
Acta Cybernetica 15 (2002) 481-487. 

Human Cognition of Complex Thought Patterns 

Harry M. Sneed* 

Abstract 

How much is our perception of the present determined by our experience 
of the past? 

1 Theories on Human Cognition 
The Scottish philosopher David Hume was one of the first to point out tha t our 
ability to distinguish between cause and effect is not all due to ah objective per-
ception of reality, but rather to build in notions of what we expect [1]. Hume, 
being a sceptic, wanted to take issue with the empiricist John Locke who believed 
humans could actually perceive objective reality and therefore determine causality 
[2]. Hume disputed this assertion, claiming instead that- causality has no objective 
basis. It is not derived from our empirical perception. Instead it comes from rea-
soning and reasoning is subjective. In other words, Hume questioned our ability 
to see things as they are, an opinion later picked up and expounded upon by the 
modern philosopher John Kemeny in respect to modern science [3]. 

Immanuel Kant, the great German philosopher assumed Humes position and 
brought it to a logical conclusion in his famous essay on "Die Kritik der reinen 
Vernunft". According to Kant the so called natural order of the universe only exist 
in our minds. The human mind is the source of all order. Kant states "Since it is 
our thought which forms the order of reality, one can not say that our perception 
is determined by the objects we perceive, rather one must say that the objects we 
perceive are determined by our notion of how they should be " [4] This criticism of 
our objective reasoning power was in direct contradiction to the prevailing philoso-
phy of the times as propagated by the French philosophers based on the teachings 
of Descartes and others [5]. 

The basic thesis of Kant is tha t there is no such thing as an objective perception 
of reality. All perception is formed to fit patterns of thought which exist a priori 
in our minds. Thus, all perception is by nature subjective. Assuming this to be 
true, the next question is where do these thought patterns come from, how do they 
originate? 

"Institut fur Wirtschaftsinformatik, University of Regensburg, Germany, 
e-mail: Harry.Sneed®T-Online.de 

481 



482 Harry M. Sneed 

Kant answered this question on a religious ethical basis, claiming that mankind 
is endowed with God given thought patterns which allow him to perceive reality as 
it should be. Kant believed in natural law and in a universal reasoning power which 
allows us to distinguish between right and wrong. Today, biologists would claim 
that this reasoning power is inherited and behaviouralists would claim that it is 
formed by our environment. Most likely it is influenced by both the experiences of 
our ancestors as well as by our own early experiences, as pointed out by Bertrand 
Russel in his famous essay on the limits of human knowledge [6]. 

A good example of priori thought patterns is natural language. In describing 
reality man must assign what he perceives to words he knows. If there is no 
word, then the object may exist, but it can not be expressed. We only distinguish 
objects if we are able to assign them to a pre existing notion and pre existing 
notions are provided by our language. Therefore, our language determines how we 
perceive things. In case of simple objects, all languages axe similar. There is usually 
a word which one attaches to the object. However, in case of complex objects, 
languages can differ extremely in how they assign meaning to these objects. They 
use different thought schemes, which makes it so difficult to translate such concepts. 
[7] It is here where environment comes into play. The development of natural 
languages is influenced by environment in which they evolve. It is evident that the 
language of Eskimos will differ from the language of natives of a tropical island. It 
is also evident that the language of an agricultural community where people are 
working in the fields will differ from the language of an industrial community where 
people are working in factories. Children inherit word and notions, i.e. thought 
patterns from their parents. As they grow up and have their own experiences 
these inherited thought patterns are enhanced or even overridden by new context 
dependent thought patterns formed by another environment. However, one is never 
free of the original thought patterns one inherits. They are part of our apriori 
cognitive process and influence everything we perceive. This is really what Kant 
refers to as our God given power of reasoning [8]. 

