nodes. Yet it is not a description of the Prolog execution. For 
instance the DSG graph for a Prolog program that contains recursion (and 
most Prolog programs do) may be different for different input parameters 
although the DSG components (the compiled program) and their functionality 
are the same. The ASM model aimed at simulating the actual execution, 
therefore it describes how the certain DSG graph is constructed from the 
precompiled building blocks. 

The machine created for modeling Logicflow is called ASM1. There is just one 
module thus, each agent executes the same program. Furthermore, the number of 
agents changes during the execution as tokens are created and discarded. The Self 
function is realised by the miliary function t, i.e. it means the current token that 
realises the agent and the same t in the program text is interpreted differently for 
different agents. 

4.1.1 The basic sets and functions 

ASM1 consist of the following universes: 

• TOKEN. Elements in this set are the agents. The nullary function t rep-
resents the Self function. Tokens have type and colour. The unary func-
tion type : TOKEN {DO, SUB, SUCC, FAIL, FAIL2} 1 and colour : 
TOKEN —> COLOUR can retrieve the type and colour of the given token, 
respectively, loc : TOKEN —>• NODE returns the current location (node) of 
the token. It is assumed that tokens are always assigned to a node and there 
is no buffering or transition time between two nodes. Some tokens can carry 
environments, i.e. variable substitutions that can be obtained by the subst: 
TOKEN ->• SUBSTITUTION function. 

• NODE. This universe contains the nodes that realise the actual DSG graph. 
There are 5 types of them that can be retrieved by node : NODE 
{AND,OR,UN IT,UNIFY,QUERY), mode : NODE {create, active} 
is related to the construction of the DSG graph and results if the graph con-
nected to the node has been built already or not. The function returnport : 
NODE {reply.in, reply.inl, reply.in2} gives the port type where the ac-
tual node must return the answer tokens. The topology of the nodes can be 
described by the onMrc : NODE x INT NODE function and by the 
macros derived from it: 

— child(node) = oruarc(node, 3) 1 

— childl(node) = oruarc(node, 3) 

'FAIL and FAIL2 tokens are functionally equivalent and they are not distinguished in [13]. 
The introduction of FAIL2 tokens is simply a notation for making the explanation easier. FAIL2 
tokens are those occuring in a Unify-And ring. 
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Figure 6: A generic node and interpretations of arc labels for different types of 
nodes. 

— child2(node) = on.arc(node, 5) 

— prev(node) = on-arc(node, 0 ) 

— next(node) = on-arc(node, 1) 

— parent(node) = oruarc{node, 1) 

— first(node) = on-arc(node, 3) 

— last(node) = on-arc(node, 2 ) 

This kind of description assumes a generic node with 6 arcs as it can be seen 
in Figure 6. The actual types of nodes enumerate their arcs accordingly, 
though not all arcs are in use. In such a way a kind of navigation can be 
defined among nodes, their relationship (parent-child, previous- next) can be 
described precisely yet, in a readable form. 

Some nodes contain context information like colour, substitution, counter 
that can be retrieved by the appropriate functions (colour-context : 
NODE x COLOUR COLOUR, substjcontext : NODE x COLOUR 
SUBSTITUTION, counter : NODE x COLOUR INT, andstate : 
NODE x COLOUR {open,closed}, or.state : NODE x COLOUR ^ 
{waitl,uiait2}). 

• COLOUR. Token streams are separated by a colouring scheme. Tokens 
forming a stream have the same colour no matter what the actual type or 
content of the token is. 

• STREAM. Tokens of the same colour targeted to the same port of a node 
form a stream. It is essentially a set. Tokens in this set can fire the node they 
are waiting for in arbitrary order except that a FAIL token must be the last 
one terminating the stream. A stream can be identified by the node and port 
the tokens are waiting for and the colour information (stream : NODE x 
PORT x COLOUR STREAM). The relation instream : STREAM x 
TOKEN —> {true, false} is true if the given token is a member of the stream, 
whereas function card : STREAM —> INT returns the number of tokens in 
the stream. 
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• SUBSTITUTION. Substitution is a set of variables and their binding val-
ues. 

• PORT. A port is an entry point to a node from the following set: PORT = 
{request.in, reply.in, reply.inl, reply.in2}. 

• LIT, CLAUSE. Literals and list of literals, i.e. clauses. Function procdef : 
LIT CLAUSE* returns the definition for the given literal. A clause can 
be separated to head and body parts by the head : CLAUSE LIT and 
body : CLAUSE —> LIT* functions. There is a predicate or goal assigned to 
some nodes that can be retrieved by predicate : NODE —» CLAUSE* and 
goal : NODE LIT, respectively. 

4.1.2 Modeling Logicflow by ASM1: an example 

A simple example program is presented here step-by step that shows the most 
important features of the ASM1 model. Abstract State Machines can be treated as 
a kind of pseudo-code so, even if one is not familiar with all the details of ASMs, 
the code can be read easily and it is self-explanatory more or less (see Appendix 
A.) 

The example given here is the well-known family program: 
g r a n d f a t h e r ( X . Y ) : - f a t h e r ( X , Z ) , p a r e n t ( Z , Y ) . 

p a r e n t ( A , B ) : - m o t h e r ( A , B ) . 

p a r e n t ( A , B ) ¡ - f a t h e r ( A , B ) . 

f a t h e r ( b i l l , j o h n ) . 

f a t h e r ( b i l l , j a m e s ) . 

f a t h e r ( j ohn, j a c k ) . 

m o t h e r ( j a n e , j a c k ) . 

m o t h e r ( a l i c e , f r e d ) . 

m o t h e r ( j a n e , c h a r l e s ) . 

: - g r a n d f a t h e r ( X , j a c k ) . 

