
Acta Cybernetica 15 (2002) 509-528. 

XML Semantics Extension 

Ferenc Havasi* 

Abstract 
Nowadays one of the best standards for storing structured data is XML. 

The key idea behind our paper is based on a relationship between XML 
documents and attribute grammars. This parallel makes it possible to apply 
techniques of attribute grammars (semantics rules) to the XML environment. 

We present a new method for extending XML. After a background dis-
cussion we formally introduce a way of defining real XML attributes using 
semantics rules. This allows us to incorporate semantics rules into XML files 
in such a way that it does not violate the original XML specification and is 
suitable for compressing using learning. After learning an associated seman-
tics rule file preserves the relationship between attributes. 

Introduction 
These days one of the most popular standards in use for storing structured infor-
mation is XML. More and more applications are able to export data in an XML 
format, more databases are stored in XML, and XML processing techniques are 
becoming more generic. If this trend continues, XML will eventually be present 
in almost every part of the informatics sphere. Because of this the new research 
results related to XML should prove important the future. 

The main idea behind our paper is based on a connection between XML docu-
ments and attr ibute grammars. The analogy makes it possible to apply techniques 
of attr ibute grammar (semantics rules) to the XML environment. The first notion 
of including semantics to XML was published in [9], but here we shall introduce a 
new approach. We create a format which makes it possible for us to define a real 
XML attribute via semantics rules. The new set of semantics rules then become an 
organic part of XML documents and do not violate the original XML specification. 

In the first section we review the fundamentals of XML and attr ibute gram-
mars. Next, we throw light on the relationship between them, show how to extend 
XML documents with semantics rules, and then introduce a new (SRML) format 
to describe it. In Section 3 we discuss new S-SRML and L-SRML descriptions, 
which are counterparts of S-attributed and L-attributed grammars. The next sec-
tion deals with the learning of SRML descriptions. In Section 5 we discuss the 

'Research Group of Artificial Intelligence, Hungarian Academy of Sciences, Aradi vértanuk 
tere 1., H-6720 Szeged, Hungary, +36 62 544145, email: havasifflrgai.hu 

509 



510 Ferenc Havasi 

implementation, and present experimental results. Finally we briefly elaborate on 
related and future work, and give a summary of our conclusions. 

1 Background 
To facilitate an understanding of this paper we first give a brief overview of the 
necessary fundamentals such as XML technology, formal and at tr ibute grammars. 
Rather than give a detailed account of the above, we will just present the most 
important parts using an example. 

1.1 XML 
In this section we provide a brief introduction to the basics of XML [2], which we 
will make use of later. 

1.1.1 D o c u m e n t : 

An XML document has an html like text-based format. Its components are called 
elements. An element always begins with a start-tag and ends with an end-tag. 
Take, for instance, 

<section>A long text</section> 

An element may contain other elements and/or text or it may be empty. With the 
start-tag of an element it is possible to define attributes, for example, 

<section title="Introduction">A long text</section> 

In Figure 1 we have a more complicated example using a numeric expression. 

1.1.2 D T D : 

This is a file containing a meta language. Its description makes it possible for us to 
define the structure of an XML document. This language is called DTD. We can 
specify the content of an element, which other element or text can be inserted, and 
in which order. In our case the following two meta-tags are the most important: 

¡element: This tag specifies a regular expression1. It defines the element and the 
order it assumes. 

lattlist: This tag specifies the type and allowed values of the attributes of an 
element. 

Figure 2 shows one such DTD file: 

1. The element num can contain only text (#PCDATA), and has a required 
(^REQUIRED) at t r ibute called type, its value being real or integer-valued. 

1 It is possible to transform this expression to EBNF format [9]. 



XML Semantjes Extension 511 

<expr> • 

<multexpr op="mul" type="real"> 

<expr type="int"> 

<num type="int">3</num> 

</expr> 

<expr type="real"> 

<addexpr op="add" type="real"> 

<expr type="real"> 

<num type="real">2.5</num> 

</expr> 

<expr type="int"> 

<num type=" int" >,4</mun> 

</expr> 

</addexpr> 

</expr> 

</multexpr> 

</expr> 

Figure 1: A possible XML form of the expression 3*(2.5+4). 