A modern advocate of Kant's theory of cognition is Paul Feyerabend. However, 
Feyerabend does not believe in any God given power of reasoning not even in 
a natural law. Instead, Feyerabend claims that natural laws are the result of 
human conventions which have evolved over time, i.e. something like Locke's social 
contract. Feyerabend vehemently objects to anything like an objective perception 
of reality. Nothing can really be proven, since all proofs are based on conventions 
and all conventions are man made. Thus, all cognition is relative to the prevailing 
mode of perception. There is no such thing as a single universal view of complex 
subject matter. Even the language of mathematics is a matter of convention. 
There are no self-evident truths, as demonstrated by the assertion disproved by the 
German mathematician Goldberg. Thus, not even mathematical propositions are 
self-evident, let aione computing algorithms or programming language constructs. 
The Feyerabend school is referred to as "Constructivism" [9]. 

The fact that cognition is a result of predetermined thought patterns does not 
necessarily imply that there is no influence of our impressions upon our cognitive 



Human Cognition of Complex Thought Patterns 483 

abilities. The theory of evolution also applies to human perception. Our minds 
are conditioned by the environment in which we live. The ability of animals to 
perceive their environment is the result of a long evolutionary process and it differs 
from species to species. Therefore, bats and cats have totally different mental 
representations of their environment just as do men and dogs. Dogs have evolved 
to react to what they hear and smell. Men have evolved to react to what they 
think they see. In this respect our minds have been conditioned to see things as we 
would believe them to be. Plato compares human cognition with the perception 
of shadows on a wall. It is not reality we perceive, but only images of this reality 
which we have been conditioned to recognise [10]. 

2 Programmer Cognition of complex Programs 
Now what might the theory of human cognition and the school of "constructivism" 
have to do with program comprehension? The answer to this question should be 
obvious. Programs are representations of complex thought patterns. These pat-
terns are determined to a great extend by the languages or methods in which they 
are expressed. In fact it would be impossible for them to be expressed without 
a language. On the other hand, they can only be comprehended by minds condi-
tioned to discern thought patterns in that language. Just as different animal species 
have developed different means of perceiving their environment, different program-
mer species have been conditioned to comprehend programs in different ways [11]. 
A COBOL Programmer will perceive a problem in a different mode than will a C 
Programmer. Ergo, there is no such thing as a universal approach to program com-
prehension as long as the minds of programmers are being conditioned by different 
languages and different methods. The thought patterns of programmers come from 
their experience in programming, especially from their early experiences. This is 
where the universities have a tremendous responsibility in implanting cognition 
patterns similar to the responsibility of mothers in instilling behavioural patterns. 

A good example of this is the transition from procedurally oriented to object-
oriented programs and designs. A programmer who has been conditioned to think 
in procedural terms will not been able to comprehend an object oriented program 
or program design no matter how well it is documented. The programmer will 
not be able to relate the constructs he perceives with the apriori constructs in his 
mind. The same of course will hold in the inverse direction. Minds conditioned to 
comprehend object-oriented constructs will have difficulty in comprehending pro-
cedural ones. This is why it is so difficult to get young college trained programmers 
to maintain old programs. They simply cannot relate to the concepts contained 
therein. These problems have been documented by Fayad and others [12]. 

Unfortunately it is still believed by many, especially by persons in management, 
that if programs are documented well enough, they should be comprehensible to 
anyone including themselves. This is one of the many myths introduced to the 
world by great simplifiers like James Martin who also advocated that programming 
can be done without programmers [13]. 



484 Harry M. Sneed 

A complex Assembler program can only be comprehended by a person familiar 
with the semantics of Assembler. Even if the program is converted to a higher 
level language, it will still retain its Assembler semantics. It simply becomes an 
Assembler program with a COBOL or C syntax and it will take someone condi-
tioned to think as an Assembler programmer to fully comprehend it. No amount 
of diagramming techniques will ever suffice to make the program comprehensible 
to anyone without pre existing Assembler thought patterns [14]. 

The same applies to higher level languages. A program written in a 4GL lan-
guage such as NATURAL reflects the thought patterns determined by that language 
with constructs such as map driven and database driven loops, constructs which 
do not exist in standard 3GL languages. Thus, they can only be comprehended by 
minds conditioned to think in these terms, i.e. minds which have been exposed to 
4GL languages. 

