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Abstract 

The aim of this work is to develop a resource-conscious Artificial Intel-
ligence (AI) planning system, which allows for nondeterminism in the envi-
ronment. Such planner has a potential in applications where actions in "real 
world" are considered. 

The planning process is based on proof search for a fragment of Lin-
ear Logic (LL) [10] sequents using a subset of LL rules. As LL is resource-
conscious and has additive disjunction connective (represents nondetermin-
ism), LL sequents Eire used to describe an application domain, whereby every 
LL sequent represents pre- and postconditions of a particular action execu-
tion. 

We present an idea to use Petri net reachability tree analysis for find-
ing proofs for propositional LL sequents. Game playing is used to solve LL 
additive disjunctions. Prom LL proofs plans axe extracted which because of 
underlying LL properties keep track of resources and handle both determin-
istic and nondeterministic actions. 

Keywords: Linear Logic Theorem Proving, AI Planning, Petri Nets, Game Play-
ing. 

1 Introduction 
In mission critical situations the response of a system must be reactive. For a sys-
tem relying on a symbolic representation it means that a backup plan, describing 
alternative actions to be carried out if the main plan is not applicable anymore, 
should be available immediately. Therefore nondeterminism in results of actions 
should be taken into account already in the planning phase and action representa-
tion must thus support describing nondeterministic actions. 

The aim of this work is to develop a resource-conscious AI planning system, 
which is able to manage nondeterminism in an environment. Such planner has a 
potential in applications where actions in the "real world" are considered. 

'This work was partially supported by the Estonian Science Foundation under grant no. 4155. 
t Software Department, Institute of Cybernetics at Tallinn Technical University, Akadeemia tee 
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There exists a framework called Linear Logic [10] (LL) which allows handling 
uncertainties while being also resource-conscious. 

As LL is resource-conscious, we are using LL formulae to describe application 
domain and LL theorem proving to construct a plan achieving a goal. We propose a 
subset of LL connectives and operators sufficient for describing both deterministic 
and nondeterministic actions in a resource-sensitive world. 

For proving propositional LL sequents, we present a new approach by composing 
Petri net reachability tree analysis and game playing. Plans are then extracted from 
these proofs. Some extensions and improvements to our algorithm are described 
in [19], where also the algorithm is compared to other systems and algorithms in 
the AI planning field. 

2 Linear Logic 
LL is a refinement of classical logic introduced by J.-Y. Girard to provide a means 
for keeping track of "resources"—two assumptions of propositional constant A are 
distinguished from a single assumption of A. Although LL is not the first attempt 
to develop resource-oriented logics (well-known examples are relevance logic and 
Lambek calculus), it is by now the most investigated one. 

Since its introduction LL has enjoyed increasing attention both from proof the-
orists and computer scientists. Therefore, because of its maturity, LL is useful as 
formal representation of planning system kernel. Good tutorials to LL are [32] 
and [21]. One of the first overviews of LL applications is presented in [1]. There 
exist several efficient formal method tools for proving LL sequents [31]. 

From the complete set of LL connectives and operators we are using multi-
plicative conjunction (®), additive disjunction (ffi) and "of-course" (!). Whilst the 
connectives 0 and © are needed to describe pre- and postconditions of actions, the 
operator ! gives us control over resources. 

In terms of resource acquisition the logical expression A®B b C®D means that 
the resources C and D are obtainable only if both A and B. are obtainable. Thus 
the connective ® defines deterministic relations between resources and actions. 

The expression A I- B © C on the contrary means that if we have a resource 
A] we can obtain either a B ov a C, but we do not know which one of those. It is 
definitely clear that © is suitable to represent nondeterminism in results of actions. 

The operator ! means that we can use or generate particular resource as much 
as wé want—the resource is somehow unlimited for us. 

To illustrate the above let us consider the following LL formula, adapted to 
our set of LL connectives and operators, from [21]—(D g> D <S) D D <g> D) h 
(H ® C®\F ® (P ffi /)), which encodes a fixed price menu in a fastfood restaurant: 
for 5 dollars (D) you can get an hamburger (H), a coke (C), all the french fries (F) 
you can eat plus a pie (P) or an ice cream (I) depending on availability. 

