
Acta Cybernetica 15 (2002) 547-565. 

A distributed program synthesizer* 

Vahur Kotkas* 

Abstract 

This paper describes an architecture of a distributed synthesizer for 
automated program construction. The objective of the synthesizer is to 
realize the ideas of Structural Synthesis of Programs in a computer network: 
The synthesizer handles structural specifications stored into Java classes as 
meta-interfaces and works on a network using CORBA technology. 

Keywords: SSP, Java, Automated Synthesis of Programs, Meta-Interfaces. 

1 Introduction 
In the last decade Object Oriented programming (OOP) languages (like CH—1-, Java, 
C # ) became dominant providers of software reusability. However, the reuse effi-
ciency greatly depends on developers' experience in programming and their knowl-
edge on existing libraries. 

There are several development environments available that assist in the selection 
of a proper libraries, but none of them generate fully operational code - this remains 
the developers' task. Searching for the proper library usually means reading the 
descriptions of the many libraries available. This is time consuming activity and 
hence software developers still create new libraries without knowing that some other 
software, having the same functionality, already exists. This indicates that there is 
a need for automated handling of software libraries. 

One way to automate the software design process is to use Structural Synthesis 
of Programs (SSP) [1]. SSP is a technique of deductive synthesis of programs based 
on automatic proof search in intuitionistic propositional calculus. This technique 
uses classes of our problem domain extended with declarative specifications to gen-
erate new software automatically. The resulting software is correct (does not need 
any further checking) with respect to the correctness of the classes it is based on. 
The solving complexity is hidden from the end-user into the system. 

The idea of using SSP for automated program generation is not new. Already 
in seventies a Priz family of programming languages was developed in the Institute 
of Cybernetics, that allow engineers to solve their tasks using a very high-level 

"This work was partially funded by Estonian Innovation Foundation under the contract No. 
0kl/00. • . 

tlnstitute of Cybernetics at Tallinn Technical University, Estonia, email: vahurScs.ioc'.ee 

567 



568 Vahur Kotkas 

programming language. A similar approach has justified itself quite well in the 
Amphion system [2]. 

Because of its relative robustness and flexibility the Java programming language 
was chosen for the SSP addition in the current study, but in principle this kind of 
additions can be provided to other OOP languages as well. 

This paper introduces architecture of a software synthesizer that performs au-
tomated program construction and describes briefly the declarative specification 
language of the meta-interfaces added to Java classes that enable SSP. 

This work is inspired from the work done in Institute of Cybernetics, Estonia 
during several decades and related to the work of Sven Lammerman [3] from Royal 
Institute of Technology, Sweden. 

2 Method 
Java classes and objects do not contain sufficient information on their components 
relations and internal functionality to perform automated program synthesis. Auto-
mated program construction is not possible without tha t information. To overcome 
the problem, we introduce a meta-interface as an extension to a Java class, where 
the needed information is provided. 

A meta-interface is a declarative specification that: 

1. introduces a collection of interface variables of a class 

2. defines, which interface variables are computable from others under which 
conditions. 

For instance, having a class Triangle and a method findSideSirie for comput-
ing size of a side according to the theorem of sine: = ¿¿„(b) =

 sin(C) > we can 

introduce interface variables for all angles (A,B,C) and sides (a,b,c) of the triangle 
and declare a meta-interface tha t will specify how one can use the method. This 
meta-interface looks as follows: 

var a,b,c,A,B,C : aiiy; 
rel a,A,B -> b {findSideSine} 
rel b,B,C -> c {findSideSine} 

Here the findSideSine is an implementation of the theorem of sine in Java in 
the form of a method. The meta-interface just declares how the method can be 
used. 

The usage of a meta-interface is as follows: one writes a request for synthesis of 
a method with input x i , . . . , xm, wherem > 0, and output y, whereas xi, ... ,xm,y 
are variables specified in the meta-interface, for instance in the form of the formula 
x i & . . . &ixm —> y and lets a prover to prove that this formula is derivable from the 
specification of the meta-interface, i.e. that the goal of synthesis of the requested 
method is achievable. 



A distributed program synthesizer 569 

The prover returns a sequence of rules applied in the proof, which from the 
synthesis point of view represents an algorithm. This algorithm is used to generate 
the program code that solve the initial problem. Thus the algorithm is a co-result 
(or side-effect) of the proving process [4]. 

