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On variable sized vector packing 

Leah Epstein* 

Abstract 
One of the open problems in on-line packing is the gap between the lower 

bound fl(l) and the upper bound 0(d) for vector packing of d-dimensional 
items into d-dimensional bins. We address a more general packing problem 
with variable sized bins. In this problem, the set of allowed bins contains 
the traditional "all-1" vector, but also a finite number of other d-dimensional 
vectors. The study of this problem can be seen as a first step towards solving 
the classical problem. It is not hard to see that a simple greedy algorithm 
achieves competitive ratio 0(d) for every set of bins. We show that for all 
small e > 0 there exists a set of bins for which the competitive ratio is 1 + e. 
On the other hand we show that there exists a set of bins for which every 
deterministic or randomized algorithm has competitive ratio il(d). We also 
study one special case for d = 2. 

1 Introduction 
The problem. We consider the following problem. We are given a finite set B 
of ¿¿-dimensional vectors in [0, l]d. This is the set of bin sizes. The "all-1" vector 
(1 ,1 , . . . , 1) belongs to B. Items of sizes also in [0, \]d arrive on-line, to be assigned 
to bins of sizes in B. The packing needs to be valid, i.e. the vector sum of all items 
assigned to one bin cannot exceed the capacity of the bin (in any component). The 
"all-1" bin needs to be in B so that every item can fit into some bin. Each item, 
has to be assigned to a bin upon arrival, and cannot be moved after that. It can 
be assigned either to an open bin, or to a new bin of some size in B. The cost of 
a bin b is the sum of its components and the weight of an item is the sum of its 
components. The goal is to minimize the total cost of the bins that the algorithm 
uses. 

Applications. The problem can be seen as a scheduling problem with limited 
resources. There are a few types of machines (the bins) with known and limited 
capacities of several resources as memory, running time, access to other computers 
etc. The items is this case are jobs that need to be run, each job requires a certain 
amount of each resource. Another application arises from viewing the problem as 
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a storage allocation problem. Each bin has several qualities as volume, weight etc. 
Each item requires a certain amount of each quality. 

In both applications it is likely for the items to arrive one by one, forcing the 
algorithm to make decisions without any knowledge of the future. 

The quality measure. The competitive ratio of an on-line algorithm for this 
minimization problem is the worst case ratio, over all possible input sequences, of 
the cost of bins used by the on-line algorithm to the cost of bins used by an optimal 
off-line algorithm (which is familiar with the complete sequence in advance). Often 
an additive constant is allowed, yielding the following definition of the competitive 
ratio. 

Definition 1.1. For an on-line algorithm and a sequence I of items, let CONL(I) 
be the cost of the bins used by the on-line algorithm and let COPT(I) be the cost 
of the bins used by an optimal off-line algorithm. (CONL{I) can be abbreviated by 
CONL and COPT ( I ) can be abbreviated by COPT-) Let R> 1. 

An on-line algorithm is Д-competitive if there exists a constant b such that 
CONL(I) < R • COPT ( I ) + b, for any sequence I of items. 

The competitive ratio of an on-line algorithm is 
r = in{{R | the on-line algorithm is R-competitive}. 

If the additive constant b is zero or negative, the algorithm is called strictly 
R-competitive. The negative results given in this paper are valid for the strict 
competitive ratio as well as for the competitive ratio in general. The positive 
results are valid for the general competitive ratio, as it is common for bin packing 
type problems. 

For randomized algorithms, the competitive ratio is defined similarly, but 
CONL(I) is r ep l aced by E(CONL{I))-

A simple algorithm. The following algorithm achieves competitive ratio at most 
2d for every set B. Hence the best competitive ratio for any set is Q(d). The 
algorithm uses only "all-1" bins, and packs the items in a "next-fit" fashion. It 
keeps one open active bin where all arriving items are packed, whenever an arriving 
item does not fit, this bin is closed and a new active bin is opened. To show the 
competitive ratio, partition all bins used by the algorithm into pairs, according to 
the order they were opened. (If the number of bins is odd, the last one is ignored). 
Now combine the contents of each pair. The items in the two bins could not fit 
into one bin, since the second is opened when an item does not fit into the first. 
Hence, at least one component of the combined contents is at least 1. Let W be the 
total weight of items. Let X be the number of bins used by the algorithm. Then 
W > (X -1)/2. The optimal off-line also need to pack the items hence COPT > W. 
Since CONL = XD, we conclude that the algorithm is 2d-competitive. 