To increase the expressiveness of formulae, we are using the a" = a<8) — • ® Q, 
n 

for n > 0, with the degenerate case o° = 1. 
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Since we do not use all LL connectives and operators for planning, only a subset 
of LL rules listed below is needed for proof search. 

Logical axiom and Cut rule: 

r h 4̂, A r ' , I - A' . 
H—— (Cut) 

A\-A (Axiom) r , T h A, A 

Rules for the propositional constants: 

Th A 
h i r . I H A 

r , A b A r , B I - A , r . r I- A, A . . . . T h - B . A - WIX 

r.AeBhA ( L e ) F h W » 

r,A®BhA K r,T \-A®B,A,A 

Rules for the exponential !: 

VY > r I A U A ^ > IP 1-1 A ? A P M L A ' . ' ^ V r , ! 4 h A r ' r , L 4 K A ' !r,h!A, ?A v 7 r , W l - A ' 

3 Planning and LL 
One merit of LL deductive planning is said [11] to consist in its ability to solve the 
technical frame problem [24] without the need to state frame axioms explicitly and 
is therefore especially good for representing causal relations between actions and 
resources. 

The multiplicative conjunction connective (<g>) and additive disjunction (©) have 
been used in [23], where a demonstration of robot planning system has been given. 
The usage of ? and !, whose importance to AI planning is emphasised [4], is discussed 
there, but not demonstrated. 

Influenced by [23], LL theorem proving has been used by Jacopin [14] as an 
AI planning kernel. As only the multiplicative conjunction ® is used in formulae 
there, the problem representation is equivalent to presentation in STRIPS [9]-like 
planners—the left side of a LL sequent represents STRIPS delete-list and the right 
side accordingly acid-list. Multiplicative conjunctions just separate propositions. 

Unfortunately, the algorithm Jacopin proposes for proof search is very inefficient 
and belongs to the class of brute force methods. 

In [6] a formalism has been given for deductively generating recursive plans in 
Linear Logic. This advancement is a step further to more general plans, which are 
capable of solving instead of a single problem a class of problems. 
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To illustrate the usefulness of LL in resource-aware planning we give proofs for 
the two following tasks. After that, according to the LL rules and axioms used, 
plans from the proofs are extracted. Application domains are represented as sets 
of extralogical axioms. 

It should be mentioned that as the LL planning idea consists finding a proof 
for a certain LL sequent, the goal for the planner is specified with a LL sequent: 
initial conditions t- final conditions. In order to implement plan reuse, every 
proved sequent (theorem) can be added to the set of extralogical axioms and other 
previously proved sequents, describing a particular application domain. Thus the 
next time it can be used to prove other sequents. 

The'LL sequents we are going to use for describing application domains and 
goals are given in form D b D whereas D ::— K \ K © D, K ::= 1 | A \ K ® A and 
A is an atomic formula. 

The first task for a robot is to mine a ton of gold and the second is to fill a box 
with balls. 

3.1 Gold-mining problem 
Let us assume that in some particular case the application domain consists of three 
actions: Excavate, Refine and Convert. We have also two predicates—KG and T 
for inspecting whether we have a kilogram or a ton of gold respectively. At last 
two. constants—Sand and Gold—axe used to indicate the resources we are mining. 

The STRIPS-like add- and cie/eie-effects for the just mentioned actions are 
specified with LL sequents as follows: 
Excavate: b KG(Sand) 
Refine: IKG(Sand) b KG (Gold) 
Convert: KG(Gold)1000 b T(Gold) 

It should be reminded that the delete-eftect of an action is defined before the b 
symbol and acid-effect after that symbol. 

The proof for the sequent b T(Gold) follows here1: 

b KG(Sand) 
HKG(Sand) ( ' \KG(Sand) b KG(Gold) 

b KG (Gold) " ~~ ( Ut> : i— ggg x (R6t)) 
b KG(Gold)1000 KG(Gold)1000 b T(Gold) , 

tnGM) 

The plan V = {1000* {n * Excavate,Refine}, Convert} extracted from the 
previous proof could be stated in the natural language as: excavate sand by one 
kilogram and extract gold from it until you have a kilogram of gold. Repeat in such 
a way thousand times. 

'Literally speaking—how to get a ton of gold from nothing. 



