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Abstract 

Mutation analysis is a fault based testing method used initially for code 
based software testing. In this paper, this method is applied to formal specifi-
cations and used for automatic conformance test selection. This paper defines 
formally a set of mutation operators for CEFSM (Communicating Extended 
Finite State Machine) systems to enable the automated creation of mutant 
specifications. Mutants of a specification are used as selection criteria to 
pick out adequate test cases. Two different algorithms are proposed for the 
generation and selection of efficient test suites. Additionally, the operators 
and algorithms provide the basis of an automatic tool developed at the Bu-
dapest University of Technology and Economics.- We present the results of an 
empirical study on the well-known INRES protocol acquired using the tool. 

K e y w o r d s : automatic test generation, CEFSM, mutation analysis, SDL, test se-
lection 

1 Introduction 
One of the most important criteria that applies to telecommunications software 
is compatibility with systems from different vendors. This is usually achieved by 
standardization. Manufacturers of the actual products ensure compatibility by 
applying these specifications. At the end of the development process, the final and 
most important step is to test the actual products to guarantee that they work as 
required by the specification. This is called conformance testing, which provides the 
means to ensure that systems from different companies are compatible, and are able 
to interoperate correctly according to the standard. The test development process, 
however, involves significant resources: it is very time consuming and requires the 
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manual effort of many well-trained developers. Therefore, its automation is an 
important challenge. 

Specifications may be defined either in formal or informal way. The most widely 
accepted technique for formal specification of telecommunications protocols is SDL 
(Specification and Description Language) [8]. The SDL specification of a system is 
an excellent starting point for both manual and automatic test case generation. It 
describes the behavior of the system in detail, and its graphical interface provides 
easy readability. Even more importantly, its formal manner makes automation 
possible. 

Previously, there have been attempts to automatically generate test cases from 
SDL specifications, but all of them face the common problem of test selection. All 
the different approaches require a mechanism to distinguish "good" test cases from 
the unnecessary ones, possibly without any human intervention. Thus, selection 
criteria are needed, that can be applied automatically. 

The basic idea behind the recent method is that by applying small syntactical 
changes, or mutations, at atomic level to the specification exactly once at a time, we 
intentionally produce faults [10]. The rationale is that if a test set can distinguish 
a specification from its slight variants, the test set is exercising the specification 
adequately. The erroneous specifications then can be used as selection criteria to 
select adequate test cases. 

Mutation analysis has previously been used for code-based software verification 
and validation, and it has also been applied to some simple specifications [2], for 
example SCR (Software Cost Reduction) [7] description of software. According to 
the literature [14][4][16], a similar idea has been used for protocol testing, called 
fault-based testing. Fault-based testing requires special fault models and tries to 
detect faults in the implementation, with respect to the specification. 

In this paper, we define methods and mutation operators especially designed to 
enable the automation of test selection. We do not simulate typical errors of the 
specification or the implementation, instead we create erroneous specifications that 
provide an appropriate basis for the selection of test cases. 

The paper is organized as follows. In Section 2, we define the CEFSM model 
formally, which describes the dynamic behavior of SDL processes. Section 3 is 
a summary on mutation analysis. Section 4 introduces mutation operators and 
approaches for test selection. In Section 5,we present the outcome of the empirical 
analysis of the presented method using the tool developed within the confines of 
this research. At last, a summary is given in Section 6. 

2 Extended Finite State Machines 

2.1 Specification and Description Language 
SDL is a formal language, widely used for specifying - especially telecommunica-
tions - systems. It has been developed by ITU-T (CCITT). One of ',he strengths of 
SDL [8] is that it is a well-accepted world standard supported by ITU-T and ISO. 
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Nowadays, SDL is primarily used in the telecommunications industry for the de-
scription of telecommunication protocols during the development of different hard-
ware structures and software products, but it can be used in other fields as well. 
Typically complex, event-driven, real-time, and communicating systems can be ef-
fectively described in SDL. 

The static structure of the system is built up hierarchically with the system 
object as root. The system is the formal model of an existing or planned real 
system. Everything not belonging to the system is called environment. Below the 
system level are the blocks, which can build up several levels in a tree structure. At 
the bottom of the hierarchy are the processes. Communication between processes 
is possible via signals that travel on certain predefined routes connecting processes 
without delay. 

