
Acta Cybernetica 15 (2002) 669-682. 

Recognizing Design Patterns in C + + Programs 
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Abstract 

A method for recognizing design patterns from C + + programs is pre-
sented. The method consists of two separate phases, analysis and reverse 
engineering of the C + + code, and architectural pattern matching over the 
reverse-engineered intermediate code representation. It is shown how the 
pattern recognition effect can be realized by integrating two specialized soft-
ware tools, the reverse engineering framework Columbus and the architectural 
metrics analyzer Maisa. The method and the integrated power of the tool set 
are illustrated with small experiments. 

Keywords: design patterns, reverse engineering, source code parsing, C + + , 
object-oriented design 

1 Introduction 
Due to the increase of size and complexity of software systems, the importance 
of being able to comprehend and assess the quality of (legacy) software code has 
been steadily rising. Traditional software metrics, such as complexity, cohesion, 
and coupling have not fully met the requirements of industrial software develop-
ment, mostly because they are rather low-level concepts and do not capture the 
high-level design decisions actually made by the designers and programmers when 
constructing the software. 

A more high-level view over a software system can be created by modern tech-
niques commonly known as reverse engineering. In reverse engineering, the ob jec-
tive is to extract the static structure and the dynamic behavior of tlfe code into 
some abstract representation, so as to make it easier to explore the essential aspects 
of the system by ignoring insignificant implementation details. In the idealistic case 
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the low-level code is reverse-engineered backwards into its original design - or at 
least to a form that might have been the intent of the software designers. 

Reverse engineering methods and tools produce a wide variety of abstract soft-
ware representations. A natural and currently quite popular strategy of abstracting 
object-oriented programs is to extract them into a set of UML diagrams [11]. Un-
der the assumption that UML is not just a general-purpose modeling language but 
also a language for describing software architectures, the generated diagrams can 
indeed be regarded as representing the architectural design of the system. 

While the automatic generation of UML diagrams from software code is already 
supported by a number of reverse-engineering tools, it is somewhat surprising that 
one of the cornerstones of contemporary object-oriented software engineering, de-
sign patterns [5], is in almost total lack of advanced tool support. By abstracting 
practical solutions to frequently occurring design problems into an object-oriented 
format, design patterns are a most natural and useful asset when recovering the 
architectural design and the underlying design decisions from the software code. 

In this paper we present a technique for automatically recognizing design pat-
terns from object-oriented (C++) code. The method relies on two software tools, 
Columbus [1][3] and Maisa [10][12], Columbus is a versatile reverse-engineering 
system that transforms C + + programs into a number of abstract representations, 
including UML class diagrams. Maisa is a metrics tool that analyzes the quality 
of a software architecture given as a set of UML diagrams. Since one of the func-
tionalities of Maisa is the mining of design patterns from the input architecture, 
Columbus and Maisa together provide the combined effect of recognizing design 
patterns from C + + code: the code is first transformed by Columbus into UML 
class diagrams, which are then traversed and matched against a set of predefined 
design patterns by Maisa. The integration of Columbus and Maisa is technically 
straightforward: Columbus exports its UML diagrams into Maisa using its textual 
input format. . 

The Columbus-Maisa couple can be used both to document and analyze a soft-
ware system implemented in C + + . In addition to that, since the foremost ap-
plication area of Maisa is the software design phase and that of Columbus is the 
implementation (coding) phase, the tools can be used to verify that the archi-
tectural design decisions (Maisa) are followed in the implementation phase and 
actually realized in the code (Columbus). This makes it possible to assess more 
closely the software development process as well as track the evolution of design 
decisions during it. 

We proceed as follows. The metrics analyzer Maisa is presented in Chapter 
2, concentrating especially on its pattern mining facility. The reverse-engineering 
system Columbus is presented in Chapter 3, followed by a short description of the 
tool integration in Chapter 4. In Chapter 5 we discuss our experiments on design 
pattern recognition. Finally, conclusions and future directions are addressed in 
Chapter 6. 
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2 Maisa 
Maisa [10][12] is a software tool for the analysis of software architectures, developed 
in an ongoing research project at the University of Helsinki. The key idea in Maisa 
is to analyze design level UML diagrams and compute architectural metrics for 
early quality prediction of the software system. 