The execution starts with one Do token (agent) at the Query node (Figure 7.a). 
There are no other tokens or nodes in the system. The activator of the Do token is 
g r a n d f a t h e r ( X , j a c k ) , i.e. the query, and the substitution is empty. This initial 
state is represented by the following structure: 

type(loc(t)) = Query 
type(t) = DO 
subst(t) = {} 
act(t) = grandf ather (X, jack) 

In this case rule 14 can fire extending the graph with a new but untyped node. 
This operation is realised by the extend construct that brings a new element from 
the reserve (and this element is different from those already in some basic set) and 
puts it into a set, NODE in this example. The relationship between the Query 
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Quciy 

father(X,Z) parent(Z,Y) 

d) 

Figure 7: The initial state and states after firing rules 14, 13, 7a, 2a, 13, 3, 1 
respectively. The result of rules 13, 3, 1 is shown together in f). 

already in play and the new node is set by the macro variations of the on-arc func-
tion. The predicate assigned to this node is grandfather(X,Y) ¡ - f a the r (X ,Z) , 
parent(Z,Y)and the Do token is moved to it (Figure 7.b). Then rule 13 can fire 
that sets the type of current undefined node to Unify (the predicate is a single 
clause having body.) This change enables rule 7a to fire. Note, the Unify node is in 
create mode, i.e. it is the first time a token appears on it and the subgraph must be 
extended. The Unify node represents the head of a clause where unification takes 
place. If the unification of the activator of the token is successful with the head 
of predicate (and it is in this case), the graph is extended by And nodes resulting 
the Unify-And ring. Each And node in this ring is in create mode, their connect-
ing arcs are set and body goals are assigned to them. The current colour and the 
substitution (updated with 0, the most general unifier) of the token are saved and 
a new colour is assigned to it. Note that the new colour is obtained by the extend 
construct which guarantees that this colour is different from all previous ones. A 
stream is created towards the request.in port of the first And node in the ring and 
the current token (transformed into a Sub type, substitution is 9 and location is 
the And node) is put into it together with a terminating Fail2 token (Figure 7.d). 

At this point rule 2a can fire. The node sets its counter to 1 (the number 
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Figure 8: Working cycle of an And node in Logicflow model 

of received Sub tokens) and since it is in create mode (see the extension in rule 
7a) it produces its subgraph. The subgraph is untyped currently, and the as-
signed predicate is f a t h e r ( b i l l , john) , f a t h e r ( b i l l , james), f a t h e r ( j o h n , 
jack) (Figure 7.e). 

Hence two rules may fire simultaneously. Rule 13 sets the type of untyped 
node to Unit (a predicate with multiple clauses and none of them have a body), 
whereas rule 3 sets the state of the And node closed and the Fail2 token vanishes. 
As a consequence of rule 13, rule 1 can fire. A Unit node brings together the 
successive facts in the program and produces all the possible solutions to them. 
It creates a stream to its parent node (i.e. the And node) and puts the solution 
tokens (Succ tokens) into it. Each Succ token has the same colour and they are 
identical with exception for the different substitutions according to the result of 
three different unifications. Finally, a Fail token is put into the stream terminating 
the computation (Figure 7.f). 

The first steps of executing the example program showed the most important 
features of the ASM1 model that describes the Logicflow model. The reader may 
trace the execution further by applying the appropriate rules in Appendix A. 

The first model that has been introduced between the Logicflow and the Hybrid 
Multithreaded Logicflow introduces a different way of synchronisation in the Unify-
And ring. The basic philosophy of Logicflow is that for a token representing a goal 
an answer stream of the same colour, terminated with a Fail token, is expected at 
the reply arc of the node no matter if it was produced by a single node or by a large 
subgraph. The receipt of the Fail token means that all the possible solutions to the 
query has been found and there are no active tokens belonging to the computation 
in the subgraph. 

Ensuring this property in the Unify-And ring is a complex task. There can 
be multiple overlapping streams in the ring separated and identified by colours. 
An And node receives a token stream and must generate a token stream of the 
same colour making it sure that the Fail2 token appears on its reply arc only when 

4.2 The first submodel: ASM2 
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no more solutions are possible. This is realised by and.state and a counter. The 
counter contains the number of tokens sent to the subgraph, i.e. each incoming 
request token increments it (Figure 8a, b, c) whereas each terminating Fail token 
in the answer stream decreases it (Figure 8 d, g, h). The Fail2 token on the request 
arc of the And node makes its state closed meaning that no more request tokens 
can be expected (Figure 8 e). At this point whenever the counter is 0, the Fail2 
token can be sent on the reply arc terminating the answer stream (Figure 8 h). 

This solution can be considered as a distributed tracking of the active streams 
in the Unify-And ring. A single Fail2 token is circulated in the ring terminating 
the request/reply stream and whenever it hits the Unify node, there are no more 
tokens belonging to the same task in the subgraph. (This property has been proven 
in [13].) 

However, if And node instances are created for each token in the stream ac-
cording to the modifications, this mechanism is not viable, since there is no single 
route for tokens in the ring and thus, there cannot be a single termination signal at 
the end. The first step in the modifications is the redesign of the synchronisation 
mechanism in the Unify-And ring. 

States and counters in the And nodes, furthermore Fail2 tokens are not necessary 
anymore. Instead, a counter is introduced in the Unify node that keeps a record 
of the active streams in the ring. A new type of nodes is introduced as Last_And 
which is the last and node within the Unify-And ring. Each time an And node 
receives a solution token, it increments the counter in the Unify node. Each time 
an And or Last_A.nd node receive a Fail token, they decrement the counter. The 
functionality of And and Last_And nodes is equivalent except that Last_And nodes 
never increment the counter. 

ASM2 is the model that describes the Logicflow model where this slight mod-
ification is introduced. Most rules remain intact except those related to And or 
Unify nodes. (See Appendix B.) 

The modification of the synchronisation mechanism within a Unify-And ring 
seems to be simple, feasible and correct. But can it be shown formally that ASM1 
and ASM2 are equivalent and functionally they do exactly the same? 