Previous work. To the best of our knowledge, no results exist on variable-sized 
vector packing. We mention the results for the classical on-line vector packing 
problem, where В consists of a single, all-1 bin. There is only a small number of 
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results on on-line vector packing, and the problem seems to be difficult. Kou and 
Markowsky [10] considered a class of algorithms for which there never exists a pair 
of bins whose contents can be combined legally into a single bin. They showed that 
any algorithm in this class is d + 1 competitive. Later [7] improved the analysis for 
a d-dimensional version of first-fit to d+ 0.7. The lower bounds [6,1] are all below 
2, tending to 2 as d goes to infinity. The best lower bound for d = 2 is 1.6712 given 
by Blitz, Van Vliet, Woeginger in [1]. This large gap between the negative and 
positive results (for large d as well as for d — 2) encouraged the current study of 
the model with variable sized bins. The main questions were as follows: Are there 
any examples for B where the competitive ratio is linear? Are there any examples 
where the competitive ratio is constant? 

The results. We answer both questions positively. Specifically, we show a set 
B for which we design a constant competitive algorithm, moreover, for any small 
e > 0, we give an algorithm of competitive ratio 1 + e (section 2). We further 
design a set for which we show a lower bound of il(tf) on the competitive ratio of 
deterministic and randomized algorithms (section 3). In section 4, we design an 
algorithm for a special case d = 2 and |£?| = 3. This algorithm demonstrates the 
simplicity in which it is possible to reduce the competitive ratio just by adding a 
small number of bins to B. 

Other related work. A survey on on-line bin packing problems is given in [3]. 
The one dimensional variable-sized bin packing problem was studied in several 
papers [5, 9, 13, 2, 11, 4]. Those papers present and analyze various algorithms. 
Csirik [2] showed that there exists a choice of a set of bins (containing two bins 
of sizes 1 and 0.7) so that the competitive ratio (1.4) is much lower than the best 
known lower bound (1.5401 [12]) for the basic bin packing problem (a single type of 
bin which has size 1). In [4] improved upper bounds and new lower bounds for sets 
of two bins are given. The overall upper bound on the competitive ratio presented 
in that paper is 373/228 ss 1.63596. 

2 A set with 1 + e approximation 
In this section we introduce a bin set B for which an asymptotic competitive ratio, 
arbitrarily close to 1 is achieved by deterministic algorithms. Even though the 
algorithm is on-line, the methods are somewhat similar to those used in design of 
polynomial approximation schemes for off-line scheduling problems (see e.g. [8]). 

Let 0 < e < 1/3 be a small positive constant. Let A = Let (5 = 1/A. 
We define the set Be of allowed bins, as the set of the vectors (a\S2,a262,..., ad52) 
such that all a, are integer, and 0 < a; < A2 for 1 < i < d. The number of different 
bins is at most (A2 + l)d = 0((^)2 d) . Note that taking a{ = A2 for all 1 < i < d 
gives the "all-1" bin. 

We define an algorithm which has asymptotic competitive ratio 1 + £ for the 
set Be of bins. An item is called senior, if it has at least one component of size at 
least S, and junior otherwise. Senior items and junior items are packed by different 
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methods. In both cases there is very little room left in the bins (apart from a 
constant number of bins) and the competitive ratio is proved by area considerations. 