In addition to calculating traditional (object-oriented) software metrics such as 
Number of Public Methods [2], Maisa looks for instances of design patterns (either 
generic ones such as the well-known GoF patterns [5] or user-defined special ones) 
from the UML diagrams representing the software architecture. According to the 
experiences gained so far with industrial cases, the level of abstraction is crucial for 
the success of the analysis: the more detailed the diagrams are, the more accurate 
are the results. Therefore design pattern mining at the detailed level of source 
code, as presented in this paper, is a most promising way of improving the practical 
usability of Maisa. 

Maisa also incorporates metrics from different types of UML diagrams and ex-
ecution time estimation through extended activity diagrams [15]. Additionally, 
we are currently studying the possibility of using dynamic information (such as 
sequence diagrams) for defining patterns more accurately. 

2.1 Constraint satisfaction in pattern mining 
Constraint satisfaction [6] [7] is a generic technique that can be applied to a wide 
variety of tasks, in our case to mining patterns from software architectures or 
software code. A constraint satisfaction problem (CSP) is given as a set of variables 
and a set of constraints restricting the values that can be assigned to those variables. 
Unary constraints (denoted as Pi) restrict the values for a single variable, while 
binary constraints (denoted as Pij) represent a condition for a pair of variables. 
The CSP is often modeled as a graph, where the nodes represent the variables and 
the arcs represent the constraints. 

Formally, a CSP can be stated as follows [6]: 
(3a:i € Di)(3i2 e £> 2)-(3x n E D^P^n) A P2{x2) A ... A Pn(xn) A ̂ 12(11,12) A 
Pi3(xi,x3) A ... A Pn-in{xn-i,xn), 
with Pij included for all i < j. 

In practical terms, variable domains (Dj) must consist of a finite number of 
discrete values. Evén so, the solution of trying out all combinations would be too 
slow. In addition, most combinations would make no sense, so it's no use to try 
them at all. We may try a particular value several times, even if there is no way 
that the value could be a solution for a given variable. Therefore we must find a 
way to effectively prune out impossible candidates. 

It is not always possible or practical to find a complete solution. If we allow 
partial satisfiability, we may accept those solutions that violate (to a certain extent) 
some of the constraints. In this situation, the constraints do not offer just exclusive 
alternatives. We may define our criteria separately for each case. A disadvantage 
of this technique is that the number of potential solutions may go up quite rapidly. 
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Some research has been done regarding the case of partial satisfiability [4] and it 
may suit our problem quite well, as the patterns themselves are not always well-
defined (discussed further in Chapter 2.3). 

We define our pattern mining problem as a CSP in the following way: 

• The variables (nodes) represent the roles of a pattern. 

• The variable domains are initialized to contain all the names (identifiers) in 
the diagram(s) in question. 

• Unary constraints represent conditions for a single role (e.g. the element in 
role X must be of type abstract class). 

• Binary constraints represent conditions between two roles (e.g. the class in 
role X must be a subclass of the class in role Y). 

For each pattern we compute a result, i.e. the role bindings that describe this par-
ticular pattern. The number of these bindings depends on the pattern in question. 
A binding is a pair {role,element], where role is the name of the role and element 
is the diagram element that appears in that role, e.g. in the Factory M e t h o d 
pattern [5] two of the roles are Product and Creator. 

2.2 Reducing the search space 
A simple and useful way of testing the candidate values is backtracking, where the 
conditions are tested for each value. If the conditions are not met, that value is 
discarded. Before backtracking, we must make sure that there are no unsuitable 
values in the domain of each variable. This means that if we require that a certain 
variable can only have ciass-typed values, then we can prune all attributes, methods 
etc. from its domain. This way we can make the number of candidates as small 
as possible. Currently we use the AC-3 algorithm [6] in Maisa, but the algorithm 
can be easily replaced. This implementation has originally been designed by Pauli 
Misikangas [8]. 