The aim of introducing meta-interfaces is obvious: to make classes as compo-
nents more flexible. Indeed, if a meta-interface specifies n variables, then one can 
write 22" requests for synthesis of which only a few may appear provable. How-
ever, we still get considerable flexibility compared to conventional interface of Java, 
without the need to implement all the possible programs that one may need during 
the runtime. 

A meta-interface can be written for two different purposes. First, it may specify 
possible usage of the class, i.e. its derivable methods, like in our example. Second, 
it can be used as a specification showing how some application software should be 
composed from components that are supplied with meta-interfaces. In the latter 
case, a new class can be built completely from the specification of its meta-interface. 
For this purpose, specifying equality rules between some components of the new 
class may be needed. 

3 Declarative specification language 
The meta-interface, that contains declarative specifications, may be introduced to 
the classes . . . 

1. as an addition to the programming language 

2. in the form of comments 

3. as an array of strings. 

The first solution, for adding the specifications, changes the Java programming 
language. The declarative specifications become native components of classes and 
are compiled with the rest of program. This avoids recompilations during the 
runtime. On the other hand, as we changed the language we need also a new Java 
compiler and virtual machine and we can not use our techniques with other versions 
of Java. 

Introducing the structural specifications into a Java class as specifically format-
ted comments allows to use existing Java compilers and interpreters, as we do not 
need to modify existing programs — we just add some more comments to them. 
However, to find the specifications from the source files during the runtime is time 
consuming. Even more, this approach is not usable when source files may change 
or are not accessible during the runtime. 

We have chosen the third possibility — to introduce the structural specifica-
tions into the class as an array of strings. In this case we can always access the 
specifications during the runtime as they are present in the component of the object 
in use. The Java programming language remains unchanged, hence, the solution 



570 Vahur Kotkas 

works with all versions of Java. However, this approach needs additional resources 
for compiling these specifications on the request of program synthesis. 

The specification language of meta-interfaces consists of two sections — var 
and rel section. The var section specifies the components used in the rel sec-
tion. Multiple instances of these sections can be used in a specification in random 
sequence. 

The var section is an obligatory section in the specification of every class, 
without it the specification is incomplete. The var section is formally specified 
as follows 

var a 1,a 2, • • • ,an : type, 

where ai(i = l..n) are declared variables. If type is represented with the keyword 
any, the declared component already exists in the Java class and the exact type of 
that component is applied during the compilation of the specification. Otherwise, 
if the names of Java primitive types or classes are used, new components are added 
to the synthesized program. 

Some of the components in the var section may be defined as viftuals. In this 
case keyword vir is used instead of var. Virtual components are not taken into 
account when the state of the object they belong to is evaluated. This issue is 
further explained in the chapter 6.3. 

The rel section defines relations of the declared components in the form of com-
putability statements or computational constraints. These relations define usage of 
Java methods, equivalences, equations and inequalities. The statements are written 
as follows: 

r e l Label: RelStatement. 

The RelStatement specifies an equivalence, equation, inequality or method dec-
larations. The Label is a name given to the current specification statement that 
can be referred for debugging or is used for modifying inherited specifications. 

As Java classes inherit properties from their superclasses, also the specifications 
of meta-interfaces are inherited. Meta-ihterface in a subclass overrides the spec-
ification statements of the superclass, if it defines a new relation with the same 
label. 

Method declaration presents either a class method, an instance method or a 
special narrowing method denoted with the keyword narrow. It describes the 
input and output parameters required for the method invocation and exceptions if 
needed. A general method declaration construction is the following: 

[InputSpec] -> OutputSpec { MethodName } 

Here the square brackets denote that the InputSpec is optional. 
In case the MethodName is equal to keyword narrow, there should be exactly 

one component defined as method input and one for output. Keyword narrow 
represents a conversion of one type to another, if possible. 

The InputSpec consists of two lists of components separated by &-symbol. The 
components described on both lists are separated by commas. The components of 



A distributed program synthesizer 571 

the list before & are handled as method's formal parameters and the components 
after & respectively define instance variables that the method uses. If the list after 
the symbol & is empty, &-symbol must be discarded. 