The deluge of diverse programming languages and design methods has led to a 
highly fragmented programming community, where hardly anyone is able to com-
prehend the work of others. The tower of Babel is being reconstructed in the 
Software community. Documentation and annotation is of no help unless of course 
the subject is familiar with the solution domain. Even if one is familiar with 
the problem, he will still have difficulties comprehending the solution if he is not 
familiar with the language and method used, e.g. one conditioned to think pro-
cedurally will not be able to comprehend an object-oriented solution. Ergo, as 
long as languages and solution approaches are continually evolving, the program 
comprehension problem will increase regardless of the quality of documentation. 

The contention here is that documentation, whether it be static or dynamic, 
tabular or graphic, is part of the solution domain. Therefore, it cannot really pro-
mote comprehension tinless the subject has preconditioned thought patterns which 
can order and interpret the information contained in the documentation. Human 
minds must be conditioned to think in terms of the methods used to solve prob-
lems in order to understand the problem solutions. Thus program comprehension 
is really a matter of thought patterns installed in the minds of programmers and 
analysts by training and experience. These thought patterns are shaped by the 
languages and methods to which they have been exposed. 

Von Mayrhauser states that "program comprehension uses existing knowledge 
to acquire new knowledge that ultimately meets the goals of a code cognition task. 
This process references both existing and newly acquired knowledge to build a 
mental model of the software under consideration" [15]. The contention here is 
that the existing knowledge, i.e. the apriori mental concepts, must be well above 50 
% of the total knowledge required to understand complex systems. The maintainer 
must already have expectations as to how a system.should be constructed and how 
it should behave in a given context. That implies that he has been exposed to both 
the solution and the problem domain. 

The emphasis here is on exposure. Anyone who has ever dealt with programming 
knows that it is never learned passively by just talking or reading about it. Thought 
patterns can only be installed by actively applying them. This applies to natural 



Human Cognition of Complex Thought Patterns 485 

languages as well as to programming languages. Thus, complex programs can only 
be comprehended by persons who have experienced the method and language with 
which the programs have been implemented. Documentation may help to locate 
and understand the role of program artifacts, but only if they are in the domain to 
which the subject has been conditioned to.comprehend [16]. 

3 Conclusions to be drawn 
What conclusions can be derived from these observations. The first is that we in 
the program comprehension community should not over estimate the role of docu-
mentation. It can be helpful, but it is no substitute for preconditioned knowledge. 
An experienced C + + programmer will always understand a complex C + + program 
better than an experienced COBOL programmer no matter how much documenta-
tion the latter has. Documentation can not make up for the lack of apriori thought 
patterns. 

Another conclusion is that one will not understand what a program is doing 
unless one is familiar with the subject area. He may understand the solution but 
he will never understand the problem. Also here documentation is of limited help, 
since documentation assumes that the reader is familiar with thé terminology and 
frames of reference used to describe that subject area. Thus someone unfamiliar 
with aerodynamics but experienced in C + + may understand how a C + + program 
for calculating the affects of wind currents is functioning but will never understand 
why. This lack of knowledge will be detrimental if he is called upon to change the 
algorithm. 

The final conclusion is that there is no substitute for apriori knowledge when 
it comes to comprehending programs. The maintenance programmer should be fa-
miliar with both the problem area and the solution domain, in order to be effective. 
This required degree of familiarity can only be obtained by conditioning the mind 
through practical experience, i.e. to exposure to the subject area. 

4 Actions to be taken 
This being the case, there are several ways in which industry can improve the 
software maintenance situation. The first is through standardisation. There should 
be less languages and less methods and these should be accessible to a wider range 
of programmers. Proprietary languages should be strictly avoided if at all possible. 
The productivity gain made by using Oracle Forms or Power Builder in development 
is later negated by the problems of maintaining or reusing such solutions. UML -
Unified Modelling Language - from the OMG is certainly a step in the right direction 
just as is CORBA-IDL and ANSI C + + . 

The second way is by retaining experienced personnel in software maintenance. 
Persons with knowledge of both the subject area and the solution space are invalu-
able assets to the organisation. They should be cultivated and valued. If they must 



486 Harry M. Sneed 

move on to other work, there should be a long transition period for them to pass 
their work knowledge on to their successors. 