2.2.1 AC-3 a lgor i thm 

The first and most trivial requirement is node consistency. Node i is node consistent, 
iff Vx 6 Di,Pi(x) holds. The following algorithm ensures node consistency. 

procedure NC-1: 
begin 

for i 1 until n do 
begin 

Di <- {x G Di\Pi{x)} 
end 

end 
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Thus, for example, all attribute-entities will be pruned by NC-1 from the domain 
of a variable having a constraint that allows only solutions of type class. 

Arc consistency is defined in a similar fashion: Arc (i,j) is arc consistent, iff 
Vx € Di such that Pi(x) holds, 3y £ Dj such that Pj(y) and Pij(x,y). A more 
detailed discussion of arc consistency can be found in [9]. 

A single arc can be revised using-the following procedure REVISE that returns 
a boolean value. The idea is similar to that behind node consistency. We delete all 
values from the domain of the originating node Di, for which there axe no 'legal' 
arcs: 

procedure REVISE((i,j)): 
begin 

DELETE false 
for each x G Di do 
if $y G Dj such that Pij(x,y), then 

begin 
delete x from Di 
DELETE true 

end 
return DELETE 

end 

The AC-3 algorithm first utilizes the node consistency algorithm and then the 
arc consistency revision algorithm as follows. We denote the entire CSP graph 
with G and the respective set of arcs (constraints) with arcs(G). Additionally 
we denote the current (non-consistent) set of arcs with Q, which means that the 
algorithm halts as soon as Q is empty. 

procedure AC-3: 
begin 

NC-1 
Q { ( m ) I ( m ) 6 arcs{G),i ^ j} 
while Q not empty do 

begin 
select and delete any arc (k ,m ) from Q 
if REVISE ( (k ,m)) then 

Q Q U {(i, k)\(i, k) G arcs(G),i ± k,i ± m } 
end 

end 

After the domains have been made consistent, we search for correct bindings 
among the remaining values that satisfy the current set of constraints. In the simple 
case we have only one value for each variable. 
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2.2.2 Auxiliary facts 

Many design patterns are 'related' to each other in the sense that they have com-
mon elements (see e.g. metapatterns in [13]). These relationships may be taken 
advantage of in two ways: the ordered search of patterns and the use of auxiliary 
facts [8]. When a particular pattern is being searched for, new facts are added. 
These facts can then be utilized later when searching for other patterns. Con-
sider, for example, that we are searching for instances of the Observer pattern 
[5] which has both the 1:1 Connection and the 1 :N Connection pattern [13] 
among its prerequisites. We would now take advantage of new facts 1:1 Connec-
tion and 1:N Connection that have been added while searching for instances of 
the respective patterns. 

Most of this hierarchy consists of low-level relationships. As a consequence, 
we get better results by using facts extracted from source code instead of design 
diagrams. We can overcome some of the limitations of design diagrams (see Chap-
ter 2.3). Nevertheless, the Maisa method is particularly well-suited to be used 
together with a reverse engineering tool such as Columbus. 

2.3 Interaction 
The AC-3 (and generally any other purely syntactic) algorithm may still produce a 
large number of false positives, when we have a non-trivial task like finding vaguely 
defined design patterns. To make matters worse, several fairly common design 
patterns have features that are very difficult or even impossible to model as a set 
of constraints. In these cases human intuition and insight is essential for verifying 
the potential bindings generated by the algorithm. 

Many design patterns are too abstract to be easily represented syntactically 
[5]. The situation becomes even more complex if we require a fine-grained classi-
fication of separate pattern instances. Consider, e.g., the situation where finding 
instances of the metapattern 1:1 Connection [13] is not enough, but we want to 
make the distinction between the patterns Bridge and Command. Their syntac-
tic structure is alike so an attempt to automatically separate them would not be 
realistic. 

Another related problem is that in many cases the design diagrams simply do 
not contain enough information. (UML) associations are a typical example. This 
concept has quite a lot of expressive power. An association can be implemented in 
a number of different ways. A common case would be to include an attribute in one 
of the classes containing a reference to the other class, or to have a class that calls a 
method of another class. During the design phase the more general representation 
is usually enough: either we do not know the implementation details, or we do not 
wish to fix them yet. However, in order to recognize some common design patterns 
(such as Abstract Factory and Builder), we need to know these connections 
explicitly. In these cases we either have to include more detailed information in 
the UML diagrams or try to find the patterns using incomplete information. The 
former alternative is not viable in practice, as in most cases we simply do not have 
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(or even need) the required level of detail in the design phase. As a solution to the 
latter case partial satisfiability techniques might be worth investigating. 