5 Proof of equivalence of ASM1 and ASM2 

This proof represents the first element in the series of equivalence proofs in Figure 
5. It is introduced here as a kind of case study and further proofs can be carried 
out in a similar way. First, it should be clarified what equivalence means. Then it 
must be defined how the indeterministic behaviour of these models can be treated. 
While the latter issue is general in the whole proof procedure, the first one is unique 
for each step, i.e. two model can be said equivalent with respect to some definition. 
Obviously, these definitions involve the property that has been changed in the given 
refinement step. 
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ASM 

ASM' 

Figure 9: Schellhorn's modularisation theorem 

5.1 The notion of equivalence 

There can be many definitions of equivalence according to the level of abstraction 
and it is even possible that two algorithms are identical to some definitions of equiv-
alence and different to others [10]. ASMs offer a possibility to precisely define what 
equivalence means in the given situations. One presumption for the equivalence 
is that the two algorithms produce the same output for the same input. In [10] 
there are two possible equivalencies defined, the strict lock-step equivalence and 
the lock-step equivalence. It is shown that the two algorithms in scope (variations 
of bounded buffers) are lock-step equivalent but not strict lock-step equivalent. In 
both cases every step of algorithms and the corresponding states are taken into 
consideration which is not feasible for real life complex applications. 

A more practical approach that can be applied at refinements is presented in [21]. 
Let us assume two relations IN and OUT of initial and final states, respectively. 
A refinement is correct if for every finite trace of ASM'(st'0,...st'n) and for every 
sto of ASM with IN(st0,st'0) there exists a finite trace of ASM (st0, ...stm) so 
that OUT(stm,st'n). In other words: let us take into consideration all valid runs 
of ASM' starting from st'0 and ending in st'n. For each such run let us take all the 
sto states of ASM that are in relation IN(st0,st'Q). If every run of ASM starting 
from st0 ends in state stm that is in relation OUT(st'n, stm) then the refinement of 
ASM to ASM' is correct. If the refinement of ASM' to ASM is correct, too, then 
it is complete. Although, it is just a correctness of a kind of model transformation, 
it is also a definition of equivalence based on input-output behaviour. 

Schellhorn's main invention is the generalised proof method for refinement cor-
rectness (the "Modularisation Theorem"). The commuting diagram can be parti-
tioned by finding states that are in arbitrary relation which is the so called coupling 
invariant (Figure 9). In such a way the correspondence between two compútations 
can be reduced to subcomputations, i.e. if the two ASMs are started from related 
states they should finish their computation in related states as well. Schellhorn 
formalised his theorem for deterministic and indeterministic ASMs and defined the 
trace correctness as well. In the followings Schellhorn's idea is applied for equiva-
lence proof. 
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5.2 The problem of indeterminacy 
Logicflow model (and its modified versions) is inherently indeterministic due to 
dataflow nature. The corresponding ASM models are distributed multi-agent ones 
with similar behaviour. A program is deterministic if for some input set it generates 
the same output set no matter how many times the program is executed. Yet, the 
execution still can be indeterministic reaching the output set in different ways 
(different order of state transitions) from run to run. The main problem is that 
some execution paths can lead to the correct output set while others do not. 

Schellhorn's theorem for deterministic ASMs says that if there are two states x 
and x' that are in relation by the coupling invariant, there exist two integers i and 
j so that after i step of ASM and j step of A S M ' the coupling invariant holds 
for the resulted states in order to clain the refinement correct. However, it is just 
one possible successor state. Shellhorn generalizes his theorem for indeterministic 
behaviour so that for every possible x'} (the resulted state after j steps) there must 
be an i so that x'j and xt are in relation. 

What does it mean? It is not enough to find one possible partition of the 
commuting diagram but all the possible partitions. A serialisation method will be 
used according to [3]: given any initial segment of a run, each linearisation has the 
same final state. It is a consequence of the coherence condition in the definition 
of distributed ASMs. The execution is serialised, and then the partitions can be 
obtained according to the principles of partitioning deterministic systems. In this 
case no special properties of the actual serialisation can be used, because it is not 
one linearisation but any of them. In other words the partitioning will yield all the 
subdiagrams of which all the possible linearised executions of the two ASMs can 
be constructed. 

5.3 Definition of equivalence of ASM1 and ASM2 
Obviously, two Prolog executions are equivalent if they produce the same solutions 
to a given query. (Due to the all-solution property of the Prolog models in scope 
and the absence of side-effects the order in which solutions are given is meaningless.) 
However, taken into consideration two facts, several rules can be omitted at the 
proof thus significantly reducing the size of the commuting diagram. 

First, there are several rules that are identical in ASM1 and ASM2. It is the 
consequence of careful insertion of submodels where special attention was paid for 
introducing small changes from model to model. Evidently, they do not affect the 
equivalence of the two ASMs. Furthermore, ASM rules are local in a sense that 
they modify the state of the current token and the node it is currently on and do 
not affect other tokens or nodes in any way. 

As a consequence, the equivalence of the two models can be proven by showing 
the equivalence of the working cycle of Unify-And rings. It can be assumed that the 
embedding graph behaves the same in the two cases and there are no interactions 
among different Unify-And rings. First, let us assume that there are no other Unify-
And rings in the subgraph attached to the Unify-And ring in question. If they are 
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caid(stream(Node,repiy.in,Colour))=0 

Figure 10: The reduced commuting diagram. 

proven to be equivalent, they behave exactly the same as a Unit node with respect 
to the generation of a token stream and then the equivalence holds in case of any 
embedding graph. 

ASM1 and ASM2 are equivalent if and only if for each valid run of ASM1 there 
is a related run of ASM2. According to the reasoning above, this definition can be 
narrowed as: the two models are equivalent if and only if for each valid run of a 
Unify-And ring in ASM1 there is a corresponding run of the same Unify-And ring 
in ASM2. 

In both cases the initial state is represented by the appearance of a Do token 
at the Unify node. The final state in ASM1 is the appearance of a Fail2 token on 
the reply.in arc of the Unify node, whereas the related state in ASM2 is composed 
by the 0 state of the counter and the empty stream. (Note that in ASM2 there is 
no Fail2 token on the Unify node, that is why the condition is expressed as a first-
order formula in rule 24.) The correspondence is expressed by the same properties 
of tokens and nodes as it can be seen in Figure 10. 

5.4 Partitioning the commuting diagram 
In Figure 10 a reduced commuting diagram can be seen. It is reduced in a sense 
that state transitions occurring in the Unify-And ring are included only. It shows 
one possible sequence of execution and as it has been explained, the proof should 
cover all possible execution patterns. 