The OutputSpec has a similar structure to the InputSpec. The only difference 
is that before the &-symbol only one component is allowed, because an arbitrary 
method in Java may return only one value in time. In case there is no element 
specified before &, the method is of type void. 

Additionally, the output parameter list may end with a I separated list of 
components that defines a set of exceptions, which could be thrown by the method. 

For example r e l a , d .y & c . x , d .x -> c .y & d.y I e { d o l t } illustra-
tes the usage of constructions, where InputSpec — a , d .y & c . x . d .x and 
OutputSpec = c .y & d.y I e. Component a and d.y are formal parameters for 
local method dolt with signature type(c.y) doIt(type(a),type(d.y)), and c.y is the 
output of that particular method. Global components c.x and d.x are used in the 
computations and d.y is modified as a side-effect of this method. The component 
e represents an exception that may be thrown by the method. 

Equivalence defines a pair of components that should stay equal at any stage 
of an executed synthesized program. One can think of equvalent components as 
of objects that are stored into the same memory location. Equivalences are used 
as connectors between components enabling to build larger systems from smalles 
components. An example of an equivalence definition may be the following: r e l 
a .x == b.y. One component may be present in many equivalence definitions. This 
forms a group of components that should stay equal during the execution. 

Equation or inequation in the Rel Statement is useful when one solves an engi-
neering task. Java programming language does not include any solver that handle 
equations automatically and the solver for the equations have to be coded im-
peratively by the software developer. By allowing these kind of definitions, we 
can support constraint enriched Java classes and significantly reduce the program-
ming time. However, we need a general purpose solver that handles these kind 
on specifications. Recent results in genetic algorithms show already today accept-
able performance in optimization tasks, hence we are looking optimistically toward 
them. 

There is a special use of having only one var component defined in the meta-
interface — one can avoid from writing the full path to the subcomponent used 
in relations. For example instead of writing ( re l x = length.m + 7) we can just 
write ( r e l x = leng th + 7), if the component length contains only one var com-
ponent. In the synthesized program the component length would be automatically 
substituted to length.m, hence the computations go correctly. This allows to write 
the specifications in more convenient and more meaningful way. 

Substitution is also useful when one does not know the name of the var com-
ponent in the specific class, but is sure that there exists only one such component. 
This may happen when we prepare a superclass and the real types and components 
are defined in the subclasses. 



572 Vahur Kotkas 

4 Example of the meta-interfaces 
Let us have triangulation as a sample problem. We have two triangles that have 
one side, in common (see Fig. 1) and we have measured values for one side (a) and 
two angles (C and A) of the first triangle (tl) and two angles (C and A) from the 
second triangle (t2). Our task is to compute the total area of the two triangles. 

Please note that the variable names on the figure do not denote the equivalence 
between different angles and sides — only the mapping between an object on the 
figure and its class is presented there. 

Figure 1: Graphical representation of the triangulation example. 

While using an OOP language (like Java) we need to create two classes for the 
problem description. The first class describes a triangle and another composes the 
problem of triangulation from two triangles. For both classes we need to add a 
meta-interface (see Fig. 2 and the array of String SSPspec on Fig. 3) in order to 
specify the relations among the components. 

var a,b,c,S : any 
vir A,B,C : any 
re l X: a,B,C -> S {calcArea} 
re l Y: a,A,C -> c {findSideSine} 
re l Z: A+B+C=Math.PI 

Figure 2: Declarative specification of class Triangle. 

All components (variables and objects) of the class (statements starting with 
var and vir), that are used in the relations (statements starting with rel), must be 
redefined in the specifications. Let us note that the actual type of components, 
specified here as of type any, is determined from the object during the synthesis. 



A distributed program synthesizer 573 

Because of the encapsulation reasons private components can not be used in the 
declarative specification. 

We can define also new components in the specification by giving their type 
instead of keyword any, but they do not become real components of the class. We 
may consider them as temporary components that are available only during the 
execution of the synthesized program. 

The calcArea and findSideSine(see Fig. 2) are methods implemented in the 
class Triangle. The method calcArea realizes computation of the area, knowing 
one side and its two nearby angles. The method findSideSine computes a side, 
knowing another side and their opposite angles. The third rel statement describes 
relation among the angles of the class in the form of equation — the fact that the 
sum on inner angles of a triangle is equal to 180 degrees. 