Resource-Conscious AI Planning with Conjunctions and Disjunctions 605 

3.2 Box filling problem 
In the second example task a robot has to fill a box with balls. The robot can move 
around and pick up balls it encounters on its way. Every ball is then stored in a 
box. The box is said to be full if it holds seven balls. The robot starts moving with 
empty hands (propositional constant EMPTY). The goal in LL sequent'form is 
EMPTY h EMPTY ® FULL. 

The expression system consists of five propositions. The specification of actions 
available for the second task is listed here: 

Take: EMPTY ® NEAR h HOLD 
Store: HOLD h EMPTY ® IN 
Move: h NEAR 
Fill: IN7 b FULL 

First we prove that the sequent EMPTY h EMPTY ® IN is derivable: 

EMPTY h EMPTY ^ NEAR 
EMPTY h EMPTY ® NEAR ( R ® ) EMPTY ® NEAR h 

EMPTY h HOLD 
(Cut) 

HOLD 1- EMPTY ® IN 

EMPTY h EMPTY ® IN 
(Cut) 

The plan extracted from the proof is V\ = {Move, Take, Store}. The preced-
ing proof was used to construct a plan for finding and storing a ball. The following 
generates a plan to fill a box with balls found: 

EMPTY I- EMPTY IN h IN 

EMPTY h EMPTY ( 

EMPTY I-
EMPTY ® IN 

EMPTY, IN I- EMPTY ® 

EMPTY ® IN I- EMPTY ( 

R ® 

EMPTY h EMPTY ® IN' 

(t®) 
(Cut) 

EMPTY h EMPTY 
IN7 I- FULL 

EMPTY, IN' I-
EMPTY ®"FULL 

EMPTY ( 
EMPTY < 

EMPTY I- EMPTY ® FULL 

(R®) 

( L 0 ) 

( C u t ) 

The plan V2 = {7 * P i ,Fi l l } presents another plan, which uses a previously 
canned plan V\. In this way a modular plan representation is achieved and plan 
reuse is implemented. 

In plans using deterministic actions it is always clear which actions must be 
executed to achieve a goal. The situation is more complex, if we include nondeter-
ministic actions to an application domain specification. In that case the plan must 
cover all cases possibly occurring because of nondeterministic actions. A plan is 
valid if execution of every action in its sequence leads to a goal. 

Although LL has been demonstrated to be useful for AI planning [23, 14, 11, 
4, 6], there has been little discussion about which algorithms to use for proving LL 
sequents. 
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It is intuitively clear that for a smaller set of logic connectives, operators and 
rules simpler proving techniques are applicable. Thus it makes sense to look for 
new proving methods. 

4 Petri nets and LL 
It has been shown [7, 3] that Petri nets can be presented in the form of LL sequents. 
Thus at least a part of a set of LL sequents can be translated into Petri nets. One 
of the first surveys on Petri nets is [28], where an overview of basic concepts and 
extensions and subclasses of Petri nets may be found. 

4.1 Petri nets 
A Petri net is a formal tool which is particularly well suited for representing true 
parallelism, concurrency and causal relations in discrete event dynamic systems. 
In this section we define the concept of Petri net and give the main notation and 
definitions to be used in the sequel. 

A Petri net is a 5-tuple N = ( P , T , Pre, Post, Mo), where P = {pi,p2, • • • ,Pn} 
is a finite set of places, T — {¿i, ¿2> • • • ,tm} is a finite set of transitions, Pre : 
P x T J V is the input incidence function, Post : T x P J\f is the output 
incidence function and Mo : P —> N is the initial marking.' A Petri net with a 
given initial marking is denoted by (N, M0). 

In the graphical representation, circles denote places and vertical bars denote 
transitions, tokens are represented as dots inside places. The Pre incidence function 
describes the oriented arcs connecting places to transitions. It represents for each 
transition t the fragment of the state in which the system has to be before the 
state change corresponding to i occurs. Pre(p,t) is the weight of the arc (p,t), 
Pre(p, t) = 0 denotes that the place p is not connected to transition t. 

The Post incidence function describes arcs from transitions to places. Analo-
gously to Pre, Post(t,p) is the weight of the arc (t,p). 

The vectors Pre(.,t) and Post(t,.) denote all input and output arcs respectively 
of transition t with their weights. 