In our case, the most important property of SDL is that it describes the dynamic 
behavior of a system as a CEFSM. Processes communicating via signals specify the 
operation of the system. An extended finite state machine describes each process. 
The state machines are labeled extended, since variables and timers can also be 
defined. All of the processes have their own memory for storing their variables and 
state information, and all of them contain a FIFO buffer of infinite length that is 
a queue for the incoming signals. 

2.2 Formal Description of Communicating Extended Au-
tomata 

Formally, a CEFSM, e.g. an SDL process or system, can be described by an quin-
tuple [12] CEFSM = (S, I, O, V, T), where S, I, O and T are the finite and 
nonempty set of states, inputs, outputs and transitions respectively, and V. is the 
finite set of variables. 

A transition t 6 T is a 6-tuple: t = (s,i,P,A,o,s'), where s € S is the start 
state, i e I is an input, P : P(V) is a predicate on the variables, A : V' := A(V) is 
an action on the variables, o 6 0 is an output and s' £ S is the next state. 

Initially, the configuration of the machine is represented by the initial state 
so £ 5 and by the initial variable -values. 

Inputs (i £ I) and outputs (o € 0) are communication events. They may have 
parameters (I x V and I x V), and are realized by parameterized signals in SDL. 
A reception of a parameterized signal can be viewed simply as an input and a joint 
action assigning the new values. The length of the queue increases by one as an 
input arrives and the input is added to the end of the queue. The length of the 
queue decreases by one as an input is processed. Henceforth, i € I denotes the 
input to be processed, which is not necessarily the first element. The SDL specific 
save mechanism means that if a specific input is the firts element of the queue, then 
it is skipped and the next element is going to be processed. 

Variables provide further details of the system's internal state. The reaction to 
a specified input depends on the actual value of some variables through predicates. 
Predicates are expressions built up from the actual subset variables at a given state. 
Actions represent the effect of a transition to a subset of the variables. 
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A FSM (Finite State Machine) is reduced if it has no inaccessible states and all 
states are distinguishable [1]. A state s is inaccessible if there is no input sequence 
that moves the machine to state s. Two states s and s' of a machine M are 
distinguishable if there is some input sequence Q such that executing Q from s and 
s' produces different output. Let us define the reduced CEFSM by extending the 
definition of reduced FSM in [1]: 

Def ini t ion 1 (Reduced C E F S M ) Variable Vi £ V is inaccessible, if $i £ I, 
that after a transition t £-T v ^ A(v). Variable v^ £ V is observable, if there are 
different values x ^ y of the variable vi that if Vi = x then the output is oi after 
the transition t £T, and if Vi = y then the output is o2 after the transition t € T, 
and evei^ything else is unchanged, then o\ ^ 02 • 

Boolean predicate pi £ P is inaccessible if $ti ,ti € T that in the transition t\ 
Pi(V) is true, and in the transition £2 Pi(V) is false. Boolean predicate pi £ P is 
observable, if 31 £ T, that if the output after the transition t is 01 when Pi(V) is 
true, and the output after the transition t is 02 when pi (V) is false, and everything 
else is unchanged, then 01 / 02. 

Let us say that a CEFSM M is reduced if no states, variables and predicates of 
M are inaccessible, any two states of M are distinguishable, and all variables and 
predicates of M are observable. 

3 Mutation Analysis 
Mutation analysis [13] is a white-box method for developing test cases - i.e. it is 
based on the knowledge of the internal logic of a system. Traditional mutation 
analysis checks for faults in the code of programs. We, however, apply mutation 
analysis to specifications instead of programs, and use it as selection criteria to pick 
out adequate black-box test cases. 

A mutation analysis system defines a set of mutation operators [11], where each 
operator represents a type of an atomic syntactic change. Using these operators 
is practical for two reasons. On the one hand, they enable the formal description 
of fault types. On the other hand, operators make automated mutant generation 
possible. By applying the operators systematically to the specification, a set of 
mutants can be generated. 

A mutation analysis system consists of three components (Figure 1): 

• Original system. 

• Mutant system - it is a small syntactic variation of the original. Mutants can 
be created by applying mutation operators, where each operator represents a 
small syntactic change. 