The first rel statement of class Problem (see Fig. 3) defines equivalence between 
the components. Equivalence means that the values of components stay always 
equal during the execution of the synthesized program. 

import ee.ioc.cs.synthesizer.*; 

public class Problem implements SSPInterface { 
public s t a t i c String[] SSPspec = { 

"var t l , t2 : any", 
"var S : any", 
"rel U: t l . c == t2 .a" , 
"rel V: S = t l . S + t2.S">; 

public Triangle t l , t2; 
public double S; 

public void runO { 
t l . a = new LengthCkm',2) ; 
t l .C = new Angle('deg',90) ; 
tl.A = new Angle('deg',45); 
t2.C = new Angle('deg',45); 
t2.A = new Angle('deg',90); 
String progID = SSP.synthesize(this, "->S"); 
SSP.execute(progID, th i s ) ; 

> 
> 

Figure 3: The class Problem. 

The labels X, Y, Z, U, V may be omitted. They may be used for debugging 
purposes, as they are added to the algorithm provided by the Planner. These labels 
are used here to make later in this paper references to these relations. The Planner 
and the algorithm are described in more detail in chapter 6.4. 

As a result of the call synthesize of the class SSP (see the method run() on 
the Fig. 3) a new method will be synthesized (e.g uniquely identified as x/17634, 



574 Vahur Kotkas 

see Fig. 4) that realizes the requested computational problem. The name of the 
synthesized method is returned as its ID and can be used later for the method 
invocation. 

The method exec executes the synthesized method and as a result modifies the 
object p by assigning proper value to the component S. 

public void xf 17634(Problem p) { 
p . t l . c = p . t l . f indSideSine(p . t l . a ,p . t l .A ,p . t l .C) ; 
p . t2 .a = p . t l . c ; 
p . t l .B = Math.PI-p.tl.A-p.tl.C; . 
p . t l . b = p . t l . f indSideSine(p . t l . a ,p . t l .A ,p . t l .B) ; 
p . t i . S = p . t l . ca lcArea (p . t l . a ,p . t l .B ,p . t l .B) ; 
p . t2 .c = p.t2.f indSideSine(p.t2.a,p. t2.A,p.t2.C); 
p.t2.B = Math.PI-p.t2.A-p.t2.C; 
p . t2 .b = p.t2.f indSideSine(p.t2.a,p. t2.A,p.t2.B); 
p.t2.S = p.t2.calcArea(p.t2.a,p. t2.B,p.t2.C); 
p.S = p . t i . S + p.t2.S; 
return; 

> 

Figure 4: The synthesized method. 

5 Distributed components 
Software developers have long held the belief that complex systems are easier to be 
built from smaller components. There are two engineering drives in the development 
of a component-based system [5]: 

1. Reuse - the ability to use existing components repeatedly 

2. Evolution - development and maintenance of a highly componentisized system 
is easier and cheaper. 

Composing a distributed application - an application composed of distributed 
components - adds the following features 

1. Higher flexibility - as the components are not compiled into the application, 
the changes in the components do not affect the consistency of the distributed 
application if the interfaces of these components are fixed and semantics of 
their inputs and outputs remains unchanged. 

2. Higher fault-tolerance - if a distributed component is developed for a certain 
environment and is well tested to work properly in it, then composing an 
application using these distributed components, that reside always in their 
native environment, cuts down in programming and testing time. 



A distributed program synthesizer 575 

In a distributed application the intercomponent communication is fairly expen-
sive in terms of time and other resources [6]. Thus components are encouraged 
to be larger than smaller. However, larger components have more complex inter-
faces and are changed more probably during the system development phase. The 
larger components are, the less flexible is the whole distributed application. To 
achieve optimum we should consider the level of abstraction of components, their 
likelihood to change, complexity etc. These ideas are followed while composing the 
architecture of the synthesizer, which is described in the next chapter. 

6 Architecture of distributed synthesizer 
By using the CORBA technology [7] in the synthesizer we get more flexibility for 
computing in a network and possibilities for concurrent computing, hence we call 
it a distributed synthesizer. Using CORBA also forces us to follow the ideas of 
modular programming and supports the program componentization. 