The Petri net dynamics is given by firing enabled transitions, whose occurrence 
corresponds to a state change of the system modeled by the net. A transition t is 
enabled for a marking M, if M > Pre(.,t). This enabling condition is equivalent 
to Vp 6 P, M(p) > Pre(p, t). Only enabled transitions can be fired. 

If M is a marking of N enabling a transition t, and M' is the marking derived 
by the firing of a transition t from M, then M' = (M - Pre(., t)) + Post(t,.). The 
firing is denoted as M A M' . 

In a Petri net N it is said that a marking Mg is reachable from a marking M iff 
there exists a sequence of transitions s such that M A MgWe call the reachability 
problem for Petri nets the problem of finding a firing sequence s to reach a given 
marking Mg from Mo-
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Figure 1: The Petri net representation of LL sequent A ® B b C. 

The coverability problem (sometimes also called the submarking reachability 
problem), given a marking Mg, is defined as the problem of finding a firing sequence 
s to reach a marking Ms from Mo such that Mg C Ms. 

4.2 Mapping LL sequents to Petri nets 
LL sequents involving only <g>, like A®B b C®D, can be presented directly in form 
of Petri nets. Then the set of places P of a Petri net N is augmented with places A, 
B, C and D. The set of transitions T is augmented with a new transition U. Pre 
and Post are augmented respectively with Pre(A,ti), Pre(B,ti) and Post(U,C) 
plus Post(ti, D). 

Using LL rule Lffi the sequent A ffi B b C is splitted into sequents A b C and 
B C. Constructions like \A may be used only in the left hand side of an sequent, 
which has to be proved (a goal sequent). 

The semantics of the connective ffi on the right hand side of a sequent should 
be implemented explicitly using other techniques. The Petri net representation of 
a LL sequents containing multiplicative conjunctions is demonstrated in Figure 1. 

It must be noted that the left hand side of a goal sequent forms the initial state 
Mo (marking) of a Petri net and the right hand side forms the final Petri net state 
Mg (goal in AI planning terminology) which must be achieved as a result of proof 
search. Thus a proof is found if there exists a way to fire Petri net transitions so 
that from the initial state the final state is reached. 

4.3 Rewriting "of-course" in formulae 
To fit into the Petri net framework, formulae containing the "of-course" operator 
must be rewritten. The following rules should be kept in mind, when doing that: 

1. there may be no ! in extralogical axioms 

2. there may be no ! in the right hand side of a sequent for which a proof has 
to be generated 

3. for every \X in the left hand side of that sequent generate a new extralogical 
axiom b X and remove \X from left hand side of the initial sequent 

4. if there are several instances of \X, then only one axiom b X is generated 
and all instances are removed from the left side of the sequent 
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For instance the LL sequent IA <g> C 1- B to be proved is translated to sequents 
h A and C h B, whereas h A is a new extralogical axiom and C h B the new 
sequent to be proved. 

5 Solving LL multiplicative conjunctions with 
Petri nets 

Petri nets have been used in AI planning for example in [26, 5, 30, 25] thanks to 
their clear and well-defined semantics, as well the formal analysis techniques and 
tools available. 

There exist several other works considering AI planning with graphs—quite 
similar by ideology to Petri nets. For example in [12] colouring of bipartite graphs 
is used in goal search. 

Another AI planner using graph as a planning structure is Graphplan [2], where 
the application domain, initial conditions and goals are presented as nodes and 
arcs between nodes. Graphplan uses breadth-first search for finding a solution for 
achieving a goal. A plan in Graphplan is represented in partial order. 

Kanovich [16, 17] proved that the derivability problem of the LL subset consist-
ing only of tensor (g>, modal storage operator !, and linear implication —° is directly 
equivalent to Petri net reachability problem and thus is decidable. 

While using Petri net reachability tree analysis for theorem proving, many ir-
relevant choices in proof search are eliminated, making proof search tractable by: 

• avoiding useless loops, which are generated for instance by applications of the 
Cut rule . 

• reducing the set of permutations of inference as applications of some inference 
rules like L® and R® are ignored 

Useless loops in a proof are characterised by the following situation, where one 
sequent a inside a proof is identical to the root of the proof: 

a 

a 

Hence, the sub-proof starting from that internal sequent could replace the overall 
proof. ' 

5.1 Petri net reachability tree analysis 
For analysing properties of Petri nets, the basic technique used involves finding a 
finite representation for the reachability set of a Petri net. The representation used 
is known as the reachability tree, which consists of a tree whose nodes represent 
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markings (states) of a Petri net and whose arcs represent the possible changes in 
Petri net state resulting the firing of transitions. 