• An oracle - a person or in most cases a program to distinguish the original 
from the mutant by their interaction with the environment. 

Traditional program-based mutation analysis assumes the competent program-
mer hypothesis [3]. In the current work, we assume a similar "competent specifier" 
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Figure 1: Components of a Mutation Analysis System 

hypothesis stating that the specifier of a CEFSM system is likely to construct a 
specification close to the requirements, and so the test cases distinguishing syntactic 
variations of a specification are useful. 

In the recent work, we only apply first-order faults - i.e. we apply exactly one 
mutation at a time - , because test sets detecting changes to the original system 
created by a simple error would also detect complex changes created by applying a 
sequence of simple mutations [13]. 

Test cases distinguish mutants from the original, if they produce different out-
put. However, some of the mutants generated using the operators may be se-
mantically equivalent to the original system. That, is, a mutant and the original' 
may compute the same function for all possible inputs. These mutants are called 
equivalent. All equivalents should be ignored, but all non-equivalents should be 
considered during test selection. Equivalence is a more complex problem in case of 
CEFSMs than in case of FSMs. 

Definition 2 (Equivalence) Let Mi and Mo be two CEFSMs with known struc-
ture, and identical input and output alphabet. Homeomorphism from M\ to M2 

is the mapping $ from Si to S2 and the mappings i'v, and, from Vi to 
V2, Pi to P2 and Ai to A2 respectively, such that Vs_i € Si and Vi £ I it is 
true for transition t2 = ($(si) , i, 9p(Pi), ^ ( ^ i ) , o2, s'2), t2 6 T2 and transition 
ti = (« i . i .Pi , A i , o i , $ ( s i ) ) , i i £ Ti that s'2 = $(s i ) , V2 = ^iv{V() and o2 = ox. 

If $ and $ are bijections, then it is an isomorphism. In this case, M\ and Mi 
are equivalent machines. 

Definition 3 (Pseudo-equivalence) Let Mi and M2 be two CEFSMs with 
known structure, and identical input and output alphabet. Mi and Mi are pseudo 
equivalent machines, if there exists a bijection $ between Si S2 such that Vsi € Si 
andVi £ I it is true for transitions t2 6 T2 and ti 6 Ti that o2 = oi if s2 = .$ ( s i). 

Figure 2 shows the relationship among equivalents, pseudo-equivalents and mu-
tants. We can make the following statements: 

• The specification we investigate is an element of the set of equivalents Spec € 
EQ. 

• The set of equivalents is a subset of pseudo-equivalents EQ C PE. 
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Figure 2: Equivalence Relationships (based on [16]) 

• A pseudo-equivalent mutant is an element of the M S fl P E set. 

• An equivalent mutant is an element of the MS fl EQ set. 

When applying the recent method, only mutant in the set MS \ (MS n PE) 
should be considered. 

4 Test Selection Method 

4.1 Mutation Operators Proposed for CEFSM Specifications 
In the recent paper, a very important consideration for the definition of operators 
is, that they should be simple enough to enable the automation of the mutation 
testing process, in order to design a tool. And additionally, the properties of SDL 
should also be taken into account. Operators should create finite - and as small 
as possible - number of mutant specifications. If possible, operators should not 
create any pseudo-equivalents and - of course - minimize the number of equivalents, 
because pseudo-equivalent systems unnecessarily increase the time required for the 
test case selection. 

According to these considerations, mutation operators we use model atomic 
faults, and only one fault at a time. That is, we modify exactly one element in 
a transition t € T. To select conformance test cases, it is essential to generate 
syntactically correct mutants. Syntactic correctness is necessary to be able to 
execute the mutant system. Some types of semantic errors should be detected, 
according to ([12]), since for example after applying an operator some states may 
become unreachable, preventing conformance testing. Such mutant systems should 
be detected and dropped during a semantic analysis phase. 

We defined five classes of mutation operators for CEFSM descriptions according 
to which part of the automaton they are applied to: 

• state modification operators, 

• input modification operators, 
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• output modification operators, 
• action modification operators, 
• predicate modification operators. 

Additionally, there is a specific operator for the mutation of save statements in 
SDL. 