<!ELEMENT num (#PCDATA) > 

<!ATTLIST num type ( real | int ) »REQUIRED 
> 

<!ELEMENT expr ( num I multexpr I addexpr ) > 

<!ATTLIST expr type ( r e a l | int ) »IMPLIED 
> 

<!ELEMENT multexpr ( expr , expr ) > 

<!ATTLIST multexpr op ( mul I div ) »REQUIRED 

type ( real I int ) »IMPLIED 

> 
<!ELEMENT addexpr ( expr , expr ) > 

<!ATTLIST addexpr op ( add I sub ) »REQUIRED 

type ( real I int ) »IMPLIED 

> 

Figure 2: The DTD of the corresponding XML file for the previous figure. 

2. The expr element contains a num or a multexpr or an addexpr element (| mark 
means or), and there is an optional (#IMPLIED) at tr ibute called type. 

3. The elements multexpr and addexpr must contain two expr elements, and 
have two attributes: a necessary one called op and an optional one called 
type. 



512 Ferenc Havasi 

1.2 Parsing XML 
Basically there are two kinds of interfaces of XML parsers: 

S A X interface: This interface is very simple: all information is passed from the 
parser to the application via function calls. For example if there is a start-tag 
the parser generates a startTag(element_name)-like call. 

D O M tree interface: Using this method the parser builds a tree called a DOM 
tree. Every element and attr ibute is represented as a vertex. The root node 
of the tree is the root element of the document. The edges represent incorpo-
rated dependences. A corresponding tree of the example in Figure 1 is shown 
in Figure 3. 

Figure 3: DOM tree of example in Figure 1. 

1.3 Formal languages and derivation trees 
A general way of specifying a syntax is by using a formal grammar. A formal 
grammar is a G=(N,T,S,P) set, where N is the set of the nonterminal symbols, 
T is the one of the terminal symbols, S is the start-symbol and P is a set of 
transformation rules. Take, for example, 

N = { expr, multexpr, addexpr, num } 

S = expr 

T = { "ADD" , "MUL" , NUM > 

P : 

expr -> num | multexpr I addexpr 

addexpr -> expr "ADD" expr I expr "SUB" expr 



XML Semantjes Extension 513 

multexpr 

mim 

expr 

NUM 

"MUL" expr I expr "DIV" expr 

The grammar in it specifies the format of simple numeric expressions. At the 
left side of every rule there is only one nonterminal, so it is a context free (CF) 
grammar. The derivation process starts at expr. It may be a simple number 
(num.), a multiplicative or an additive expression (multexpr or addexpr). The num 
nonterminal is a simple number token (NUM), whereas the multiplicative expression 
contains two expressions and a MUL or DIV token is placed between them. The 
additive expression also consists of two expressions with an ADD or SUB token 
between them. 

For any given input word a derivation tree can be drawn. In the root of a 
derivation tree there is the start-symbol (expr), and below nonterminals there are 
substituted expressions. If we concatenate the leaves we get the input word. 

If this input is 3 MUL (2.5 ADD 4), the derivation tree looks like the following: 

expr 

multexpr 

expr MUL expr 

num 

expr ADD expr 

num 

2.5 

num 

1.4 Attr ibute grammars 
An attr ibute grammar [7] contains a CF grammar, and 

attr ibutes: We can assign attributes to nonterminals. For example, by assigning 
the x attribute to the S nonterminal we get the S.x attribute. In general there 
are two types of attributes: inherited and synthesized. 

semant ics rules: We can assign semantics rules for each" formal rule. The se-
mantics rules define a formula for computing the value of an attribute. For 
example: 

S -> A B 

S.x = A.x + B.x 



514 Ferenc Havasi 

In this semantics rule the attribute x of S can be calculated from the attribute 
x of A and B. 