Even when dealing with correct positive instances of design patterns, the number 
of possible bindings can become large (e.g. when searching for Compos i t e or 
Med ia to r patterns), since the number of elements that can participate in a certain 
role in a pattern is not limited. The basic CSP algorithm would try to find them 
all. This is also a situation, where human interaction is quite helpful. 

An important issue is that the rules describing the patterns are correct. This 
is even more important, if the semantics of the pattern are complex. Missing or 
false constraints may either produce a number of false positives (which can be 
frustrating) or false negatives (which is what we want to avoid). This issue might 
seem obvious, but considering the small semantical subtleties many patterns have, 
finding the correct representation for a pattern is not necessarily trivial. 

To be of any use this kind of interaction naturally requires a highly knowl-
edgeable user (knowledge of both the design patterns and the problem domain is 
essential). It must be emphasized, though, that interaction is usually not required, 
and the AC-3 algorithm produces results relatively fast even when working with 
larger domains. 

Many features discussed here, such as the verification of potential bindings or 
the presentation of design patterns, require to extend the current user interface of 
Maisa. For the time being, only a textual presentation is available. In the future, 
more usable alternatives will be developed. 

3 Columbus 

Columbus is a reverse engineering framework [1][3], which has been developed in 
cooperation between the Research Group on Artificial Intelligence in Szeged and 
the Software Technology Laboratory of Nokia Research Center. Columbus is able 
to analyze large C / C + + projects and to extract their UML class model [11] as well 
as conventional call graphs. 

The main motivation for developing the Columbus system has been to create 
a general framework for combining a number of reverse engineering tasks and to 
provide a common interface for them. Thus, Columbus is a framework tool which 
supports project handling, data extraction, data representation, data storage, fil-
tering, and visualization. All these basic tasks of the reverse engineering process 
for the specific needs are accomplished by using the appropriate modules (plug-ins) 
of the system. Some of these plug-ins are provided as basic parts of Columbus, 
while the system can be extended to serve other reverse engineering requirements 
as well. This way we have got a really versatile and easily extendible tool for reverse 
engineering. 
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3.1 Overview of the Columbus System 
The basic operation of Columbus is performed by three types of plug-ins: 

• Extractor plug-ins (currently an extractor for C / C + + ) , whose task is to ana-
lyze a given input source file and to create an output file, which contains the 
extracted information. 

• Linker plug-ins, whose task is to build up and filter the merged internal 
representation of the project. This process is carried out based on the files 
created by the extractor plug-in. 

• Exporter plug-ins, whose task is to export the internal representation built up 
and filtered by the linker plug-in into a specific output format. (Currently: 
Maisa, TDE Mermaid 2.2, TED 1.0, Rational Rose, Microsoft Jet Database, 
HTML, XML and ASCII.) 

In addition to the built-in plug-ins, the user can write and add his/her own new 
plug-in DLLs to the Columbus system using the plug-in API. 

3.2 Columbus projects 
The extraction process is based on the concept of a Columbus project. A project 
stores the input files (and their settings: precompiled header, preprocessing, out-
put directories, message level, etc.) displayed in a tree view, which represents a 
real software system. The project can simultaneously contain source files in dif-
ferent programming languages. Non-source code files can be added to the project 
as well (e.g. documents, spreadsheets), to be displayed by Columbus using OLE 
technology. 

3.3 The Extraction Process 
The extraction process (Figure 1) itself is very similar to compilation. The first 
stage is data extraction. Columbus takes the input files one by one and passes 
them to the appropriate extractor, which creates the corresponding internal repre-
sentation files. In the second stage the linker plug-in is automatically invoked in 
order to link (merge together) the internal representation files in the memory. In 
the third stage the data is transformed into a given export format, usually based 
on a filtered internal representation. An important advantage of Columbus is that 
it'fc&n incrementally perform all these steps, that is, if the partial results of certain 
stages are available and the input of the current stage has not been changed, the 
partial results will not be recreated. 