It is important to note, that we replace non-boolean predicates with a sequence 
of boolean predicates, and apply the operators on them. For the types of mutations 
when a component of the machine is replaced by an other component, instead of 
creating all possible combinations, it is sufficient to only produce one. 

Henceforth, let the fl() function represent the syntactical change applied. 

O p e r a t o r 1 (Sta te) Modifying states. Here only the exchange of inputs should 
be considered. The mutation operator is applied either to the actual or to the next 
state: 

1. Mutating the next state in transition t € T: t = (s,i,P(V),A(V),o,Q(s')). 
In this case we replace the next state, that is we lead the system to a wrong 
state and induce incorrect operation. 

2. Mutating the actual state in transition t £ T: t = (fl(s),i, P(V),A(V),o, s'). 
This operator replaces the transition function of two states. 

The mutation of the stating state is a special case of state mutation, where so is 
modified: fi(so)-

Operator 2 (Input) The input mutation in the transition t e T: t = 
(s,n(i),P(V),A(V),o,s'). 

1. Using fi(z') := null. This mutation is equivalent with the removal of a tran-
sition branch for an input at a given state. 

2. Using the transition of input ix £ / ' , where / ' C I is the set of inputs, that 
have explicit transitions defined at the given s state. This means that we 
exchange the transition of two inputs. 

3. Assigning the transition of input iinopp ( i in o p p £ I, but ¿¿„opp ^ I', where 
I ' C I is the set of inputs, that have explicit transitions defined at the given 
s) to the existing transition branch of input i £ I. This mutation means that 
we add a transition branch for the input iinopp, that was implicitly consumed 
previously. Using this mutation, also the processing of inopportune (valid 
input arriving at wrong time) inputs can be inspected. 

4. As mentioned previously, inputs and outputs may have parameters. If i £ 
I x V, then we can mutate not only the input symbol, but the input parameter 
leaving the input symbol unchanged. This type of mutation is practically an 
action mutation, and can be viewed as the mutation of the implicit action 
assigning the new values. In this case, fi(i) = i(Cl(v)), where fi(u) := null -
according to the action mutation (see below). 
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Operator 3 (Output ) The mutation of an output event in the transition t £ T 
is: t = (s,i, P(V),A(V),Q(o), s'). If the output symbol has parameters {o E OxV), 
then we have the possibility to modify the parameter: fi(o) = o(fl(v)), where 
Q(v) := null. 

Operator 4 (Action) It is difficult to define a general mutation operator for 
actions, because of the presence of abstract data types. Only the fi(^4(V)) null 
operator, tha t is the deletion of an action is suitable for this case. Missing action 
operator: t = (s, i, P{V), Cl(A(V)), o, s'). 

Operator 5 (Predicate) The mutation of boolean predicates has similar effects 
as the mutation of inputs. 

1. Exchanging two branches of a decision in the transition t £ T can be done 
simply negating the whole expression t = ( s , i ,n (P(V)) , J 4(V r ) ,o , s', where 
n(P(V) :=not(P{V)). 

2. Setting the predicate to be stuck-at-true ( f l ( P ( V ) ) := true) or stuck-at-false 
(fl(P(V)) := f alse) brings on the removal of the other branch. 

Operator 6 (Save) Since this paper consideres SDL to be the specification lan-
guage used, we have to take its specialities, like the save mechanism (see Section 
2.2), into account. Note that save is not part of the CEFSM model. This operator 
removes the save statement. 

In Table 1, examples show some of the mutation operators and their realization 
in the context of SDL. 

Operators Original Mutant 

State NEXTSTATE wait; NEXTSTATE connected; 

Input INPUT ICONresp; INPUT IDISreq; 

Output OUTPUT CC; OUTPUT DT (number, d); 

Action counter := 1; /* Missing */ 

Predicate DECISION sdu!id = CC; DECISION NOT(sdu!id = CC); 

Save SAVE IDATreq (d); /* Missing */ 

Table 1: Mutation Operators for SDL 

4.2 Theoretical Analysis of the Operators 
Since the operators are defined in a formal manner, the analysis of their relationship 
is possible. We can show that there are correlations among the operators. 