Senior items: Each senior item is packed into a separate bin. Given an item 
x — (x\,..., xd), x is packed into a bin b such that if b = (&i , . . . , bd) then bi > Xi 
but bi - 52 < Xi. In other words, bi = rfi]<52-

Junior items: Those items are packed only into a subset of Be. Let Be(i) be 
the subset of BE containing all vectors whose component i equals 1. Throughout 
the algorithm, for each 1 < i < d there is one open bin of each size in Be(i), which 
is used for junior items whose largest component has index i. Given a junior item 
x = (xi,..., xd), let m = maxi<i<d Xi, let j be the minimum index of a component 
which achieves the maximum (i.e. xj = m and xk < m for k < j). Let y = x/m. 
The item is assigned into an open bin of size V = (6^,. . . , b'd) in Be(j) such that 
b[ = [|j](52. Note that component j of b' is 1. If the item does not fit into the 
open bin, this bin is closed, a new bin of size b' associated with Be ( j ) is opened 
and the item is assigned there. We are going to show that for every bin used by 
our algorithm (apart from the last bin of every size in Be(i) for every 1 < i < d, 
that is used for junior items), the cost of a bin is at most 1 + e times the weight of 
items assigned to this bin. This would give 

CoNL < (l + £)W + d\Be\ (1) 

where W is the total weight of items in the sequence. Since COPT > W and \BE\ 
is constant (which depends on d and e), this gives an asymptotic competitive ratio 
1 + e for a constant e. We analyze senior and junior items separately. 

Bins with a senior item: According to the definition of the algorithm, each 
bin contains a single item x. Let wb the weight of the bin b where x is assigned and 
wx be the weight of x. By the algorithm wb < wx + d62. Since x is a senior item, 
wx > 6, hence wb < wx(l + d6) < ^ ( 1 + e). 

Bins with junior items: Consider a bin /3 = ( f t , . . . , f3d) that was used 
for junior items with maximal component of index k, and was closed during the 
algorithm. Let y' — (y[,..., y'd) be the sum vector of items assigned to this bin.. 

We prove the following two claims. 

Claim 2.1. For all 1 < i < d, f ; < y'k, and y'k>l-5. 

Claim 2.2. For all 1 <i < d, y[> y'kPi - S2. 

Before we prove the claims, we show this is sufficient to achieve the required 
competitive ratio. We need to compare uip which is the cost of the bin /?, to the 
weight of y', wyi, which is the weight of the items in the bin. By Claim 2.2. 

d d 
« v = Y,Y'I^Y'K I > - d 5 2 • 

i=i t=i 

Using this and the second part of Claim 2.1, we get wy> > — 5 — dS2) (since 
wp > 1). It is left to show that 1/(1 — S — d62) < 1 + e. Since J < e/d it is enough 
to show (e + l)2 < d which is true for e < y/2 - 1 (since d > 2). 
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To complete the proof, we need to prove the claims. We start by proving 
Claim 2.1. Consider an item a = ( a i , . . . , ad) assigned to a bin p. Then let k be 
the maximal component of a which has the minimum index among the maximal 
components. Then a was assigned according to component k. Recall that P is 
calculated in the following way: 

Pi = [ ^ 1 < 5 2 

and hence pi > ai/ak. Since at/Pi < ak is true for all items in the bin, then also 
y'ilPi < y'k- Now let 7 be the item that caused this bin to be closed. 7 did not fit 
into the bin, but since it was inserted to a bin of the same size also for 1 < i < d, 
l i / l k < Pi- Since 7 did not fit, for some component j, y'3 + jj > Pj. Hence 
y'k + Ik > y'j/Pj + I j / P j > 1- Since 7 k <6 (junior item) we get y'k > 1 - 7* > 1 - S. 
This proves Claim 2.1. 

To prove Claim 2.2 recall that Pi < ai/ak + S2. Hence ai > akPi — akS2. Let 
I be the set of all items assigned to p. 

yi = "i > a k & ~ afc<52 = 

a£/ ag/ ag/ 
( f t - ^ ^ a * = y'k(Pi-62) = 

a€l 
y'kPi-y'k¿2 > y'kPi-52. 

The last inequality holds since y'k < 1. This completes the proof of Claim 2.2. 

Theorem 2.1. The above algorithm has asymptotic competitive ratio of at most 
1+e. 

Proof. Follows from (1). • 

3 A set with only approximations 
In the introduction we showed that for every set, there exists an algorithm with 
competitive ratio 0(d). However, in the previous section we showed a set where it 
is possible to get an 1 + e approximation. In this section we show a set for which 
we give a lower bound of Cl(d) on the competitive ratio. 