If we supplement the derivation tree with the values of attribute occurrences we 
get an attributed derivation tree. All attribute occurrences are calculated once 
and only once. Take, for instance the attributed derivation tree of the expression 
example: 

expr type=real 

type=real 

type=real 

addexprtype=real 

ADD exPr 
type=int 

num 

2.5 

type=real type=int 
num 

2 XML semantics 
2.1 Relationship between attribute grammars and XML 
Figure 3 shows the DOM tree of the previous XML document example. If we 
recall the attributed derivation tree, we will recognize that an XML document can 
be viewed as an attributed derivation tree. Hence we expect to see the following 
analogy: 

Attribute Grammars XML 
nonterminal 
formal rules 

attribute specification 
semantic functions 

element 
element specification in DTD 
attribute specification in DTD ??? 

There is one key concept in AG that has no counterpart in the XML environment: 
semantic functions. This is a very important concept in AG and there are a lot of 
techniques based on it. It might be useful to apply these techniques to the XML 
environment. 



XML Semantjes Extension 515 

In an XML document the values of all attribute occurrences are stored in a 
direct form. If we were able to define semantics rules for XML attributes it would 
be sufficient to store these rules once and, making use of them, the concrete value 
of the attributes could be calculated. Then it would not be necessary to store them 
in the document. 

So our idea is to define XML attributes using semantics rules. Our definition of 
semantics rules will be an organic part of XML document. 

2.2 Complete/Reduce 
We will define only IMPLIED XML attributes with semantics rules. In an XML 
document this kind of attribute is not required, so the DTD of the dopument 
validates the XML document whether or not these attributes are defined. 

Now let us consider the following figure: 

Figure 4: The complete and reduce methods. 

In this diagram we notice that the complete method creates a complete XML 
document from a reduced one. All nondefined IMPLIED attributes that have a 
semantics rule will be calculated using this rule. 

In contrast, the reduce method does the opposite of the previous one. The input 
of it is a complete XML document, along with some semantics rules. All IMPLIED 
attributes which have a correct2 semantics rule will be deleted from the document, 
so the output will be a reduced version of the input XML document. 

2.3 Specifying semantics rules 
We define a meta language called SRML (Semantics Rule Meta Language) to de-
scribe semantics rules, which has an XML based format. The corresponding DTD 
of this language is the following: 

2 Note that we can use rules even if they are not absolutely correct rules. If the result of the 
semantics rule differs from the actual attribute value it will be kept. So the reduce method is 
really the inverse of the complete method. 



516 Ferenc Havasi 

<!ELEMENT semantic-rules ( rules-for* ) > 

<!ELEMENT rules-for ( rule* ) > 

<!ATTLIST rules-for root NMTOKEN #REQUIRED> 

<!ELEMENT rule ( expr ) > 

<!ATTLIST rule element NMTOKEN #REQUIRED 

attrib NMTOKEN #REQUIRED 

> 
<!ELEMENT expr ( binary-op I attribute I data I 

no-data I if-element I if-expr | 

if-all I if-any I current-attribute | 

position I external-function ) > 

<!ELEMENT binary-op ( expr, expr) > 

<!ATTLIST binary-op op (add | sub I mul | div | exp I equal I 

not-equal I less I greater | or I 

xor | and | nor | contains | concat | 

begins-with I ends-with ) #REQUIRED 

> 
<!ELEMENT attribute EMPTY> 

<¡ATTLIST attribute element NMTOKEN "srml:this" 

num NMTOKEN "0" 

from ( begin | current | end ) "current" 

attrib NMTOKEN #REQUIRED 

<!ELEMENT if-element ( expr, expr)> 

<!ATTLIST if-element from ( begin I end ) "begin"> 

<! ELEMENT position EMPTY> 

<!ATTLIST position element NMTOKEN 

from .( begin | end ) 

"srml: all" 

"begin" 

<!ELEMENT if-all ( expr, expr, expr)> <!— cond, if, else —> 

<!ATTLIST if-all element NMTOKEN "srml:all" 

attrib NMTOKEN "srml:all" 

> 
<!ELEMENT if-any ( expr, expr, expr)> <!— cond, if, else —> 

<!ATTLIST if-any element NMTOKEN "srml:all" 

attrib NMTOKEN "srml:all" 