The most important and generally the most difficult task is finding the proper 
coupling invariant. It can be any property that relates a state of ASM1 to ASM2 
and by which the diagram can be partitioned in such a way that from the initial 
state a related pair of states can be reached in finite steps, then the invariant 
property holds for some pairs of states, finally, from a related pair of states the final 
relation can be reached (see Figure 9). The essential change in the first submodel 
is the introduction of a single (centralised) counter in the Unify node instead of the 
many (distributed) counters and state flags of And nodes. Therefore the coupling 
invariant should be associated to the semantics of the counter. The centralised 
counter maintains the nam6er of active streams in the ring which is essentially the 
sum of distributed counters in And nodes. 
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Do/Unify^ Sub Succ , Fail2 1 Succ i Sub , Fail 2 Sub , Fail2 , Succ 3 Succ , Sub : Fail 3 ... 

Do/Unify^. Sub1, Sue?, Succ', Sub2, Fail1, Sub2
2 Succ\ Succ\ Sub3, Fail2, ... 

Figure 11: Initial fragment of the commuting diagram for the example runs 

Let si the sum of counters in And nodes belonging to the same ring and to the 
same colour in ASM1 and let s2 the current value of counter in Unify node of the 
same colour in ASM2. Let X an initial segment of a run of ASM1 with maximal 
element m and Y an initial segment of a run of ASM2 with maximal element n. 
Then si(X) means the value of si after performing the steps of X, the meaning of 
s2 (Y) is similar. 

The coupling invariant relates states belonging to initial segments X — {m}, 
Y — {n} where the value of the counter changes so that 

3l(X - {m}) ? Sl(X), s2(Y - {n}) ? s2(Y) 
and after these steps they are equal 
S l ( X ) = S 2 ( y ) 
then a(X — {m}) and a(Y — {n}) are in relation where a is a projection from 

segments (sequences of steps) to states. 
Let us introduce the following notation: Token™ is an event when token of type 

Token is received at the nth And node in the Unify-And ring with si or s2 — x, 
whereas Token/Unify means an event caused by a token of type Token at the Unify 
node. ASM rules are usually guarded by dataflow firing conditions, therefore for 
the sake of simplicity these events will represent firing the rules. A possible valid 
run of ASM1 in the Unify-And ring with 3 And nodes is the following list of events: 

Do/Uni fyundef ~ Subl
unde{ - Succ} - Fail2\ - Succ\ - Sub\ - Fail\ — Sub\ -

Fail2\ — Succ\ — Succ2 — Sub2 — Fail\ — Succ\ — Succ\ — Sub\ — Sub/Unifyz — Sub3 — 
Failj - Fail2\ - Fail3 - Succ2 - Succ2 - Sub/Unify2 - Fail3 - Sub/Unifyi -
Succl - Fail3 - Sub/Unifyo - Fail2/Unify0 

A corresponding run in ASM2 can be obtained by omitting Fail2 events. It 
means that the embedding graph received and produced tokens in exactly the same 
timing. 

Do/Unifyundef — Sub\ — Succ\ — Succ^ ~ Subl — Fail\ — Sub\ — Succ2 — 
Succ3 - Sub3 - Failj - Succ| - Succl - Sub3 - Sub/Unifyi - Subl - Fail\ -
Fail\ — Succ% — Succ3 — Sub/Unify2 — Fail2 — Sub/Unifyi — Succ\ — Fail3 — 
Sub/Unifyo - O/Unifyo, 

where O/Unify means rule 24. 
If both ASM1 and ASM2 were deterministic models, the commuting diagram 

that is represented in Figure 11 could be easily partitioned by the invariant property 
showing the equivalence of the two models. But due to the indeterministic nature, 
the partitioning should be possible for every linearisation of valid runs of ASM1 
and ASM2. Therefore, from these strings the general properties must be extracted 
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Figure 12: Straight (a) and inverted (b) pairs of states. Inverted pairs (c) is 
impossible. 

omitting the special features of the certain runs. In such a way a general partitioning 
will be resulted that can be treated as " building blocks" from which all the possible 
runs can be constructed. If the commutativity for these subdiagrams holds, it holds 
for all the diagrams that can be constructed of them. (Note that all possible runs 
can be constructed but not every possible construction is a valid run.) 

First it must be shown that from the initial states a related pair of states can 
be reached. According to the definition, the first Sub event of ASM1 will be related 
to the Do/Unify event of ASM2 (Figure 13.a.) Hence there are two possibilities: 
the subgraph connected to the first And node can produce a solution (Figure 13.b) 
or not (Figure 13.c). Hence at the beginning either a+b or a+c subdiagrams are 
fixed sequences. The terminating subdiagram d is the only possible terminating 
sequence and it needs some explanation. 

Between the last Fail and the terminating states there cannot be anything except 
Sub/Unify and Fail2 events. Otherwise, if there were any Sub or Succ events, they 
would be preceded by their terminating Fail event that is impossible. In such a way 
the only terminating sequence is subdiagram d in Figure 13. It also shows that the 
final state can be reached from a related pair of states (namely a Fail-Fail pair). 

In ASM1 the relevant states where the counters are modified in any way are 
represented by Sub and Fail events. Between them any number (including 0) of 
irrelevant Succ, Fail2 and Sub/Unify event can occur without affecting the sum of 
counters. In case of ASM2 those events are Succ (except at the last And node in 
the ring) and Fail with any number of Sub and Sub/Unify (and Succ at the last 
And node) between them. 

In the straight case there are no relevant states between related states (Figure 
12.a). It means that at the related states both si and s2 are incremented or 
decremented. Therefore, subdiagrams e, f, h, i in Figure 13 can be easily and 
systematically created. However, it is possible that states are inverted, there are 
relevant states that are not related, i.e. the next relevant state increments the 
counter in an ASM and decrements in the other (Figure 12.b, c). It is even possible 
that there are multiple inverted states. An example for inversion can be seen in 
bold in Figure 11. 
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What does it make evident that after an inversion a related pair of states will 
be reached in Figure 12.b? 