Thus a reachability tree represents all Petri net states reachable from an initial 
Petri net state using all of its transitions. 

However, the reachability set of a marked Petri net is often infinite. Thus to 
form a finite representation of an infinite set we must map many markings into the 
same node of the tree. This mapping is accomplished by collapsing a set of states 
into a state by ignoring the number of tokens in a place of the net when this number 
becomes "too large". This is represented by using special symbol w. The symbol 
U represents a value which can be arbitrarily large (infinite), whereby UJ + a = UJ, 
LJ — a = UJ and a < UJ, where a is an arbitrary positive integer. 

Each node in the reachability tree is labelled with a marking, arcs are labelled 
with transitions. The initial (root) node is labelled with the initial marking. Given 
a node x in the tree, additional nodes are added to the tree for all markings that 
are directly reachable from the marking of the node x. For each transition tj which 
is enabled in the marking for node x, a new node with marking2 6(x, t j ) is created 
and an arc labelled tj is directed from the node x to this new node. This process 
is repeated for all new nodes. 

Continuing this process will obviously create the entire reachable state space. 
A path from the initial marking to a node in the tree corresponds to an execution 
sequence. Since the state space may be infinite, two special steps [18] are taken to 
define a finite reachability tree. 

First, if a new marking is generated, which is equal to an existing marking on 
the path from the root node to the new marking, the new (duplicate) marking 
becomes a terminal node. Since the new marking is equal to the previous marking, 
all markings reachable from it have already been added to the reachability tree by 
the earlier identical marking. Detecting a new duplicate marking is used later in 
this article also under the term cycle detection. 

Second, if any new marking x is generated, which is greater than a marking y on 
the path from the root node to the marking x, then these components of marking x, 
which are greater than the corresponding components of marking y are replaced by 
the symbol UJ (this action is further called collapsing). Since marking x is greater 
than marking y, any sequence of transition firings which is possible from marking 
y, is also possible from marking x. In particular, the sequence that transformed 
marking y into marking x can be repeated indefinitely, each time increasing the 
number of tokens in those places, which have a UJ. Thus the number of tokens in 
these places can be made arbitrarily large. A sequence of labels of arcs from the 
node y to the node x, would be referred later with term subplan. 

As an example of this construction, consider the marked Petri net in Figure 4. 
T h e P e t r i n e t c o n s i s t s of 6 p l a c e s — ( E M P T Y , NEAR, HOLD, I N , MOVE JDK, 
FULL) and 4 transitions—(Take, Store, Move, Fill). Initially we assume that 
places EMPTY and MOVE JDK both hold one token. 

2 <5 is a transition function from one Petri net state to another. 
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Thus, the initial state of that Petri net is coded as {1,0,0,0,1,0}, where the 
number at the first position is the number of tokens at place EMPTY, the second 
position corresponds to the number of tokens at place NEAR, the third at HOLD, 
the fourth at IN, the fifth at MOVE-OK and the sixth at FULL. 

We begin with {1,0,0,0,1,0} as the root node of the tree. In this marking we 
have only one enabled transition—Move. Thus we have a new node corresponding 
to firing Move, {1,1,0,0,0,0} and an arc from {1,0,0,0,1,0} to {1,1,0,0,0,0}. 
From this marking we can fire Take and from that newly created node then Store 
resulting in {1,0,0,1,1,0}. Now, since {1,0,0,1,1,0} > {1,0,0,0,1,0}, we re-
place the forth component by ui. This reflects the fact that we can fire sequence 
{Move, Take, Store} arbitrary number of times and make the number of tokens 
in the place IN as large as desired. 

From the marking. {1,0,0, w, 1,0} we can fire transitions Fill and Move. After 
firing Fill again collapsing takes place because {1,0,0,w, 1,0} < {1,0,0, w, 1,1}. 
It can be seen that after firing sequentially Move, Take and Store from marking 
{1,0,0,a;, 1,0} we reach again marking {1,0,0,u>, 1,0}, which is a duplicate and 
therefore is set to terminal node. The partial Petri net reachability tree is as shown 
in Figure 5. 