We give a deterministic lower bound, and later show how to extend it to a 
randomized lower bound. 

We start by a description of B. The set B contains apart from the vector 
(1 , . . . , 1) also 2d/2 vectors which are called small bins. (We assume that d is even, 
for odd values of d it is possible to use the construction for the even dimension 
d— 1, setting the last component to zero in all items, and in all the bins apart from 
the "all-1" bin.) 
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For k = 1 , . . . ,d/2, the (2k - l) t / l and the (2k) l h components of the bins are 
either ^ and d d - i or and ^ (respectively). Since every pair has two 
options, there are 

2 d/2 
such possible bins. Throughout the sequence, the optimal 

off-line cost is going to be Q(n/d). There are d/2 phases of items, with n items 
in each. (We pick n to be a large constant so that the lower bound is valid also 
for general competitive ratio and not only strict competitive ratio.) All items have 
weight 0(1 /d?). Note that all bin costs are 0(1 /d) (apart from the "all-1" bin 
whose cost is d). 

We now define the items of phase i. In phase i, for all items and for all j > 2i, 
the jth component is zero. The components 2i — 1 and 2i are both ¿57. For all 
j < i, the components 2 j - 1 and 2 j are either 0 and -¿¡j or and 0 (respectively). 
Note that there can fit only at most one item of each phase in a small bin. The 
choice of the (2j — l ) t h and the (2j) t h coordinates is done according to the behavior 
of the algorithm until the completion of phase j. 

We say that the algorithm "may use" a bin in phase j if the bin is opened in 
phase j or if it was opened during phases 1,..., j — 1 and can still accommodate an 
item of phase j. 

For 1 < j < | , let Nj be the number of small bins, where the (2j)th component 
is ¿jj-, that the algorithm may use for items in phase j. (Not including bins opened 
after the arrival of the items of phase j + 1.) If j > 1, in the beginning of phase 
j, some old bins cannot accommodate any more items due to a wrong structure of 
the (2j — 3)th and the (2j — 2)th components, those bins will never be used again. 
For 1 < j < | , let Mj be the number of other small bins that may be used in phase 
j , that have the opposite structure of components 2j and 2j — 1 than bins counted 
in Nj. Note that the numbers Mj and Nj include new small bins opened during 
phase j, and previously opened bins that can still be used (the latter is true only for 
j > 1). If Nj < Mj then all future items have a zero in the (2 j ) t h component and 

in the (2j — l ) t h component. Otherwise, the structure is opposite. Hence all 
the MJ bins will never be used in the first case, and all NJ bins will never be used 
again in the second case. We use the following notations for 0 < j < d/2 — 1. For 
0 < j < | — 1, let Lj be the number of small bins opened in phase j + 1 arid let Sj 
be the number of items assigned to an "all-1" bin in phase j +1. For 0 < j < f — 1, 
let Kj be the total number of small bins that the algorithm may use in phase j +1. 
According to the above definitions, for 0 < j < Kj~i = Mj + Nj and 

Kj = Lj + m i n ( N j , M j ) < Lj + Kj-i/2 . (2) 

Since all items have either JT in both the first and the second components, or in 
one of the first two components, the algorithm can pack only at most d1 items in one 
large bin. Hence CONL > (52J=0 SJ)/D + 1/DYFJ^1 LJ. We need to get a bound 
on those two sums. Note that in order to pack all items, for j > 0, Kj + Sj > n. 
Using (2) we get that Lj + Sj > n — Kj~i/2. Lj + Sj represents the number of 
items that need to be either assigned to "all-1" bins, or have new bins opened for 
them. 

On the other hand (2) gives the relations between the number of valid bins in 
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phase j + 1 to valid bins in phase j (0 < j < d/2 - 1). Summing up the two 

equations for all 1 < j < § - 1, and setting L = o LJ, K = o and 

5 = E f c 1 Sj, we get: 

L-L0 + S-S0>(^-l)n~l/2(K-Ki_1). 

and 
K - K0 < L - L0 + 1 / 2 { K - K I ^ ) . 