<!ELEMENT current-attribute EMPTY> 

<!ELEMENT if-expr (expr , expr , expr ) > 

<!— condition , if, else —> 

<!ELEMENT data (#PCDATA) > 

<!ELEMENT no-data EMPTY> 

<!ELEMENT extern-function (param)*> 

<!ATTLIST extern-function name NMTOKEN #REQUIRED> 

<!ELEMENT param (expr)> 



XML Semantjes Extension 517 

A DTD can be viewed as a formal grammar [9]: elements will be nonterminals 
and the descriptions of the element will be formal rules. We would like to define 
some semantics rules for these formal rules. 

The meaning of the elements of SRML are: 

semantics-rules : This is the root element of SRML. 

rules-for : This element gathers together the semantics rules of a formal rule. In 
a DTD there is only one working description of an element so the formal rule 
is determined by that element, which is on the left side of the formal rule. 
This is the root attribute of the rules-for element. 

rule : This element describes a semantics rule. We have to specify which attribute 
of which element we are going to define in this semantics rule and its value 
in expr. If the value of the element is " srml.root" then we define an attribute 
of the root element. 

expr : An expression can be a binary-expression (binary-op), an attribute, a di-
rectly defined value (data or no-data), a conditional expression (if-expr,if-all 
or if-any), a syntax-condition (if-element and position) or an external func-
tion call (extern-function). ' 

if-element : In a DTD element description one can specify a regular expression 
(with maybe +,*,?, . . . marks). This element provides us with the possibility 
of testing the actual form of the input. It contains two expr elements. As 
an expression the value of the if-element is true or false depending on the 
following: the name of the first exprth child (element) in the actual rule 
equals to the value of the second expr. The from attribute can specify which 
direction to operate. In other words it is possible to take an index from the 
end of the level without actually knowing how many children the parent has. 

binary-op : This element is an ordinary binary expression. 

position : Returns a 0 based index which identifies the current element's position 
taking into consideration the element attribute. Possible directions are as 
follows : begin, end. It is possible to use the srmhall identifier, in which case 
the index returned will be the actual overall position in the DOM tree level. 
If an element name is specified then the returned index will be n where the 
element has n — 1 predecessors or successors with the same element name. 

attribute : The attribute is determined by its element, attrib, from and num 
attributes. In the actual rule this is the numth element where the name 
matches the value of the element (if it is " srml:any" it can be anything, 
if it is " srmhroot" then it is an attribute of the root) from the beginning, 
the current element or the ending. If the attribute does not exist it will be 
handled as no-data. 



518 Ferenc Havasi 

i f-expr : This is an ordinary conditional expression. The first expression is the 
condition and depends on whether if it is true (not zero) or not. The value 
of the if-expr will be the value of the second or third expression. 

if-all : This is an iterated version of the previous if-expr expression. The first 
expr is computed for all matching attributes (each selected by element and 
attribute, which can take a concrete value or " srml:all)". We can refer to the 
value of this at tr ibute using the element current-attribute. If the condition 
(first expr) is true for all matching attributes, the value of it is the value of 
the second expr otherwise it is the third expr. 

if-any : This is almost the same as the previous one except that it is sufficient 
tha t the condition be true for at least one matching attribute. 

current-attr ibute : This is the loop variable of if-any and if-all elements. 

data : This element has no attr ibute and usually contains a number or a string. 

no-data : This element means that this attribute cannot be computed - it is often 
present in some branches of conditional expressions. 

extern- funct ion : This element makes an external function call handled by the 
implementation. It makes SRML more easily extendable. 

param : This describes a parameter of an external-function. 

A valid SRML description must be consistent. This means there mustn ' t be 
any attr ibute occurrences that are defined more than once. 

2.4 An SRML example 
Here are some interesting portions of the SRML description from the previous 
numeric expression example. 