While using CORBA for component interconnection we have to acknowledge 
that objects as entities can not be sent over a network, as CORBA is inter platform 
and inter programming language communication architecture. It means that every 
object should be serialized before delivery or in other words turned into a byte 
stream. 

Serialization has two drawbacks on performance: firstly we need additional 
computing power for the serialization and secondly the serialized data takes always 
more memory than the original object, thus we may need wider bandwidth net-
work for communication. This draws a more concrete granulation criteria to the 
decomposition process i.e. one should avoid loops in which there is a lot,of data 
exchange over the network. . 

Considering the ideas described above we propose the following architecture 
for a distributed synthesizer, decomposed into 7 logically separated components 
(see Fig. 5): Object Factory, Compiler, Decorator, Knowledge Base (KB), Planner, 
Code Generator and Component Repository (CR) 

6.1 Object Factory 
The Object. Factory (OF) is the central process that maintains the work of the 
other components. It does the performance evaluations on the network and sends 
a new task to the host that has least load at the moment. The Program uses a 
predefined local class SSP that finds the location of the OF on the current network 
and forwards the request to it. This allows to hide the whole machinery of the 
synthesizer from the end-user. 

6.2 Compilation 
Knowledge Base (KB) is a database-like structure that allows storing compiled 
declarative specifications for each class used in the program. When Compiler re-



576 Vahur Kotkas 

Figure 5: Architecture of the distributed synthesizer. 

ceives a request for program synthesis from the OF, it first checks whether all the 
descriptions of classes that are used in the declarative specification are represented 
in the KB. The data received by the Compiler is consisting of serialized object, its 
serialized class and the computational problem specification i.e. the goal. 

As we can never be sure that the classes stay unchanged the Compiler calculates 
a hash number based on the declarative specification for each class and compares 
it to the hash number stored in the KB. If the hash numbers are matching the 
compilation of that class can be skipped, otherwise if they do not match or the 
class description does not exist in the KB, the Compiler parses the declarative 
specifications of the class and stores the resulting description into KB. 

Computing and checking the hash number assigned to class descriptions allows 
us to avoid compilation of the declarative specification every time a program syn-
thesis request is made. Thus it speeds-up the program execution when similar 
problems have to be solved often. 

6.3 Decorator 
The Decorator creates a bipartite graph like structure out of the class descriptions 
stored in the KB. The bipartite graph has two types of nodes - components and 
relations [8]. The reason of building such a structure is to get rid of the object-
oriented hierarchy, thus making it more suitable for the search. Fig. 6 presents 



A distributed program synthesizer 577 

an example of a bipartite graph that corresponds to the sample specifications de1 

scribed above (see Fig. 2 and Fig. 3), where the smaller circles denote objects and 
components, and bigger circles represent to relations. 

To still remember the hierarchy of the initial object, new relations are added 
to the graph (see unlabeled relation nodes on Fig. 5) that tie objects to their 
components. 

From these additional relation is also clearly visible the distinction of the var 
and vir components of the declarative specification. Only the var components 
are included into the added relations and the vir components are left out. That 
means if there is a computational problem where the goal is an object having many 
components, then when all its var components are "known", meaning that the value 
of the component is known, the object gets the status "known" using that relation. 

And vice versa - if an object is "known" the status transforms only to its var 
components. 

The next task of the Decorator is to paint the object and variable nodes in 
the graph. A painted node in the graph represents to a component with the state 
"known". Considering our triangulation example the components a, C and A of 
Triangle t l and components C and A of Triangle t2 are known, thus their nodes on 
the graph should be painted (dashed vertically on Fig. 6). 

Figure 6: The search-space graph of the Triangulation example, 

A different "color" is used to mark the goal. As the problem was to find the total 
area of the two triangles the node designating component p.S should be painted as 
goal (filled with upward diagonal lines on Fig. 6). 

This structure is the search space delivered to the Planner. 



578 Vahur Kotkas 

6.4 Planner 
The main function of the Planner is to find a solution for the problem specified by a 
user. Before starting with problem solving the Planner checks from the Component 
Repository (CR) whether a solution already exists for it. In the case the solution 
does not exist, the Planner starts solving it. 