Hence L+S+\K > L0+S0+in-n+l/2KI_1, and L-K/2 > -K0+L0+l/2KI_1. 
Since Lo + So > n (need to assign all items of phase 1), and all variables are non-
negative, L + S + K/2 > f n . Since K0 = L0 then L-K/2 > 0. Hence 2L + S > f N . 
We are interested in (5 + L)/d. Easy substitution gives CONL > (S + L)/d > 
(L + S/2)/d > n / 4 . 

On the other hand, the optimal off-line algorithm picks n small bins according 
to into which bin, an item of the last phase fits. Since f (^7) = d2j-i, it is possible 
to place one item from each phase in a bin, the bin cost is 0 (1 /d) and hence 
COPT = ®(n/d). The competitive ratio follows. 

To extend the proof for randomized algorithms, each one of the variables should 
be replaced by the expectation of this variable. By linearity of expectation, we get 
the same lower bound. 

This proves the following Theorem. 

Theorem 3.1. There exists a finite set of bins, for which every deterministic or 
randomized algorithm for bin packing has competitive ratio fl(d). 

4 A special case for d = 2 
In this section we demonstrate by example, that letting the algorithm choose the set 
B, even if its size is very limited, allows the algorithm to improve the competitive 
ratio it achieves. In particular we consider d = 2 and |£?| = 3. In section 1 it 
was shown that if \B\ is large enough (but finite), it is possible to achieve a very 
small competitive ratio. Here we focus on an example where |B| is small, but a 
simple algorithm already improves on the best known algorithm for the classical 
case B1 = {(1,1)} given in [7] (whose competitive ratio is 2.7). 

Let B = {(1,1), (1, /Li), (fi, 1)}. The constant 0 < p, < 1/2 is fixed later. We 
partition items into two classes: 

• Items (/?, 7) where /3 < 7. 
• All other items (i.e. items (/?', 7') where /3' > 7'). 

Each one of the two classes is packed separately, independently from the other 
class. We explain how to pack the first class, the algorithm for the second class is 
symmetric (i.e. bins of size (1, ¡1) are used instead of bins of size (/1,1) and so on). 
The class is partitioned into six sub-classes. The algorithm also packs each one of 
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the six sub-classes separately, independently from the other sub-classes. Let a be 
a constant 0 < a < 1/3, whose exact value is fixed later. The sub-class of an item 
(/3, 7) is determined as follows: 

• Sub-Class 1: 7 > 1/2 and P > p.. 
• Sub-Class 2: 7 > 1/2 and / ?< / / . 
• Sub-Class 3: a < 7 < 1/2 and /3 > p/2. 
• Sub-Class 4: a < 7 < 1/2 and /3 < /¿/2. 
• Sub-Class 5: 7 < a and /3 > ¿¿7. 
• Sub-Class 6: 7 < a and /3 < /¿7. 

Each item of sub-classes 1 and 2, is packed as an only item in a bin. For sub-class 
1 the bin is of size (1,1) and for sub-class 2 the bin is of size (p, 1). Items of sub-
classes 3 and 4 are packed in pairs (from the same sub-class). Pairs of sub-class 3 
use bins of size (1,1) whereas pairs of sub-class 4 use bins of size (p, 1). By the 
definition of this class, (i.e. the conditions on 7 and /3), any two items of each of 
those sub-classes can fit into a bin together. The algorithm always has at most 
one bin for sub-class 3 with a single item. The same is true for sub-class 4 as well. 
The items of sub-class 5 are packed by a next-fit manner into bins of size (1,1). 
The items of sub-class 6 are similarly packed into bins of size (p,l). In each of 
those two sub-classes, there is always one active bin. When an item does not fit, 
the bin is closed, and a new active bin is opened for the sub-class. Consider the 
sub-class 6. Given a set of items A, let a = (ai, <22) be their sum vector. Then if 
02 < 1, ai < pa2 < p. Hence < 1 is a satisfactory condition for all items in A 
to fit into one bin of size (p, 1). For sub-classes 3 and 5, it is easy to see that the 
second component determines whether an item fits into a non-empty bin. This is 
true since for all items /3 < 7, but all the bins are of size (1,1). 