<semantic-rules> 

<rules-for root="expr"> 

Crule element="srml:root" attrib="type"> 

<expr> 

<attribute element="srml:any" num=l attrib="type" from="begin"/> 

</expr> 

</rule> 

</rules-for> 

<rules-for root="addexpr"> 

Crule element="srml:root" attrib="type"> 

<expr> 

<if-expr> 

<expr> 

<binary-op op=or> 



XML Semantjes Extension 519 

<expr> 

<binary-op op=equal> 

<expr> 

<attribute element="expr" num=l attrib="type" 

from="begin"/> 

</expr> 

<expr><data>real</data></expr> 

</binary-op> 

</expr> 

<expr> 

<binary-op op=equal> 

<expr> 

<attribute element="expr" num=2 attrib="type" 

from="begin"/> 

</expr> 

<expr><data>real</data></expr> 

</binary-op> 

</expr> 

</binary-op> 

</expr> 

<expr><data>real</data></expr> 

<exprxdata>int</data></expr> 

</if-expr> 

</expr> 

</rule> 

</rules-for> 

</semantic-rules> 

The set of rules for multexpr is very similar to that for addexpr. 

3 Attribute grammar types - SRML description 
types 

The attr ibute grammars can be classified according to the evaluation method em-
ployed [1]. There are S-attributed grammars, L-attributed grammars, OAG at-
tributed [6] grammars and so on. 

By analogy we could introduce S-, L-, ASE-, . . . SRML descriptions. Here we 
only define S- and L-SRML descriptions. 

Actually, there are only two relevant factors which we need to know in the 
SRML description to decide whether it is an S/L-SRML description. The first one 
is the set of defined attributes associated with the rules, while the second is the set 
of referenced attributes in these definitions. 



520 Ferenc Havasi 

3.1 The S-SRML description 
S attributed grammars are the simplest attribute grammars: they have only synthe-
sized attributes. As in XML, in SRML we do not distinguish between synthesized 
attributes and inherited ones. In this environment we can define an S-SRML de-
scription, in analogy with S-attributed grammars: 

definable attributes : In each rule we can only define the attributes of the 
(srml:)root nonterminal (the element which is on the left side), because syn-
thesized attributes are only definable in a rule if the root element contains 
them. 

usable attributes in definitions : All attributes in this rule presume that there 
are no circular dependencies. 

3.2 The L-SRML description 
An L-attributed grammar can contain synthesized and inherited attributes, but 
the dependencies between them must be evaluated in one left-to-right pass. In the 
SRML environment it means the following: 

definable attributes : All available attribute occurrences bearing consistency 
(see in 2.3) in mind. 

usable attributes in definitions : We use one left-to-right pass to evaluate the 
attributes. In a rule environment we first calculate the attributes of the 
children nonterminals, and after the attributes of the root nonterminal in 
a suitable order. An SRML description is called an L-SRML description if 
there is a suitable order in attributes which carries out the following: if there 
is an attribute reference in the definition of an attribute then the value of 
referenced attribute has already been calculated. 
To be more precise: 

• In the definition of an attribute of the root there can be attributes of any 
children, or those attributes of the root that have been defined earlier in 
the SRML description. 

• In the definition of an attribute of a child there can be attributes of any 
children which lie to the left side of it, or are those attributes of the 
same child that have been defined earlier in the SRML description. 

4 Learning of the SRML description 
A relatively large XML document usually contains lots of redundancies. This means 
that many attributes can be computed from other attributes. However, in many 
cases the computation rules are not trivial and the recognition of these may require 



XML Semantjes Extension 521 

machine learning approaches [8]. The learning of the SEML description means de-
tecting relationships between XML attributes. These relationships can be described 
in an SRML format. This method has two obvious applications, namely: 

compressing: After learning an SRML description we can then the apply the 
reduce algorithm. This reduced version of the document is usually much 
smaller than the original one. From it and the SRML description the original 
document is recoverable, so it can be regarded as a form of data compression3. 

Figure 5: Using the learning of an SRML description to (de)compress XML files. 

understanding: The SRML description provides us with hitherto unknown cor-
respondences. When we store a database in XML document format we can 
find correspondences in it as well. 

The learning method can be fault-tolerant. In this case the detected corre-
spondences may be better (the data may have measuring errors). If we only 
need estimated values and the (XML) database is very large, we can use the 
short SRML description. 