Remark 1. Let a(X) and cr(Y) be related states. The number of Fail events in 
X and Y are equal. (Proof: starting from subdiagram a) in Figure 13 and applying 
straight subdiagrams, the statement holds. Reaching the first inverted pair, the 
appearance of a Fail event in one ASM guarantees the existence of another Fail 
event in the other ASM model, because the number of Fail events in the entire runs 
are equal.) 

Remark 2. Succ events are in relation with Sub events that happened later in 
the run. It is simply a consequence of the fact that Sub events are caused by Succ 
events (except the first one.) 

From these two statements it is true that for the Fail event of ASM1 in Figure 
12.b there is another Fail event in ASM2 and for Succ in ASM2 there must be a 
Sub in ASM1. In such a way the relation holds for the Sub-Fail pair. 

On the other hand, the another combination of inverted states is not possible 
(Figure 12.c). The second Sub event in ASM1 would have been related (through 
an inversion) to a Succ event that occurs later which is in contradiction with the 
causality expressed in Remark 2. 

As it can be seen, both the start-up and the final stage are of given, fixed types 
of subdiagrams. There are 3 types of related pairs: Sub-Succ, Fail-Fail and Sub-
Fail. From these 9 other types of subdiagrams can be created. In such a way all 
the valid runs can be constructed from these 13 types of subdiagrams. 

For a single diagram, e.g. e) in Figure 13 Schellhorn's theorem states the fol-
lowing. Starting ASM1 from Sub and ASM2 from a related Succ, for every possible 
successor state in ASM1 there must be a successor state in ASM2 so that the in-
variant holds again. This is covered by diagrams e), h) and k) in Figure 13. There 
can be any number of intermediate states, reaching the next Sub/Succ, Fail/Fail 
or Sub/Fail pair, the relation is true. Hence the proof can be continued starting 
from the new related states. It is easy to trace the correctness from the very begin-
ning to the end. The commutativity of subdiagrams shows the commutativity of 
all diagrams constructed of them that means the equivalence of ASM1 and ASM2 
according to our definition. 

In this step it was assumed that there are no other Unify-And rings in the 
subgraphs connected to the And nodes in scope. Since it was shown that the 
Unify-And ring of the modified model behaves like the one in the original Logicflow 
and hence, from the parent node's point of view there is no difference between 
a Unit and a Unify node, the equivalence proven here is true even if there are 
Unify-And rings in the subgraphs attached to the And nodes. 

6 Conclusion 
In this paper a small part of the design of a distributed.parallel Prolog execution 
model was introduced where Abstract State Machines were applied in the course 
of development. The outcome of the paper is not a description of a parallel model 
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ready to be implemented, rather a profitable case study where the application of 
ASM is demonstrated in different situations. 

First, an existing model, Logicflow has been described by ASM1. It is a precise 
and succinct way of specification that helps to discover the features of the system. 
Then, this model can be derived to another one by successive minor modifications 
that are realised by a series of submodels represented by ASMs. In this paper a 
single step of such modification was introduced. The ASM notation makes clear 
the scope and the extension of changes. 

ASMs are not just a method for description and analysis but provide a frame-
work where models can be compared and their equivalence or inequivalence can be 
precisely defined and proven. In the current context the equivalence of ASM1 and 
ASM2 has been proven. The proof method was able to tackle with the distributed 
and indeterministic nature of dataflow based parallel Prolog models. In summary, 
experience showed the endowment and efficiency of ASMs (and the related tech-
niques) in system design. 
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Appendix A: ASM code for the Logicflow model 
(ASM1) 
1 A DO token on the request.in arc of a Unit node 
if node(loc(t)) = UNIT ft type(t) = DO 
then 

extend STREAM by s with 
stream{parent(loc(t)),returnport{loc{t)),colour{t)) := s 
seq i = l . .n 

let 6 = mgu(act(t),head(nth(predicate(loc(t)),i))) 
if 0! = nil then 

extend TOKEN by t' with 
col our (t') := colour (i) 
/oc(i') := parent(loc(t)) 
substit') := subst(t)@e 
type(t') := SUCC 
instream(s,t') :— true 

endextend 
endif 

endseq 
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loc{t) := parent{loc(t)) 
type(t) := FAIL 
subst(t) := {} 
instream(s,t) := true 

endextend 
where n = length,(predicate(loc(t))) 

2 A SUB token on the request.in arc of an And node 

2a First appearance 

i f node(loc{t)) = AND k type(t) = SUB & mode(loc(t)) = create 
then 

extend NODE by n with . 
parent(n) := loc(t) 
child(loc{t)) := n 

; mode(n) := create 
returnport(n) := reply.in 
predicate(n) := procdef(goal(loc(t))) 
loc(t) := n 

endextend ' " 
. i f counter(loc{t), colour(t)) = undef 

then 
counter(loc(t), colour(t)) := 1 

e l s e 
counter(loc(t), colour(t)) := counteT(loc(t), colour(t)) + 1 

endif 
i f andstate(loc(t), colour(t)) = undef 

then 
andstate(loc(t), colour(t)) := open 

endif 
instream(stream{loc(t),request.in,colour{t)),t) := false 
mode(loc(t)) := active 
act(t) := goal(loc(t)) 
type(t) := DO 

6.1 2b Further appearances 

i f node(loc{t)) = AND & type(t) = SUB & mode(loc(t)) = active 
then 

if counter(loc(t),colour(t)) = undef 
then 

counter(loc(t), colour(t)) 1 
e l s e 

counter (ioc(i), colour (t)) := counter (I oc(t), colour (t)) + 1 
endif 
instream(stream(loc(t), request.in, colour[t)),t) := false 
loc{t) := child(loc(t)) 
act(t) := goal(loc(t)) 
type(t) DO 
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3 A FAIL2 token on the request.in arc of an And node 
i f node{loc(t)) = AND 