In principle there are two kind of relations that may occur in the declarative 
specification: 

1. Unconditional relations implementing unconditional computability state-
ments of SSP. In such relations computability of some (output) object de-
pends only on some other (input) object(s). Unconditional relations of sev-
eral types as equations, equivalencies, Java methods etc. are available in the 
specification language. 

2. Conditional relations or relations with subtasks, implementing conditional 
computability statements of SSP, describe more sophisticated dependencies 
where output objects depend not only on input objects but also on solvability 
of some other computing problems. This kind of relations is unfortunately 
not present in our toy-example. 

The problem specification for Planner is of form x->y, where x denotes the 
set of "known" (nodes painted with vertical dashes on the Fig. 6) objects and y 
denotes the set of objects to be computed (the goal). The Planner has to construct 
an algorithm (a sequence of relations) that describes how to compute y from x [4]. 

The proof search strategy of SSP applied in the Planner is 

1. an assumption-driven forward search to select unconditional relations (linear 
planning). The algorithm works in the forward direction with unconditional 
relations only. At each step a relation, which input objects are "known" 
and at least one output object in "not known", is located and added to the 
algorithm. When adding a relation into the algorithm all its output objects 
are set as "known". The search is completed when all the nodes marked as 
"goal" are also "known" or there is no relations left with all inputs "known". 

2. a goal-driven backward search to select and solve subtasks. The search is 
applied if the linear planning cannot be continued. Only such relations with 
subtasks are considered which input objects are "known". First the CR is 
checked for the existence of the solution of every subtask the relation have. 
If existing solutions are not found, the Planner is recursively used for solving 
every subtask of the relation considered. If all the subtasks of the relation are 
solved, the relation is added to the algorithm. Linear planning is used after 
every invocation of a relation with subtasks in the algorithm. 

3. a minimization is applied to the resulting algorithm of the two previous search 
strategies. The search strategies above do not guarantee that we have built 
the shortest possible algorithm for computing the desired goal. Even more, 
the synthesized algorithm may contain relations that are not necessary for 



A distributed program synthesizer 579 

computing the goal. Minimization is used to exclude such relations from 
synthesized algorithm. As a result of planning we get an algorithm that is 
not necessarily the shortest, but it does not contain unnecessary relations. 

The algorithm is passed to the Code Generator and the problem specification in 
the CR is marked as solvable. 

6.5 Code Generator 
The code generation is a straightforward process, where the algorithm is translated 
into the class of the appropriate programming language i.e. to a Java class when the 
source language was Java. The class is compiled and a component including a newly 
created instance of this class is summoned and added to the CR. The component 
is stored into the CR with its problem specification that makes it possible to use 
that component repeatedly for solving many similar tasks. 

If the computational problem were solvable and the algorithm is delivered to the 
Code Generator the Planner informs the OF about the solvability of the assigned 
problem and the OF delivers also the identification of the component stored in the 
CR to the Program. 

Such an approach supports so-called Case Dependent Software Reuse (CDSR). 
It is called case dependent, because the planning process does not depend only on 
the declarative specifications given with particular object, but also on the current 
state of an object. The state of an object is determined by the states of its compo-
nents (variables and objects), that can be marked as "known" or "not known". 

6.6 Using synthesized components 
When the distributed component is added to the CR, the user program may use 
it in two ways - by accessing the distributed component from the CR sending data 
to it and receiving output, or by retrieving the component's class and using its 
instance locally. 

The aim of CR is to maintain a set of components implementing a certain 
interface. Thanks to the usage of this fixed interface we can. use later all these 
components in program's initial context even when a certain component is not yet 
available at the moment of program creation. 

An Object Factory that on a request creates the appropriate component and 
forwards the input parameters to it maintains the processing components of the 
distributed synthesizer. To take full advantages of the network, we may create 
multiple instances of the processing components on different servers and execute 
them in parallel. 

Furthermore, the fault-tolerance of application is increased through redundancy 
provided by multiple instances of same component on different servers. Hence, if 
something happens with one server providing particular component, others backup 
it and we can distribute the system's load between different hosts in the network 
while solving different problems simultaneously. 



580 Vahur Kotkas 

We would not achieve any speed-up to the work of synthesizer when running 
just one user program, but the benefit appears when several user programs access 
the synthesizer simultaneously. 