In [5] and [12] a machine learning method was introduced to infer the seman-
tic rules of attribute grammars. There is a close relationship between attribute 
grammars and SRML, hence this learning approach can be used to produce SRML 
description from XML documents. 

5 Implementation 

The structure of the implementation is given in Figure 6. The implementation of 
a complete version of this tool is under way (in a JAVA and DOM environment). 
Here we present results using a special version of this tool. This tool's task is to 
read CPPML files and reduce them. 

3Of course after this method we can use other ordinary compression methods like those men-
tioned in [10]. 



522 Ferenc Havasi 

complete 
XML document 

I 

( SR SRML tool 
reduced 

XML document 

I 
I 

Figure 6: The structure of the implementation. 

5.1 CPPML 
CPPML,(C+-1- Markup Language) [3] is a markup language for describing the 
structure of programs written in C + + . This may be generated using a Columbus 
reverse engineering tool [4] for any C + + program. 

Here is a brief extract of a C + + program: 

class _giiard : public std::map<std::string, _guard_info> 
{ 

public: . 

void registerConstruction(const type_info & ti) 

{ (*this) [ti.name()]'++ ; 
> 

void registerDestruction(const type_info & ti) 

{ (*this) [ti.nameO]— ; 
> 

void dumplnstances(const char * file, bool bAppend) 
{ 

fstream f(file, bAppend ? ios_base::out Iios_base::app 

ios_base: : out) ; 

iterator i ; 

for(i=begin(); i!=end(); i++) 

f « i->second._count « " - " << i->second._max_count 

<< " : " << i->first<< endl ; 

f << endl; 

} > ; 



XML Semantjes Extension 49 

} ; 
The CPPML representation of the above could be like the following: 

<class id="id20097" name="_guard" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" line="71" 

end-line="90" visibility="global" abstract="no" 

defined="yes" template="no" template-instance="no" 

class-type="class"> 

<function id="id20102" name="registerConstruction" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

line="75" end-line="76" visibility="public" const="no" 

virtual="no" pure-virtual="no" kind="normal" 

body-path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

body-line="75" body-end-line="76"> 

<return-type>void</return-type> 

<parameter id="id20106" name="ti" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

line="74" end-line="74" const="yes"> 

<type>type_info&amp;</type> 

</parameter> 

</function> 

<function id="id20109" name="registerDestruction" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

line="79" end-line="80" visibility="public" const="no" 

virtual="no" pure-virtual="no" kind="normal" 

body-path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

body-line="79" body-end-line="80"> 

<return-type>void</return-type> 

<parameter id="id20113" name="ti" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

line="78" end-line="78" const="yes"> 

<type>type_info&amp;</type> 

</parameter> 

</function> 

<function id="id20116" name="dumplnstances" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

line="83" end-line="89" visibility="public" const="no" 

virtual="no" pure-virtual="no" kind="normal" 

body-path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

body-line="83" body-end-line="89"> 

<return-type>void</return-type> 

<paxameter id="id20120" name="file" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

line="82" end-line="82" const="yes"> 



524 Ferenc Havasi 

<type>char*</type> 

</parameter> 

<parameter id="id20122" name="bAppend" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

line="82" end-line="82" const="no"> 

<type>bool</type> 

</parameter> 

</function> 

</class> 

5.2 A real example: reducing of CPPML 
As you might have noticed in a CPPML description many attributes can be calcu-
lated or estimated using other attributes. 

For example, the kind of a function is a constructor if the name of the function 
is equal to the name of the class. We can describe it in SRML form: 

<rules-for root="class"> 

<rule element="function" attrib="kind"> 

<expr> 

<if-expr> 

<expr> 

<binary-op op="equal"> 

<expr> 

<attribute attrib="name"/> 

</expr> 

<expr> 

<attribute attrib="name" element="srml:root"/> 

</expr> 

</binaxy-op> 

</expr> 

<expr> 

<data>constructor</data> 

</expr> 

<expr> 

</expr> 

</if-expr> 

</expr> 

"</rule> 

</rules-for> 

Actually we can not only describe valid rules here, but also make estimations 
(the reduce method will only delete the matching attributes). Let us look at some 
types of estimations: 



XML Semantjes Extension 525 

1. the declaration of a function or variable starts and ends on the same line. 