& type(t) = FAIL2 
k mode(loc(t)) = active 
& card(stream(loc(t), request.in, colour(t))) = 1 
then 

instream(stream(loc(t), request.in, colour(t)),t) := false 
and^tate(loc(t), colour(t)) := closed 
if counter (loc(t), colour(t)) = 0 I counter(loc{t), colour(t)) = undej 

then 
instream(stream(next(loc(t)), request.in, colour(t)),t) := true 
loc(t) := next(loc(t)) 

e l se 
TOKEN(t) := false 

endif 

4 A SUCC token on the reply.in arc of an And node 
if node(loc(t)) = AND & type(t) = SUCC St mode(loc(t)) = active 
then 

if node{next(loc(t))) = UNIFY 
then l e t port = reply.in 
e l se l e t port = request.in 

endif 
if stream(next(loc(t)), reply.in, colour(t)) = undef 
then 

extend STREAM by s with 
stream(next(loc(t)),port,colour(t)) := s 
instream(s, t) := true 

endextend 
e l se 

instream(stream.(next(loc(t)), port, colour(t)),t) := true 
endif 
instream(stream(loc(t), request.in, colour(t)),t) false 
loc(t) := next(loc(t)) 
type{t) := SUB 

5 A FAIL token on the reply.in arc of an And node when it is 
open 
i f node(loc(t)) = AND 

fc type(t) = FAIL 
& mode(loc(t)) = active 
& card(stream(loc(t), reply.in, colour(t))) = 1 
& and^tate{loc{t), colour(t)) = open 
then 

counter(loc(t), colour(t)) := counter(loc(t), colour(i)) — 1 
TOKEN(t) := false 

6 A FAIL token on the reply.in arc of an And node when it is 
closed 
i f node{loc(t)) = AND 
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& type(t) = FAIL 
& mode{loc(t)) = active 
& card(stream(loc(t), reply.in, colour(t)))) = 1 
ft andstate(loc(t), colour(t)) = closed 
then 

if node{next{loc{t))) = UNIFY 
then l e t port = reply.in 
e l se l e t port — request.in 
endif 
counter(loc(t), colour(t)) := counter{loc{t),colour(t)) — 1 
instream(stream(loc(t), reply.in, colour(t)),t) := false 
if counter(loc(t), colour(t)) = 0 
then 

instream(stream.(next(loc(t)),port,colour(t)),t) := true 
loc(t) := next(loc(t)) 

endif 

7 A DO token on the request.in arc of a Unify node 

7a First appearance 
if node{loc{t)) = UNIFY ft type(t) = DO ft mode(loc{t)) = create 
then 

l e t 0 = mgu(act(t), head(predicate(loc(t)))) 
if 0! = nil 
then 

extend COLOUR by neuicolour with 
colour (t) := new colour 
colourjcontext(loc(t),newcolour) := colour(t) 
substjcontext(loc(t),newcolour) := subst(t)@9 
extend NODE by n i , n 2 , . . . n m with 

node{ni) := AND 
mode(ni) := create 
first(loc(t)) := Tii 
prev(ni) := loc(t) 
last(loc(t)) := n m 
next(nm) := loc(t) 
prev(nk) — njfc_i 
next(nk) := nfc+1 

goaHjii) •.= nth(body(predicate(loc(t))), i) 
loc(t) — m 
type(t) := SUB 
subst(t) := 0 
extend STREAM by s with 

stream(first(loc(t)), request.in,newcolour) := s 
extend TOKEN by t' with 

ioc(t') 7ii 
type(t') := FAIL2 
colour(t') newcolour 
instream(s,t') := true 

endextend 
instream(s, t) := true 

endextend 
endextend 
mode{loc(t)) := active 

endextend 
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e l se 
extend STREAM by s with 

stream(parent(loc(t)),returnport(loc(t)), colour(t)) := s 
type(t) := FAIL 
instream(s,t) := true 
loc(t) := parent(loc(t)) 

endextend 
endif 
where m = length(body(predicate(loc(t)))) ,1 <i <m, 1 < k < m 

7b Further appearances 
if node(loc(t)) = UNIFY & type(t) = DO & mode(loc{t)) = active 
then 

l e t 9 = mgu(act(t), head(predicate(loc(t)))) 
i f 0! = nil 
then 

extend COLOUR by newcolour with 
colour(t) := newcolour 
colourucontext(loc(t), newcolour) colour(t) 
substjcontext{loc(t), newcolour) := subst(t)@8 
extend STREAM by s with 

stream(first(loc(t)), request.in, newcolour) := s 
loc(t) := first(loc(t)) 
type(t) := SUB 
instream(s, t) := true 
subst{t) := 6 
extend TOKEN by t' with 

Zoc(t') := first(loc(t)) 
type(t') := FAIL2 
colour{t!) := newcolour 
instream(s,t') := true 

endextend 
endextend 

endextend 
e l se 

extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)),colour(t)) := s 
type{t) •.= FAIL 
instream(s,t) := true 
loc(t) := parent(loc(t)) 

endextend 
endif 

8 A SUB token on the reply.in arc of a Unify node 
i f node(loc(t)) = UNIFY & type{t) = SUB 
then 

instream(stream(loc(t),reply.in,colour(t)),t) false 
colour(t) := savedjcolour 
subst(t) := saved-subst@subst(t) 
type(t) := SUCC 
loc(t) := parent(loc(t)) 
if stream(parent(loc(t)),returnport(loc(t)), savedjcolour) = undef 
then 
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extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)),saved-colour) := s 
instream(s, t) true 

endextend 
else 

instream(stream(parent(loc(t)), returnport(loc(t)), saved-colour), t) := true 
endif 

where saved-Colour = colour -context(loc(t), colour(t)), saved-subst = subst-context(loc(t), colour(t)) 

9 A FAIL token on the reply.in arc of a Unify node 
if node(loc(t)) = UNIFY & type(t) = FAIL2 & car d(stream(loc(t),reply .in, colour (t))) = 1 
then 

l e t saved-colour = colour -context(loc(t), colour(t)) 
instream(stream(loc(t), reply.in, colour{t)),t) := false 
colour(t) := saved-colour 
type(t) := FAIL 
loc(t) := parent(loc(t)) 
if stream(parent(loc(t)),returnport(loc(t)), saved-colour) = undef 
then 

extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)), saved-colour) := s 
instream(s,t) := true 

endextend 
else 

instream(stream(parent(loc(t)), returnport{loc(t)), saved-colour), t) := true 
endif 