3.4 CAN - The C / C + + Analyzer 
Parsing of the input source code is performed by the C / C + + extractor plug-in of 
Columbus, which invokes a separate program called CAN ( C + + ANalyzer). CAN 
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STAGE 1 I STAGE 2 I STAGE 3 
(extraction) | (linking) | (exporting) 

Figure 1: The extraction process 

is a command-line (console) application for analyzing C / C + + code. This allows its 
integration into the user's makefiles and other configuration files, thus facilitating 
automated execution in parallel with the software build process. 

Basically, CAN accepts one complete translation unit at a time (a preprocessed 
source file). For files that are not preprocessed a preprocessor will be invoked. The 
actual results of CAN are the internal representation files, which are the binary 
saves of the internal representations built up by CAN during extraction. 

One of the greatest assets of CAN is probably the handling of templates and 
their instantiation at source level, which is accomplished using a two-pass technique 
in program analysis. The first pass only recognizes the language constructs in 
connection with the templates (like a "fuzzy" parser) and instantiates them. The 
second pass then performs the complete analysis of the source code and creates its 
internal representation. 

The C + + language processed by the analyzer covers the ISO/IEC standard from 
1998 [14]. Furthermore, this grammar is extended with the Microsoft extensions 
used in Microsoft Visual C + + . 

4 Integration of Columbus and Maisa 
As mentioned in the previous chapter, Columbus offers an Application Program-
ming Interface to access the information extracted from a C / C + + program. This 
API establishes a direct connection to the ASG (Abstract Semantic Graph) of the 
analyzed project, which is the common internal representation for all the informa-
tion generated by the C / C + + extractor. This way it is very easy to create an 
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exporter plug-in for Columbus that can transform the ASG into any desired da ta 
format. 

Because Maisa is implemented entirely in Java, it cannot access Columbus's 
ASG directly, so we have instead chosen a trivial way for connecting the two tools: 
an exporter plug-in in Columbus creates a file in Maisa's input file format, which 
can then be opened and processed further with Maisa. 

The file created by Columbus contains the reverse-engineered information in 
PROLOG format, as facts over the main program elements (classes, at tr ibutes, 
etc.) and their relationships (subclassing, etc.) This information is detailed enough 
to support, most notably, the automatic recognition of design patterns from the 
underlying C + + source code. 

5 Experiments 
The design pat tern recognition approach described above has been tested with a set 
of small experiments. For this purpose we have implemented some of the s tandard 
design patterns [5] in C + + . After that we have used Columbus to analyze the 
code and to extract high-level structural information from it into the input format 
of Maisa. Finally, Maisa has been applied to recognize design patterns from the 
structural information (and, indirectly, from the original C + + code). 

We demonstrate this process with the S i n g l e t o n [5] design pattern as an ex-
ample. The intent of this pattern is to ensure tha t a class has only one instance. 
One possible implementation of Singleton in C + + is as follows: 

class MySingleton { 

public: 

static MySingleton* getlnstanceO; 

protected: 

MySingletonO {}; 

private: 

static MySingleton* instance; 

>; 

MySingleton* MySingleton::instance = 0; 

MySingleton* MySingleton::getlnstance() { 

if (instance==0) { 

instance=new MySingletonO; 

> 
return instance; 

> 

The semantic intent of S i n g l e t o n is realized by a static field that holds the 
only instance of the class. The constructor of this class is not accessible for other 
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classes. The static getlnstance method creates the single instance, if necessary, and 
returns it. The only way to access the instance of the class is through this method. 

When analyzing this piece of code with Columbus, we obtain (UML specific) 
information over class relations, such as generalizations, aggregations, associations, 
as well as the calling dependencies. This information is generated by Columbus 
into the following PROLOG-like format: 

class("MySingleton"). 

method("MySingleton.getlnstance()"). 

public("MySingleton.getInstance()"). 

static("MySingleton.getInstance()"). 

has("MySingleton","MySingleton.getlnstance()"). 

returns("MySingleton.getlnstance()","MySingleton"). 

method("MySingleton.MyS ingleton()"). 

protected("MySingleton.MySingleton()"). 

has("MySingleton","MySingleton.MySingletonO"). 

attribute("MySingleton.instance"). 

private("MySingleton.instance"). 

static("MySingleton.instance"). 

has("MySingleton","MySingleton.instance"). 

typeof("MySingleton.instance","MySingleton"). 