2. the implementation of the functions of a class are usually in the same file. 

3. the parameters of a function are also in the same file, perhaps on the same 
line. 

Here are some parts of the corresponding SRML description: 

<rules-for root="function"> 

<rule element="parameter" attrib="end-line"> 

<expr> 

<attribute attrib="line"/> 

</expr> 

</rule> 

Crule element="parameter" attrib="line"> 

<expr> 

<attribute attrib="line" num="-l"/> 

</expr> 

</rule> 

<rule element="parameter" attrib="path"> 

<expr> 

<attribute attrib="path" num="-l"/> 

</expr> 

</rule> 

</rules-for> 

The full description of our SRML description for CPPML can be found at the 
following internet site: http: / / x m l . rgai. hu/ . 
Let us illustrate the previous part of the CPPML description using the procedure 
reduce: 

<class id="id20097" name="_guard" 

path="D:\CAN_Test\SymbolTable\Input\CANGuard.h" 

line="71" end-line="90" visibility="global" abstract="no" 

defined="yes" template="no" template-instance="no" 

class-type="class"> 

<function id="id20102" name="registerConstruction" 

line="75" end-line="76" visibility="public" const="no" 

virtual="no" pure-virtual="no" kind="normal" 

body-path="D:\CAN_Test\SymbolTable\Input\CANGuard.h"> 

<return-type>void</return-type> 

<parameter id="id20106" name="ti" line="74" const="yes" 

ellipsis="no"> 

<type>type_info&amp;</type> 

</parameter> 

</function> 

<function id="id20109" name="registerDestruction" line="79" 



526 Ferenc Havasi 

end-line="80" const="no" virtual="no" pure-virtual="no" 

kind="normal" visibility="global"> 

<return-type>void</return-type> 

<parameter id="id20113" name="ti" line="78" const="yes" 

ellipsis="no"> 

<type>type_info&amp;</type> 

</parameter> 

</function> 

<function id="id20116" name="dumplnstances" line="83" 

end-line="89" const="no" virtual="no" pure-virtual="no" 

kind="normal". visibility="global"> 

<return-type>void</return-type> 

<parameter id="id20120" name="file" line="82" const="yes" 

ellipsis="no"> 

<type>char*</type> 

</parameter> 

<parameter id="id20122" name="bAppend" const="no" 

ellipsis="no"> 

<type>bool</type> 

</parameter> 

</function> 

</class> 

5.3 Experimental results 
The results of applying the reduce method are listed in Figure 7. The column "Orig 
Size" is the size of the original CPPML file, and "New Size" is its size after the 
reduction. The original CPPML file contained "Attribute" at tr ibute items, and we 
eliminated "Deleted" ones because it was possible to compute their values using 
the rules. In the "Not matched" column there is the at t r ibute number which is 
computable from the rules but its value is not correct. Here we do not delete these 
attributes. 

Prog Name Orig Size New Size Attributes Deleted Not matched 
AppWiz 3589076 2192377 115684 43451 10151 

jikes 2257728 1745720 93045 26100 9964 
leda 11673855 9023687 405916 88322 26032 

Figure 7: Results of CPPML reduction. 

The size of this CPPML SRML description is less than 4 kilobytes, and from 
the reduced version of the document and this SRML description the original one 
can be recovered, so the reduce method is a form of data compression. After this 
"compression" we can apply some ordinary compression technique. The density of 



XML Semantjes Extension 527 

information in the reduced document is higher than in the original document, so it 
would be interesting to examine the compression ratio using a zip-like compression. 

We compressed the original and the reduced document using gzip, and the results 
are shown in Figure 8. The difference between the compression ratio using gzip on 
the original and the reduced documents is about 1%. 