10 A DO token on the request.in arc of an Or node 

10a First appearance 
if node(loc(t)) = OR & type(t) = DO & mode(loc(t)) = create 
then 

extend COLOUR by newcolour with 
colour(t) := newcolour 
colour-context(loc(t), newcolour) := colour(t) 
extend NODE by П\,П2 with 

childl(loc(t)) := n\ 
child2(loc(t)) n2 
parent{n\) •.= loc(t) 
parent(n2) •= loc(t) 
returnport(ni) := reply.inl 
returnport(n2) := reply.in2 
if к = 1 
then 

predicate{n\) := car(predicate(loc{t))) 
predicate(n2) ••= cdr(predicate(loc(t))) 

e lse 
predicate(ni) := [ciausei, ...clause^-i] 
predicate(n2) := [clause^, ...clausen] 

endif 
extend TOKEN by t' with 

ioc(t') : = n 2 
type(t') DO 
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colour(t') := newcolour 
subst(t') := subst(t) 

endextend 
loc(t) := ni 

endextend 
endextend 
mode(loc(t)) := active 
where clause^ = nth(predicate(loc(t)),i), k = min{i\body(clausei) ^ nil} 

10b Further appearances 
i f node(loc(t)) = OR k type(t) = DO & mode(loc(t)) = active 
then 

extend COLOUR by newcolour with 
colour(t) := newcolour 
colour jcontext(loc(t), newcolour) — colour(t) 
extend TOKEN by t' with 

loc(t') := child2(loc(t)) 
type(t') := DO 
colour (V )•,—newcolour 
subst(t') := subst(t) 

endextend 
loc(t) := childl(loc(t)) 

endextend 
endextend 

11 A SUCC token on any of the reply.in arcs of an Or node 
i f node{loc[t)) = OR k type(t) = SUCC 
then 

l e t saved-colour = colour jcontext(loc(t), colour(t)) 
colour(t) := savedjcolour 
loc(t) := parent(loc(t)) 
i f instream(stream(loct(t),reply.inl,colour(t),t) = true 
then 

instTeam.(streaTn(loct(t),reply.inl,colour(t),t) := false 
e l s e 

instream(stream(loct(t),reply.in2,colour(t),t) := false 
endif 
i f stream{parent(loc(t)),returnport(loc(t)), savedjcolour) = undef 
then 

extend STREAM by s with 
stream(parent(loc(t)), returnport(loc(t)), savedjcolour) := s 
instream(s,t) := true 

endextend 
e l s e 

instream(stream(parent(loct(t)), returnport(loc(t)),saved-colour),t) ~ true 
endif 

12 A FAIL token on any of the reply.in arcs of an Or node 

12a The Or node is in waitl state 
i f node(loc(t)) = OR 
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ft type{t) = FAIL 
ft or_siate(/oc(t), colour(t)) = waitl 
ft (3s £ STREAM : instream(s,t) k card(s) = 1) 
then 

or^tate(loc(t), colour(t)) := wait2 
TOKEN(t) •.= false 

' STREAM(s) := false 

12b The Or node is in wait2 state 
if node(loc(t)) = OR 
ft type{t) = FAIL 
ft or^tate(loc(t), colour(t)) —wait2 
ft (3z 6 STREAM :instream(z,t) ft card(z) = 1) 
then 

l e t saved^colour = colour jcontext(loc(t), colour(t)) 
if stream(parent(loc(t)), returnport(loc(t)), savedjcolour) = undef 
then 

extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)),saveducolour) := s 
instream(s,t) := true 

endextend 
e l se 

instream(stream(parent(loct(t)), returnport(loc(t)), savedjcolour), t) := true 
endif 
STREAM(z) := /aise 
colour(t) := savedjcolour 
loc(t) := parent(loc(t)) 

13 A DO token on the request.in arc of an undefined node 
(child nodes of And and Or nodes are undefined) 
if node(loc(t)) = undef ft type(t) = DO 
then 

if length(predicate(loc(t)) = 1 
thenif body(clausei) ^ nil 

then 
node(loc(t)) := UNIFY 

e l se 
node(loc(t)) := C/N/T 

endif 
e l s e i f Vi : body(clausei) — nil 

then 
node(loc(t)) := UNIT 

e l se 
node(loc(t)) := OR 

endif 
endif 
where clausei = nth(predicate(loc(t)),i) 

14 A DO token on a Query node 
if node(loc(t)) = QUERY ft type{t) = DO 
then 
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extend NODE by n with 
child(loc(t)) := n 
parent(n) := loc(t) 
predicate{n) := procdef (act(t)) 
mode(n) := create 
returnport{n) := reply.in 
loc(t) := n 

endextend 

15 A SUCC token on a Query node 
i f node(loc(t)) = QUERY & type(t) = SUCC 
then 

TOKEN(t) := false 

16 A FAIL token on a Query node 
if node(loc(t)) = QUERY & type{t) = FAIL St card(stream(loc(t), reply.in, colour{t))) = 1 
then 

TOKEN(t) := false 
STREAM(stream(loc(t), reply, in, colour(t))) := false 

Appendix B: ASM code for the modified Logicfiow 
model (ASM2) 
ancestor : NODE NODE 
counter : NODE x COLOUR INT 

17 A DO token on the request.in arc of a Unit node 
Same as Rule 1 

18 A SUB token on the request.in arc of an And or Last_And 
node 
6.2 18a First appearance 
i f node(loc(t)) = (AND\LAST.AND) fc type(t) = SUB ft mode(loc(t)) = create 
then 

extend NODE by n with 
parent(n) := loc{t) 
child(loc(t)) := n 
mode(n) := create 
returnport(n) := reply.in 
predicate(n) := procdef(goal(loc(t))) 
loc(t) := n 

endextend 
instTeam(stream(loc(t),request.in,colour(t)),t) := false 
mode(loc(t)) := active 
act(t) := goal(loc(t)) 
type(t) -.-DO 
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18b Further appearances 
if node(loc(t)) - (AN D\LAST-AN D) ft type(t) = SUB ft mode(loc(t)) = active 
then 

instream(stream(loc(t),request.in,colour(t)),t) := false 
loc(t) := child(loc{t)) 
act(t) := goal(loc(t)) 
type(t) := DO 