T h e o r e m 1 (Relat ion b e t w e e n t h e brach exchange and the stuck at ope-
rator) Applying the stuck-at (ASA) and the branch exchange (CIBX) operators to 
the same predicate, then for the detection QSA —• • 
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Proof (based on [11]). 
Let p £ V be the predicate to be mutated. The theorem follows: Qsafalse (p) 
f lsx(p) and ClsAtrueip) ÏÏBxip). 
In case of deleting the true branch the detection condition is p © ilsAfaiseip) = 
p © false = p. 
In case of exchanging the branches the detection condition is p © $ÏBX (p) = P © 
not{p) = true. That is, we always detect the branch exchange mutation. Since 
p true, then fis A false ÏÏBX-

In case of deleting the false branch the detection condition is p © s A true (p) = 
p© true = not(p). Since not(p) —» true, then ClsAtrue —• ^bx-
Therefore fis/i i^sx-

We made the following findings and statements concerning the operators: 

• The mutation operator for states and next states are equivalent, since 
the tail state of a transition is the initial state of the next:, ti = 
(s, i,p(V), a(V), o, fi(s')) O t2 = (n(s'), i',p(V'), a(V'), o', s"). 

• Timeouts in the CEFSM systems (e.g. SDL) can be considered simple inputs, 
and accordingly, the input mutation operator mutates them. To be able to 
test timer transitions, timeout events are made controllable from the environ-
ment. That is, whenever a test case reaches a timeout (for example t imeout 
T3; in an MSC (Message Sequence Chart) test case), a corresponding input 
is sent directly to the owner machine of the timer from the environment, and 
after its consumption the corresponding timer transition is . executed. Dur-
ing the test execution, in the test case a timeout explicitly indicates that 
the tester has to wait for the duration of the timer (e.g. "Timeout. T3" and 
"Timer T3 shall be in the range 1 sec to 1.5 sees."). This way, methods for 
test case selection in the next section (4.3) become time independent. 

• Definition 1 implies, that if using a reduced CEFSM, state exchange mutation 
and branch exchange for the predicates do not create equivalents, therefore, 
it is advised to use reduced specifications for mutant generation. 

4.3 Algorithms for Test Generation 
We defined two approaches for test generation. Although they are similar, being 
built on the same concept, they produce different resulting sets. Both approaches 
require the CEFSM specification of a system. There are practical and widely used 
tools, to assist the specification process like Telelogic Tau [15]. After the specifica-
tion is completed, processing in both cases can be all automated. 

We represent test cases in MSC (Message Sequence Chart) [9] [6]. The MSC 
test sets can later easily be transformed to different test description languages for 
example TTCN (Tree and Tabular Combined Notation). Tools support thé semi-
automatic TTCN table generation from MSC test case specifications. 

Algorithm 1 (Deriving test cases from a specification) Figure 3 shows our 
first approach consisting of the following steps: 
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Figure 3: Mutation Analysis of CEFSMs Using a State Exploration Algorithm 

1. Apply a mutation operator to the machine, that is, create a mutant specifi-
cation. 

2. Use a state space exploration algorithm to compare the mutant with the 
original system. Of course, we only stimulate the system using inputs from the 
environment, and only check the outputs to the environment for inconsistency. 
This is because our intent is to create test suites for black-box testing. In 
most cases, we should explore the state space of the original system, but in 
case of certain operators the desired result can be achieved by exploring the 
mutant state space. The algorithm must have break conditions, e.g. reaching 
a certain depth, exceeding a time limit etc. 

3. When the state space exploration algorithm finds an inconsistency, it gener-
ates a test case based on the set of stimuli sent from the environment and the 
outputs received until the inconsistency was discovered. 

4. Repeat steps 1-3 for all possible mutants until corresponding test cases are 
generated. 

5. As a result we get a set of test cases. 

MSC 
A set of MSCs[-

—Optimization|—H^esl
 setl 

Figure 4: Mutation Analysis of CEFSMs Based on an Existing Test Set 

Figure 4 shows our second scenario. Here we assume that a finite size, unstruc-
tured and highly redundant test set exists, for example in a form of a set of MSC 
test cases. These test sets can be created by the means of state space exploration 
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algorithms exploring the specification of the system. If we apply mutation opera-
tors checking inopportune inputs, this initial set of test cases also has to include 
inopportune test cases. 