A third way is by getting greater user involvement in the software maintenance 
process. If the programmers are not so familiar with the application domain, it is 
essential that they work together with an end user who has this knowledge and can 
pass it on. This also means that the user representative is able to help in locating 
errors and in assessing the impact of changes. 

A fourth way is through continuity. By continually changing their languages 
and design methods user organisations only disrupt the learning process. An or-
ganisation should be extremely careful in the selection of a design method and 
programming language. Once it has committed itself, it should then stick to that 
language and design approach as long as possible so as to profit from existing 
thought patterns. Software Managers must learn like Odysseus to close their ears 
to the wails of the modern day sirens - the Software Case vendors - who would 
have them believe that all of their problems could be solved by introducing a new 
development technology. 

A fifth and final way is through training. New maintenance programmers should 
be trained both in the subject area and in the languages and methods used by the 
organisation. This training should go beyond formal presentation. The subjects 
must have the opportunity to condition their minds through participation in exer-
cises designed to install thought patterns. This may be expensive and time con-
suming, but it will be well worth it in improving maintenance productivity. Older 
programmers should even be given a year of absence to condition their minds to a 
new technology such as distributed objects. 

.In summary, the point presented in this paper is that program comprehension 
is determined more by mind conditioning than by any means of documentation 
or annotation. Program documentation and annotation is helpful, but only if the 
thought patterns represented in the documentation are familiar to the subjects. 
Knowledge may be extracted from software artifacts, but is will only be accessible 
to persons conditioned to recognise that kind of knowledge. Thus, the thought 
patterns used in the programs must exist apriori in the minds of the programmers 
in order for them to associate the two, i.e. what they think they see with what they 
think they know. This type of pattern watching is the essence of human cognition 
and program comprehension is after all just another cognition problem. 

References 
[1] Hume,D.: "An Enquiry Concerning Human Understanding" Open Court Pub-

lishing, La Salle, J II., 1946 

[2] Locke, J. : "An Essay Concerning Human Understanding" Aldine Press Letch-
worth G.B., 1961 

[3] Kemeny, J. : A Philosopher Looks at Science", van Nostrand, Princeton, 1959 



Human Cognition of Complex Thought Patterns 487 

[4] Kant, I. : "Die Kritik der reinen Vernunft" in Geschichte der Philosophie, Ed. 
Hans String, Bertelsmann Verlag, Stuttgart, 1962 

[5] Descartes, R. : "Discours de la methode" in History of Materialism, Ed. F. 
Lange, Simon and Schuster, New York, 1961 

[6] Rüssel, B. : "Human Knowledge - its Scope and Limits", Simon and Schuster, 
New York, 1948 

[7] Stevenson, C.L. : "Ethics and Human Language" Yale University Press, New 
Haren, 1944 

[8] Kant, I. : "Metaphysik der Sitten" in Werke von I. Kant, Ed.E. Cassirer, 
Herter Verlag, Berlin, 1912 

[9] Feyerabend, P. : "Against Method-outline of an anarchistic theory of Knowl-
edge" Atlantic Highlands, Princeton, 1974 

[10] Platon, G. : "Der Staat", Artemis Verlag, Zrich, 1960 

[11] Dijkstra, E . : "On the Cruelty of really Teaching Computer Science" in Comm. 
of ACM. Vol. 32, No.12 Dec. 1989 

[12] Fayad, M./Tsai, W./Fulghim, L. : "Transition to Object-oriented Software 
Development", Comm. of ACM. Vol.39, No. 2, Feb. 1996 

[13] Martin, J. : "Application Development without Programmers", Prentice-Hall, 
Englewood cliffs, 1981 

[14] Martin, J. : "Diagramming Standards for Analysts and Programmers", 
Prentice-Hall, Englewood cliffs, 1987 

[15] von Mayrhausen, A./Vans, M. : "Program Comprehension during Software 
Maintenance and Evolution" in IEEE Computer, Aug. 1995 

[16] van der Meulen, M./Hage,J. :"Human Factors in Software Maintenance" Re-
port of ESPRIT Project MACS, Maastricht, 1992 