Prog Name Orig Size Gziped Orig New Size Gzipped New 
orig ratio new ratio 

AppWiz 3589076 244659 0.068 2192377 167749 0.076 
jikes 2257728 177223 0.078 1745720 140681 0.081 
leda 11673855 821074 0.070 9023687 709922 0.079 

Figure 8: Results of compressing the original and the reduced CPPML description. 

6 Note on a related study 
The first uotion of adding semantics to XML was published in [9]. After a brief 
introduction to XML that paper provides a method for transforming the ilement 
description of DTD into EBNF formal rule description. 

Afterwards it introduces its own SRD (Semantics Rule Definition) composed of 
two parts: the first one describes the semantics attributes4, while the second one 
gives a description of how to compute them. SRD is also XML-based. 

The main difference between the approach outlined in this article and ours is 
that we provide semantics rules not just for newly defined attributes but also for 
real XML ones. Our approach makes the SRML description an organic part of 
XML documents. As the defined attributes are IMPLIED, either the complete or 
the reduced document is validated by the original DTD. This kind o;' ?emantics 
definition could offer a useful extension for XML techniques. 

Our SRML description also differs from the SRD description in that article. In 
SRD the attribute definition of elements with a + or * sign is defined in a different 
way from the ordinary attributes definition and can only reference the attributes 
of the previous and subsequent element. The references in our SRML description 
are more generic, and all expressions are XML-based. 

7 Conclusion and Future Work 
Our method defines correspondences between XML attributes and stores ¡them in 
an SRML format. It is not necessary to store attributes which are computable 
with the SRML description - this is the reduced version of the XML document. 
The complete document is recoverable from the "educed version and the SRML 
description. 

4These are newly defined attributes which differ from those in XML files. 



528 Ferenc Havasi 

We can use learning to create an SRML description from an XML document. It 
can supply us with a description of valid correspondences between attributes. We 
can utilize it to compress the document because the sum total of the given SRML 
description and the reduced version of the document is generally much smaller than 
that for the entire document. 

We are developing a tool which will be able to handle a general SRML descrip-
tion and use both the complete and reduce methods. 

The theory of learning SRML descriptions is an interesting and open area of 
research. In future experiments we plan to extend our tool with various learning 
modules so as learn SRML descriptions from any XML documents, keeping on eye 
on the size of the reduced version of documents. 

References 
[1] H. Alblas, Introduction to attribute grammars, Springer Verlag, In Proc. of 

SAGA (H. Alblas and B.Melichar eds.) LNCS 545 (1991), 1-16. 

[2] T. Bray, J. Paoli, and C. Sperberg-MacQueen, Extendable markup language, 
1998. 

[3] R. Ferenc, CPPML - An Implementation of the Columbus Schema for C++. 

[4] R. Ferenc, F. Magyar, A. Beszédes, A. Kiss, and M. Tarkiainen, Tool for 
reverse engineering large object oriented software, SPLST (2001), 16-27. 

[5] T. Gyimóthy and T. Horváth, Learning semantic functions of attribute gram-
mars, Nordic Journal of Computing 4 (1997), no. 3, 287-302. 

[6] U. Kastens, Oredered attribute grammars, Acta Informática 13 (1980), 229-
256. 

[7] D. E. Knuth, Semantics of context-free languages, vol. 2, pp. 127-145, Springer-
Verlag, New York, 1968. 

[8] T. Mitchell, Machine learning, McGraw-Hill, 1997. 

[9] G. Psaila and S. Crespi-Reghizzi, Adding Semantics to XML, Second Workshop 
on Attribute Grammars and their Applications, WAGA'99 (Amsterdam, The 
Netherlands) (D. Parigot and M. Mernik, eds.), INRIA rocquencourt, 1999, 
pp. 113-132. 

[10] XML Compression Tools, http://sourceforge.net/projects/xmlppm/. 

[11] XML parsers, XML-sofware. http://www.xmlsoftware.com/parsers.html. 

[12] Sz. Zvada and T. Gyimóthy, Using decision trees to infer semantics functions 
of attribute grammars, Acta Cybernetica 15 (2001), 279-304. 

http://sourceforge.net/projects/xmlppm/
http://www.xmlsoftware.com/parsers.html