Let the matrix of criteria C be a two-dimensional matrix with boolean values. 

Algorithm 2 (Selecting test cases from an existing set) Our second ap-
proach consist of the following steps: 

0. Create a set of test cases. 
1. Apply a mutation operator to the system, that is, create a mutant specifica-

tion (the ith mutant). 
2. Run the test set on the mutant specification and check for inconsistency. 

3. Create a row vector Cj (the ith row of the C matrix). 

• Let Ci j be 0, if the jth test case is not able to detect the ith mutant. 
• Let C ^ be 1, if the jth test case is able to detect the ith mutant. 

In other words, select the test cases from the original set, which kill the given 
mutant. 

4. Repeat steps 1-3 for i = l to N, where N equals the number of all possible mu-
tants that can be created from the given system using the mutation operators 
defined in Section 4.1. 

5. Acquire the matrix of criteria, where rows represent the mutants and columns 
represent the test cases in the original set. This matrix describes for each test 
case the mutations the given test case is able to detect. 

6. Apply some simplifications to the matrix of criteria (C): 

• If there is a column C j in C, where Vi : C j [i] = 0, it represents that the 
jth test case did not find any of the mutants. Therefore, the jth column 
can be omitted. 

• If there is a row Ci in C, where Vj : C t[j] = 0, it represents either that 
the ith mutant is an equivalent, or that there was no test case in the 
original set that could find the difference (kill the mutant). 

• If there are rows C m and C n in C, where \ f j : Cm[j] < Cn[j], then the 
row C m [ j ] is unnecessary. 

7. Select an optimal test suite from the original set, using an integer program-
ming method. 

We can also automatically assign weights to the test cases, implicating how time-
consuming they are. Thus, we can further improve the efficiency of the selection. 

Both algorithms have their advantages and drawbacks. The first algorithm 
requires less computation and time, but is it does not provide enough data for an 
optimization algorithm. An important benefit of the second - and more complex -
method is that the optimization process ensures that only adequate test cases will 
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be selected, and thus, a more effective test set is created. A major drawback of the 
second method is that it is quite computation-intensive. If the two algorithms are 
executed consecutively, the first algorithm provides a rough set of - MSC - test 
cases, and then the second algorithm further improves the efficiency of the test set. 

5 An experiment on the system INRES 

5.1 The INRES system 
We used the well-known sample telecommunications system INRES ([5]) to investi-
gate the method presented (see Figure 5). We chose a sample protocol that includes 
all the typical properties of real life protocols. It is built on the OSI concept, and 
it contains some basic OSI elements. INRES is a connection-oriented protocol that 
operates between two protocol entities Initiator and Responder. These protocol 
entities communicate over a Medium service. Although it is not a real protocol, 
its specification contains most of the syntactic elements of SDL. The SDL specifi-
cation of the system was created using the Telelogic Tau ([15]). The structure of 
the system and the states of the processes are shown in Figure 5. (The transitions 
of the processes are shown schematically, dots represent decisions. Inputs, outputs 
and actions are not represented. For more details see [5].) 

Table 2 summarizes the syntactic properties of the six processes of the INRES 
system - described in SDL. The columns represent the following: 

• States - number of states in the given process. 

• Inputs - the sum of processed inputs in each state of the given process. 

• Outputs - the sum of generated outputs in each transition of the given process. 

• Decisions - the number of boolean decisions (i.e. the answer is either true or 
false) in all transitions of the given process. 

• Saves - the number of save statements in the given process. 

• . Transitions - the number of different transitions in the given process. 