Although the Karp-Miller algorithm is useful for the analysis of Petri net reach-
ability tree, due to the loss of information caused by w, it cannot detect all possible 
firing sequences needed. A workaround for that problem and several interesting 
examples about Karp-Miller algorithm may be found at [33]. 

5.2 Representation of application domain, valid plans and 
goals 

An application domain specified with LL sequents is translated to a Petri net using 
previously defined transformations. For disjunctions special nodes are added, where 
splitting to different Petri net places is done. 

A valid plan and a subplan is represented by a sequence of the Petri net tran-
sitions to be fired for achieving a goal. Every transition may refer to a subplan, 
which has to be applied after that transition zero or more times. The number of 
repetitions is computed while checking the correctness of the plan. Note that sub-
plan in our case is not a plan for achieving subgoals—it is just a reusable sequence 
of transitions. 

Every transition in the plan and subplan is enriched with its precondition, which 
is presented by a Petri net state where that transition was fired. None of transi-
tions in subplan can refer to another subplan. Every subplan is enriched with its 
precondition. Goal is presented by a Petri net state. 

5.3 The PNSolver algorithm 
The depth-first algorithm for using Petri net reachability tree analysis for generating 
plans, where only deterministic actions are considered, is presented in Figure 2. 
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Naturally other search methods can be easily adapted to that algorithm. 
Initially the list of passed states consists of just the initial Petri net state. Initial 

plan plan is empty, goal is the state which must be achieved while firing transitions 
("executing" actions). 

The main idea of the algorithm is to test all transitions in the set T whether 
they are fireable from a certain Petri net state or not. If a transition is fireable, 
a new state is computed and it is checked whether the state already exists in the 

Algorithm PNSolver (init, proof, H, goal) 
inputs: init //initial state of a Petri net 

proof //an initial proof 

H //a set of states visited during the proof search so far 

goal //a final state of a Petri net 

output: P //a set of valid proofs 

begin 

for V t 6 T 
state init 
if fireable(t, state) then 

state fire(t, state) 
if state 6 H then //that state has been visited 

continue //do not proceed (Karp-Miller) 

end if 

proof .push(t) 
state <— collapse(st'ate, H) //collapse state space (Karp-Miller) 

H .push(state) 
if state = goal then //a proof is found 

announce(proof) ' . 
proof ,pop() 
H.popQ 
continue 

end if 

proof .pop() 
H.pop () 

end if 

end for 

for V p G announcedProofsQ 
p <— CheckCorrectness(init, p, goal) 
P <- P U p 

end for 

return P 
end PNSolver ' 

Figure 2: A pseudocode for finding sequences of transitions from the initial state 
of a Petri net to the final state. 
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sequence of visited states H . If the state happens to exist in H , a cycle is detected 
and search from that Petri net reachability tree node is terminated. As the cycle 
was detected, it is clear tha t if the goal state was not found in previous round of 
tha t cycle, it would not be found on the next round either. 

Else, if the state was not discovered in H, state is added to H, plan is augmented 
with a transition, and Petri net possibly infinite s tate space is collapsed, if possible. 
Collapsing generates a subplan, which is added to a list of subplans and a reference 
from the last transition in the plan to tha t subplan is inserted. Also information 
about how many resources that subplan generated, consumed and its precondition 
is remembered. For more information about Petri net reachability tree analysis 
see [28]. 

The usage of subplans reduces dramatically the time needed to construct a plan 
if used wisely [29]. In our case subplans are generated as a side-effect using Petri 
net state space collapsing. 

If the achieved state is equivalent to goal, search is terminated at that particular 
reachability tree node, plan is added to a list of plans P, and the inspection of next 
transitions begins. 

In the case goal is not achieved after firing particular transition, search from the 
new state is recursively proceeded until whole available search space is explored. 
The possibly infinite search-space is reduced by cycle detection and collapsing. 

Checking the correctness of a plan (see algorithm in Figure 3) in the end of 
algorithm is started to solve ambiguities generated through collapsing. Correctness 
checking computes how many times certain subplans must be executed sequentially 
to achieve needed amount of resources. During the correctness checking it may tu rn 
out tha t some goals are not valid at all and the exact number of some resources 
cannot be achieved. It may turn out for example that only even number of units 
of a resource may be generated instead of needed odd number defined by the goal. 