19 A SUCC token on the reply.in arc of an And node 
if node[loc(t)) = AND ft type(t) = SUCC ft mode(loc(t)) = active 
then 

if stream(next(loc(t)), request.in,colour(t)) = undef 
then 

extend STREAM by s with 
stream(next(loc(t)),request.in,colour(t)) :—'s 
instream(s, t) := true 

endextend 
e l se 

instream(stream(next(loc(t)),request.in,colour(t)),t) := true 
endif 
instream(stream(loc(t), reply.in, colour(t)),t) := false 
counter(ancestor(loc(t), colour(t)) := counter(ancestor(loc(t),colour(t)) + 1 
loc(t) := next(loc(t)) 
type(t) := SUB 

20 A SUCC token on the reply.in arc of a Last_And node 
if node(loc(t)) = LAST .AND ft type(t) = SUCC ft mode(loc(t)) = active 
then 

if stream.(next(loc(t)),reply.in,colour(t)) = undef 
then 

extend STREAM by s with 
stream(next(loc(t)), reply.in, colour(t)) := s 
instream(s, t) := true 

endextend 
e l se 

instream(stream(next(loc(t)),reply.in,colour(t)),t) := true 
endif 
instream(stream(loc(t), reply, in, colour(t)),t) := false 
loc(t) := next(loc{t)) 
type(t) := SUB 

21 A FAIL token on the reply.in arc of an And or Last_And 
node 
if node(loc(t)) = (AND\LAST-AND) 

ft type(t) = FAIL 
ft mode(loc(t)) = active 
ft car d(stream(loc(t), reply .in, colour (i))) = 1 
then • 

counter (ancestor (loc(t)), colour ( f ) ) := counter (ancestor {loc{t)), colour {t)) — 1 
TOKEN(t) := false 
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22 A DO token on the request.in arc of a Unify node 

22a First appearance 
if node{loc(t)) = UNIFY & type(t) = DO fc mode(loc(t)) = create 
then 

l e t 6 = mgu(act(t), head(predicate(loc{t)))) 
if 9\ = nil 
then 

extend COLOUR by newcolour with 
colour(t) := newcolour 
colour-context(loc(t), newcolour) :— colour(t) 
substxontext(loc(t), newcolour) := subst(t)@0 
counter(loc(t), newcolour) := 1 
extend NODE by n i , n 2 , . . . n m with 

if i < m then 
node{ni) := AND 

else 
node(n{) := LAST^AND 

endif 
mode(ni) create 
ancestor(n{) := loc(t) 
first(loc(t)) := ni 
prev{n\) loc(t) 
last(loc(t)) := nm 
next(nm) ¡oc(t) 
prev(nk) := nk-i 
next(nk) := 7ifc+i 
goal(ni) :— nth{body{predicate{loc(t))), i) 
loc(t) — n 1 
type(t) := SUB 
subst(t) := 9 
extend STREAM by s with 

stream(first(loc(t)),request.in,newcolour) := s 
instream(s,t) := t rue 

endextend 
endextend 
mode(loc(t)) := active 

endextend 
e lse 

extend STREAM by s with 
stream(parent(loc(t)),returnport(loc(t)), colour) := s 
typeit) := FAIL 
instream(s, t) := irue 
loc(t) := parent{loc{t)) 

endextend 
endif 

where m = length(body(predicate(loc(t)))), 1 <i< m , 1 < k < m 

22b Further appearances 
i f node(loc(t)) = UNIFY ft type(i) = DO k mode{loc{t)) = active 
then 

l e t 0 = mgu(act(t), head{predicate{loc{t)))) 
if 0! = nil 
then 
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extend COLOUR by netvcolour v i t h 
colour (t) := newcolour 
colour (loc(t), new colour) := colour (t) 
sub st{loc{t), new colour) := subst(t)@8 
counter (loc(t), new colour) := 1 
extend STREAM by s with 

stream(first(loc(t)),request.in,newcolour) := s 
loc(t) := first(loc(t)) 
type(t) := SUB 
instream(s,t) := true 
subst(t) := 0 

endextend 
endextend 

e l s e 
extend STREAM by s with 

stream(parent(loc(t)),returnport(loc(t)), colour) := s 
type(t) := FAIL 
instream(s,t) := true 
loc(t) := parent(loc(t)) 

endextend 
endif 

23 A SUB token on the reply.in arc of a Unify node 
Same as Rule 8 

24 The counter of a Unify node is 0 
if (3Node , Colour : Node 6 NODE, Colour 6 COLOUR) : node(Node) = UNIFY 

& counter(Node, Colour) = 0 
& card(stream(Node, reply.in, Colour)) = 0 
then 

l e t saved-colour = colour jcontext(Node, Colour) 
extend TOKEN by t ' with 

colour(t') := saved-colour 
type(t') := FAIL 
loc(t') := parent(Node) 
i f stream(parent(Node),returnport(Node),saved-Colour) = undef 
then 

extend STREAM by s with 
stream(parent(Node),returnport(Node), savedjcolour) := s 
instream(s,t') := true 

endextend 
e l s e 

instream(stream(parent(N ode), returnport(Node), saved jcolour), t') := true 
endif 

endextend 

25 A DO token on the request.in arc of an Or node 

25a First appearance 
Same as Rule 10a 
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25b Further appearances 
Same as Rule 10b 

26 A SUCC token on any of the reply.in arcs of an Or node 
Same as Rule 11 

27 A FAIL token on any of the reply.in arcs of an Or node 

27a The Or node is in waitl state 
Same as Rule 12a 

27b The Or node is in wait2 state 
Same as Rule 12b 

28 A DO token on the request.in arc of an undefined node 
(child nodes of And and Or nodes are undefined) 
Same as Rule 13 

29 A DO token on a Query node 
Same as Rule 14 

30 A SUCC token on a Query node 
Same as Rule 15 

31 A FAIL token on a Query node 
Same as Rule 16 