Processes States Inputs Outputs Tasks Decisions Saves Tran-
sitions 

Initiator 4 10 9 8 4 1 14 
Coderlni 1 3 4 5 2 0 5 

Responder 3 5 7 2 1 0 9 
CoderRes 1 4 3 6 1 0 5 

MSAPManl 1 2 2 0 0 0 2 
MSAPMan2 1 2 2 0 0 0 2 

Table 2: Syntactic Properties of the Processes in INRES 
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Figure 5: The INRES system in SDL 

5.2 The tool 

The tool consists of several components. One of the inputs of the tool is a textual 
SDL specification. First, this specification is modified, so that timers are made con-
trollable, and decisions with multiple branches are transformed to series of boolean 
decisions. These transformations do not affect the behavior of the system. An 
other component of the tool applies mutation operators to this specification, and 
generates a set of mutant specifications. A semantic check is applied to this set 
to find critical semantic errors. The next component generates program code from 
both the original and the mutant specifications. The test execution component is 
the core of the tool. This implements the second algorithm. The inputs of this 
component are the program codes generated before and MSC test cases given in 
textual form. This component outputs a boolean matrix, which is the input of the 
last component, the optimizer. The final output of the tool the names of the MSC 
test cases found adequate. . .. . •'•• 
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Figure 6: Mutation tester for SDL and MSC 

5.3 The experiment and empirical analysis 

We generated 87 MSC test cases using Telelogic Tau for the INRES protocol. This 
set intentionally included some appropriate and some useless test cases, and most of 
them were generated randomly. By applying the operators to the specification, 118 
mutants were generated automatically. Finally, nine test cases of the original set 
were selected. The selection included some of the test cases we initially considered 
appropriate based on our knowledge of the system. 

The resulting test set depends on the number and the quality of test cases in the 
original set. Therefore, if test cases in the initial set are generated automatically, 
then the resulting set is only influenced by their number. The selected test cases 
achieve 100% symbol coverage using the Telelogic Tau, which also indicates that 
they are, in fact, adequate. 

This whole limited experiment took using the second algorithm on a computer 
with a PIII/500MHz processor and 256 Mbytes of RAM 103 minutes. The execution 
time - of both algorithms in Section 4.3 - can be decreased by dividing the test set 
and executing the groups in parallel. The time required to optimize an existing set 
- using the second algorithm - is proportional to the number and to the length of 
test cases and to the size of the specification. 

Table 3 shows the data acquired during the experiment. 
As the data show, twenty mutants have not been discovered by any of the MSC 

test cases. The worst mutation uncover ratio is, in the case of state mutation 
operators, and the best is in the case of input exchange. More than half (12) of 
the cases, where no difference has been found is in the Initiator process that is the 
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Mutation operators Mutants generated Detected Detection ratio [%] 
State 24 14 58 
Input 28 28 100 

Output 36 33 92 
Action 21 15 71 

Predicate 8 7 87 
Save 1 1 100 

Table 3: Mutation Analysis Applied to the SDL specification of INRES 

largest in the system. Six of the mutants of the Responder process have not been 
killed. Both in case of processes Coderlni and CoderRes, one mutation has not 
been revealed. 

There have been some mutations discovered by only one test case, .we call them 
critical mutants. The test cases detecting these critical mutants have to be included 
in the resulting set. Interestingly, these test cases give eight of the nine selected. 
Out of the eight critical mutants, two have been generated using predicate, two 
using output, three using state and one using action mutation operator. Applying 
input mutation generated no critical mutants. 

Both this, and the mutation uncover ratio indicate that input mutation (and 
input like mutations, e.g. missing transition) operators result in very rough mutant 
systems. That is, they produce radical changes in the behavior of the - INRES -
system that can be detected by most of the test cases. State mutation, on the other 
hand, produces errors that can be discovered by only a small percentage of the test 
cases, but it has provided three critical mutants, more than any other operator. 

6 Conclusions 
Conformance testing is a vital part of the standard based telecommunications pro-
tocol development process. In the practice, the creation of test suites is usually a 
very time consuming manual process, even though several computer aided test gen-
eration methods have already been developed. By means of the method proposed, 
in this paper, it is possible to automate all steps of the test selection process, and 
to create effective test suites. 

In this paper, we described how to apply mutation analysis, a white box method, 
to formal SDL specifications, and use mutant systems to automatically select ad-
equate test cases for black box testing. For this purpose, we created and formally 
specified a set of mutation operators for CEFSM and SDL specifications. We also 
presented two slightly different algorithms for automatic test selection using the 
operators. We investigated empirically the mutation operators used. The recent 
method and the tool is useful not only for simple protocols, but also for real, com-
plex telecommunications systems described in SDL. 

In the future, we plan to make more experiments to reveal the effect of using 
different initial test and operator sets. 
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