On Maisa's side, the S ing le ton pattern candidates are specified by the following 
facts: 

class("Singleton"). 

attributeC'Singleton.instance"). 

has("Singleton","Singleton.instance"). 

typeof("Singleton.instance","Singleton"). 

static("Singleton.instance"). 

This description states that a S ing le ton candidate (class) must have a static 
at tr ibute whose type is the same as the class itself. When matching this pattern 
description with the high-level description of the C + + fragment, as produced by 
Columbus, Maisa produces the following output: 

Solution 0 

Singleton.instance = MySingleton.instance 

Singleton = MySingleton 

According to this, Maisa has found an instance of the S ingleton pat tern. The 
equations on the last two lines give the bindings generated by the AC-3 constraint 
satisfaction algorithm, with the name of the pattern role on the left-hand side of 
the equation, and the class, attribute, or method taking that role in the C + + code 
on the right hand side. 
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The following table summarizes the findings of our experiments. The table 
gives the names and brief descriptions of the design patterns [5] that have been 
recognized with the Columbus-Maisa couple. 

Pattern name . Description Missing facts 
Singleton Ensures that a class has 

only one instance 
-

Visitor Represents an operation 
on the elements of an 
object structure 

-

Builder Separates the creation of 
a complex object from its 
representation 

reads (method, attribute) 
writes(method,attribute) 

Factory Method Defines an interface for 
creating subclass-specific 
objects 

-

Prototype Creates objects by cloning 
prototypical instances 

-

Proxy Provides a placeholder for 
an object to control 
access to it 

reads(method, attribute) 

Memento Captures the state of an 
object 

-

There are certain facts that are required for some design patterns but that 
Columbus does not generate yet. These facts are listed in the third column of the 
table. In the experiments, the additional facts were added manually to the output 
which was then exported to Maisa. By this, Maisa was able to correctly recognize 
the corresponding patterns. 

The facts r e a d s ( m e t h o d , a t t r i b u t e ) and w r i t e s ( m e t h o d , a t t r i b u t e ) both 
mean that the specified method accesses the specified attribute. The fact w r i t e s 
has the additional meaning that the state of the attribute changes in some way. 

6 Conclusion and further work 
We have presented a method and tool set for recognizing design patterns from 
C + + code. The method can be used for reverse-engineering purposes to study the 
structure, behavior and quality of the code, as well as for tracking the evolution of 
design decisions between the architectural level and the implementation level of a 
software system written in C + + . 

In our experiments it was noticed that some design patterns, like Iterator 
and Observer, cannot be recognized with the current method. The reason for 
this is that in the Maisa pattern library the descriptions of such patterns contain 
generated facts, i.e., structural facts that are dynamically pushed to the input by 
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Maisa when it recognizes a particular kind of pattern or a special kind of a common 
class relation. In order to recognize these kinds of design patterns, our combined 
method must be extended with matching of the generated facts as well. 

While our initial tiny experiments show the potential capability of the pattern 
recognition approach, more extensive experiments with real cases must be carried 
out to verify the real power of the method. Such larger-scale experiments have been 
made with another design pattern tool [8] (using the same pattern mining algorithm 
as Maisa), and the results show that the technique is capable of detecting most 
standard design patterns quit'e efficiently - even those that the original programmer 
did not explicitly design into the code. On the other hand, it was noticed that some 
very abstract and fuzzy patterns (such as Interpreter) cannot be reliably detected 
by automatic means and that the performance degrades with large software systems 
(consisting of hundreds of thousands of program lines). 

Further work is also needed for separately improving the tools. The most im-
portant improvement on the Columbus side is extending the set of generated UML 
diagrams beyond the currently supported class diagrams, while the main devel-
opment trends in Maisa are performance analysis with extended UML activity 
diagrams and the use of statistical design information to predict the . quality of the 
final system. 
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