Correctness checking starts from the goal state and moves towards the initial 
state, while undoing effects of fired transitions. If a transition referring to a subplan 
is detected, the number of subplan execution cycles is computed according to needed 
resources. If finally Petri net state init is achieved, the plan is considered to be 
valid and is returned. 

To illustrate this algorithm, let us take a look again at the box filling problem 
(see Sect. 3.2) we solved previously and modify3 the application domain specifica-
tion to be more "real": 

T a k e : EMPTY ® NEAR b HOLD 
S t o r e : HOLD b EMPTY ®IN® MOVE.OK 
M o v e : MOVE.OK b NEAR 
Fill: IN7 b FULL 

The Petri net representing the same specification consists of 6 places (EMPTY, 
NEAR, HOLD, IN, MOVE.OK, FULL) and 4 t r ans i t ions ( T a k e , S t o r e , M o v e , 
Fill). Initially we assume that places EMPTY and MOVE.OK both have one 

3In the previous version of the specification a robot was able to run from one place to another 
and then pick up balls it encountered from one final place. 
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Algorithm CheckCorrectness(init, proof, goal) 

inputs: init //initial state of a Petri net 

proof //an initial proof 

goal 

output: p //a complete proof 

begin 

state goal 
for Vi € p 

if referenceToSubsolution(t) then 

t addSubsolutionRepetitions(t, state, init) 
state undo Sub solution(t, state) 

else 

state undo(t, state) 
end if 

end for 

if state = init then 

return p 
else 

return nil 
end CheckCorrectness 

Figure 3: A pseudocode for checking the validity of a proof. 

token and the goal would be to get one token to each of EMPTY, MOVE.OK 
and FULL. In LL terms it means finding a proof for a sequent MOVE-OK ® 
EMPTY b FULL ® MOVE.OK <g> EMPTY. See also Figure 4 for graphical 
representation of that Petri net and its initial state. 

Figure 4: The Petri net with an initial marking for the box filling example. 

Move 



614 Peep Klingas 

So, the initial state of that Petri net is coded as {1,0,0,0,1,0}, where the 
number at the first position is number of tokens at place EMPTY, the second 
position corresponds to the number of tokens at place NEAR, the third at HOLD, 
the fourth at IN, the fifth at MOVE.OK and the sixth at FULL. The goal state 
is accordingly {1,0,0,0,1,1}. Petri net reachability tree for our application domain 
and goal specification is in Figure 5. 

Figure 5: A fragment of reachability tree of Petri net in Figure 4. Arcs without 
ending node show that the tree follows. 

Petri net transitions can be presented with STRIPS-like add- and deZeie-lists, 
see Table 1. The precondition in STRIPS sense for every transition is that there is 
enough of tokens to fire particular transition. 

Transition deZeie-list odd-list 
Move 000010 010000 
Take 110000 001000 
Store 001000 100110 
Fill 000700 000001 

Table 1: Petri net transitions as add- and deZefe-lists. 

It can be seen from the reachability tree that after firing transitions Move, 
Take and Store, we reach a state where compared to the initial state the number 
of tokens at place IN has increased: {1,0,0,1,1,0} > {1,0,0,0,1,0}. Therefore 
this component is replaced by u , meaning that using that sequence again we can 
generate infinite number of resources IN—this is called Petri net state space col-
lapsing. After collapsing we apply Fill and reach the state which is a possible goal 
state and resulting plan is V = {n* {Move,Take, S tore} ,m * Fill}. 

It is evident that through Petri net state-space collapsing we reduce the search 
space, but we lose information about how many times a subplan must be executed. 
Therefore we have to start with correctness checking to compute the number of 
times we have to execute generated subplans. In that particular case the final plan 
is V = {7 * {Move, Take, Store}, 1 * Fill}. 
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Empirically estimating, a valid plan with our algorithm (even when using 
breadth-first search) may be found with smaller number of steps than Graphplan 
planner could, because in our case subplans are used and cycles are detected while 
planning. 

Unfortunately finding the shortest plan requires searching the whole available 
search space—all valid plans are computed^ subplans are unfolded and then the 
shortest plan is selected. It is due to the fact that we do not know how many times 
a subplan must be executed—it may be 0 as well as 1000 times. As the previous 
example illustrated, a plan with length 22 was found from the Petri net reachability 
tree at depth 4. Thus there is no strong connection between a search depth and a 
plan length if the Karp-Miller algorithm is used. 