Next, we calculate the amount of occupied space in all closed bins. Those are 
all bins for sub-classes 1 and 2, and all bins but the very last ones opened for 
sub-classes 3, 4, 5 and 6. Those four last bins add an additive constant which is 
calculated later. 
Sub-Class 1: The minimum weight of an item is 1/2 -f p and the cost of a bin is 
2. 
Sub-Class 2: The minimum item weight is 1/2 and the cost of a bin is 1 + p. 
Sub-Class 3: The weight of a pair of items is at least 2(a + p/2) = 2a + p. The 
cost of the bin is 2. 
Siib-Class 4• The weight of a pair of items is at least 2a, the cost of a bin is 1 + /1. 

Before we proceed to the other two sub-classes, we discuss the way next-fit runs 
in those two cases. Consider a case where a new bin is opened, when an items 
does not fit into the previous active bin. By the above arguments, it means that 
the second component of an item can determine whether it fits. Since the second 
component is bounded by a, all closed bins are occupied by at least 1 — a in that 
component. Bins of sub-phase 5 are also occupied by at least (1 — a)p in the first 
component. 
Sub-Class 5: The weight of items in a closed bin is at least (1 — a)( l + p), and 
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the cost of a bin is 2. 
Sub-Class 6: The weight of items in a closed bin is at least 1 — a, and the cost of 
a bin is 1 + fx. 

Let c be the maximum ratio of cost to weight in sub-classes 3, 4, 5 and 6. 
Specifically 

2 1 + p 2 1 + n 
c - m a H 2 a + f x , 2 a , ( 1 _ a ) ( 1 + / i ) > l _ a > • 

Since a < 1/3, we do not need to consider the fourth possibility. Hence 

, 2 1 + fi 2 
C _ m a X 4 a + iz' 2a ' (1 — a)( l + /i) ' 

Taking a to be a solution of 8a;3 — 8a;2 + 5a; — 1 = 0 and p, = (1 — 3a)/a, all other 
values are the same (this gives a « 0.302, p « 0.315, c « 2.177). Consider now 
also bins used for the symmetric case, i.e. the class of items (P',j') where ¡3' > 7'. 
There are at most 4 bins of cost I + p and 4 bins of size 2 that might be open but 
not occupied by enough weight, and are ignored in previous calculations. We add 
those into the calculations to get the value of the additive constant. 

Let NL be the number of bins used for sub-class 1 (in both classes) and NG the 
number of bins used for sub-class 2 (in both classes). Let W be the total weight of 
all items. Clearly, COPT > W. Also COPT > NL + NS- The last inequality is true 
since those items can be packed either alone (possibly together with items of other 
sub-classes) or in pairs, in bins of size (1,1). Hence the cost of the optimal off-line 
algorithm for each such item is at least 1 (if all items of sub-classes 3, 4, 5 and 6 
are ignored). 

The weight of items packed into closed bins of sub-classes 3, 4, 5 and 6 is at 
most W - 1/2NS - (1/2 + p)NL. 

Hence 

CONL < c(W - 1/2NS - ( 1 / 2 + H)Nl) + (1 + p)Ns + 2NL + 12 + Ap 

< CCOPT + NS( 1 + p - c / 2 ) + NL(2 - c / 2 - cp) + 12 + Ap 

For the above choices of a and p, 

1 + n - c/2 = 2 - c/2 - en « 0.226 . 

Hence CONL < 2.403COpt + 13.26. 
This proves the following Theorem: 

Theorem 4.1. The competitive ratio of the above algorithm is 2-403. 

5 Conclusions 
We have seen that there is a large difference between possible competitive ratios for 
different sets, and that the competitive ratio can actually vary between 1 and Q(d). 
The classical case (B = {(1 ,1 . . . , 1)}) seems to be easier than the most difficult 
cases, but harder than the easiest cases. We conjecture that the competitive ratio 
for that problem should be non constant, but sub-linear. 
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