All components of the distributed synthesizer are .implemented using the Ob-
ject Management Group's Common Object Request Broker Architecture (OMG 
CORBA) [7], which provides a flexible communication and activation substrate 
for distributed heterogeneous object-oriented computing environments. CORBA 
enhances application flexibility and portability by automating many common de-
velopment tasks such as object registration, location and activation; demultiplex-
ing; framing and error-handling; parameter marshalling and demarshalling; and 
operation dispatching. 

Several aspects related to CORBA, Quality of Service, reliability of applications, 
and performance are studied in [9, 10, 11]. • 

7 Conclusions 
In the current paper meta-interfaces for Java classes are introduced and an archi-
tecture of a distributed program synthesizer is presented. The synthesizer is the 
main part of SSP realization that allows automatically construct programs out of 
declarative specifications provided by the meta-interfaces. 

Our main objective is to extend a distributed programming language (like Java) 
with SSP capabilities that, automates software reuse and helps users to design pro-
grams. The distributed synthesizer is a supporting tool that handles declarative 
specifications provided in the meta-interfaces of classes and does the actual program 
construction hidden from the end-user. 

Here, an extension to the Java programming language is presented, but in prin-
ciple such architecture of the synthesizer would suit also to other OOP languages, 
which classes are extended with structural specifications. 

The efficiency of the synthesizer is low when considering only single user program 
execution, but the reuse of already synthesized programs gives a significant effect 
on the network where multiple agents are solving similar tasks. 

For handling equation systems and additional constraints like inequations that 
enrich the specification language, a general solver has to be developed. We are 
looking optimistically towards genetic algorithms that have shown very promising 
results in solving different optimization tasks. 

References 
[1] E. Tyugu. The structural synthesis of programs, Lecture Notes in Computer 

. Sciences, Vol. 122, .1981, pp. 290-303. 

[2] M. Stickel, R.Waldinger, M.Lowry, T.Pressburger, I.Underwood. Deductive 
Composition of Astronomical Software from Suroutine Libraries. In 12th Con-



A distributed program synthesizer 581 

ference on Automated Deduction. A.Bundy, ed., Springer-Verlag Lecture Notes 
in Computer Science, Vol.814. 

[3] S. Lammermann. Automated'Composition of Java Software, Lie, thesis, De-
partment of Teleinformatics, Royal Institute of Technology, Sweden, Technical 
Report TRITA-IT AVH 00:03, ISSN 1403-5286, ISRN KTH/IT/AVH-00/03-
SE, May 2000. 

[4] M.Harf, E.Tyugu. Algorithms of structured synthesis of programs. Program-
ming and Computer Software, 6, 1980, pp 165-175. 

[5] J. Hopkins. Component Primer. Communications of the ACM, October 2000, 
vol. 43, no. 10, pp. 27-30. 

[6] D. Budgen, P. Brereton. Component-Based Systems: A Classification of Issues. 
Computer (IEEE CS), November 2000, vol. 33, no. 11, pp. 54-62. 

[7] Vinoski, CORBA: Integrating Diverse Applications Within Distributed Het-
erogeneous Environments. IEEE Communications Magazine, vol. 14, no. 2, 
February 1997. 

[8] E.Tyugu, T.Uustalu. Higher-Order Functional Constraint Networks. Con^ 
straint Programming. NATO ASI Series F. Springer-Verlag 1994, pp 116-139. 

[9] J. Zinky, D. Bakken, R. Schantz. Architectural Support for Quality of Service 
for CORBA Objects. Theory and Practice of Object Systems, vol. 3, no: 1, 
April 1997, pp. 1-20. 

[10] S. Maffeis, D. C. Schmidt. Constructing Reliable Distributed Communication 
Systems with CORBA. IEEE Communications Magazine, vol. 35, no: 2, Febru-
ary 1997, pp. 56-60. 

[11] A. Gokhale, D. C. Schmidt. The Performance of the CORBA Dynamic Invo-
cation Interface and Dynamic Skeleton Interlace over High-Speed ATM Net-
works. In Proceedings of GLOBECOM '96, London, England, November 1996, 
IEEE Press, pp. 50-56. 