6 Using game playing for solving LL additive dis-
junctions 

In respect to planning, having a LL sequent A I- B © C, we do not know which one 
of the resources B or C would become the result of execution of particular action. 
Therefore a way to handle sequents like A I- B © C within Petri nets we may 
choose between stochastic Petri nets [27] and coloured Petri nets [15], sometimes 
misleadingly called high-level nets. In such a way the model can be specified within 
one net. The colour of tokens depends on which disjunct was selected as a result 
of applying particular transition. 

As stochastic Petri nets alter in some way the firing rule of Petri nets and make 
it so the main part of net theory no longer applicable [27], they should be avoided 
as long as possible. 

Instead of using previously mentioned Petri net derivations we start game play-
ing on a Petri net reachability tree. The advantage of game playing on a tree is 
pruning of search space by using AND nodes. Thus transition selection represents 
OR and disjunct selection represents AND level of a game. 

An advanced PNSolver algorithm, PNGameSolver, for solving disjunctions on 
the right hand side of LL sequents is presented in Figure 6. The only difference with 
algorithm in Figure 2 is that here reachability of the goal state from all disjuncts 
is considered. If at least from one disjunct the goal is unachievable, search with 
particular transition is terminated, backtracking is performed and search at other 
OR node proceeds. 

If the goal at least from one disjunct is not achievable, plans for other disjuncts 
at the same AND node are discarded. In addition, it must be noted that at the 
current moment the effect of subplans including nondeterministic actions is not 
quite clear and therefore Petri net state space collapsing is not applied if at least one 
action in resulting subplan would represent a nondeterministic action. Therefore 
generating plans including disjunctions is quite exhaustive. 
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Algorithm PNGameSolver (init, proof, H, goal) 
output: P //a set of valid proofs 

begin 

upper-cycle: for Vt 6 T //OR node 

for Vdisj 6 i //AND node 

if notAchievable(disj) then 

continue upper.cycle 

end if 

end for 

end for 

return P 
end PNGameSolver 

Figure 6: A pseudocode for handling nondeterminism within Petri nets. 

7 Computational complexity of the PNSolver and 
the PNGameSolver algorithm 

Lipton proved [22] an exponential space lower bound for Petri net reachability 
problem, while the known algorithms require nonprimitive recursive space. As 
PNSolver algorithm uses Petri net reachability tree analysis for finding solutions, 
its minimal complexity is EXPSPACE-hard. 

PNGameSolver uses additionally games in Petri net reachability tree analysis, 
which makes its complexity comparable to reachability problem of nondeterministic 
Petri nets, whose complexity is proved [16] to be undecidable. 

However, tight complexity bounds of the reachability problem are known for 
many Petri net classes [8]. For example, If we would limit expressive power of used 
LL sequents so that sinkless or normal Petri nets may be used, we would achieve 
NP-complete complexity [13] for reachability analysis. 

As we are using Petri net reachability tree analysis on the fly, meaning that we 
build Petri net and analyse it simultaneously, it is possible to bypass difficulties 
arised from complexities of algoritms by using heuristics at search. If powerful 
heuristics is used only a fragment of reachability tree would be generated before a 
solution is found. 

Another constraint, we may set, is to fix a bound on the number of tokens at 
places—algorithms for bounded Petri nets are less expensive in complexity. 

In [20] an abstraction technique for LL theorem proving is proposed which 
in the best case reduces the exponential problem solving complexity of PNSolver 
algorithm to linear. ' 
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8 Conclusions 
In this article we proposed a new way of resource-conscious AI planning using 
propositional LL sequents as a knowledge representation form. These sequents are 
translated into Petri nets and then a plan achieving a certain goal is computed. 

A fusion of Petri net reachability tree analysis and game playing is used to 
solve problems described with LL sequents. Whilst game playing allows handling 
LL additive disjunctions, Petri net analysis handles LL multiplicative conjunctions 
and preserves resource-consciousness. 

By Petri net state space collapsing subplans are generated and thereby plan 
generation time is reduced. 

Experimental results with PNSolver algorithm are presented in [19], where a 
comparison between depth-first and breadth-first search algorithms with and with-
out certain extensions is given. 
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