
Acta Cybernetica 16 (2003) 47-56.

On variable sized vector packing

Leah Epstein*

Abstract
One of the open problems in on-line packing is the gap between the lower

bound fl(l) and the upper bound 0(d) for vector packing of d-dimensional
items into d-dimensional bins. We address a more general packing problem
with variable sized bins. In this problem, the set of allowed bins contains
the traditional "all-1" vector, but also a finite number of other d-dimensional
vectors. The study of this problem can be seen as a first step towards solving
the classical problem. It is not hard to see that a simple greedy algorithm
achieves competitive ratio 0(d) for every set of bins. We show that for all
small e > 0 there exists a set of bins for which the competitive ratio is 1 + e.
On the other hand we show that there exists a set of bins for which every
deterministic or randomized algorithm has competitive ratio il(d). We also
study one special case for d = 2.

1 Introduction
The problem. We consider the following problem. We are given a finite set B
of ¿¿-dimensional vectors in [0, l]d. This is the set of bin sizes. The "all-1" vector
(1 ,1 , . . . , 1) belongs to B. Items of sizes also in [0, \]d arrive on-line, to be assigned
to bins of sizes in B. The packing needs to be valid, i.e. the vector sum of all items
assigned to one bin cannot exceed the capacity of the bin (in any component). The
"all-1" bin needs to be in B so that every item can fit into some bin. Each item,
has to be assigned to a bin upon arrival, and cannot be moved after that. It can
be assigned either to an open bin, or to a new bin of some size in B. The cost of
a bin b is the sum of its components and the weight of an item is the sum of its
components. The goal is to minimize the total cost of the bins that the algorithm
uses.

Applications. The problem can be seen as a scheduling problem with limited
resources. There are a few types of machines (the bins) with known and limited
capacities of several resources as memory, running time, access to other computers
etc. The items is this case are jobs that need to be run, each job requires a certain
amount of each resource. Another application arises from viewing the problem as

"School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. Email:
l e a S i d c . a c . i l
Research supported in part by the Israel Science Foundation, (grant No. 250/01-1).

47

48 Leah Epstein

a storage allocation problem. Each bin has several qualities as volume, weight etc.
Each item requires a certain amount of each quality.

In both applications it is likely for the items to arrive one by one, forcing the
algorithm to make decisions without any knowledge of the future.

The quality measure. The competitive ratio of an on-line algorithm for this
minimization problem is the worst case ratio, over all possible input sequences, of
the cost of bins used by the on-line algorithm to the cost of bins used by an optimal
off-line algorithm (which is familiar with the complete sequence in advance). Often
an additive constant is allowed, yielding the following definition of the competitive
ratio.

Definition 1.1. For an on-line algorithm and a sequence I of items, let CONL(I)
be the cost of the bins used by the on-line algorithm and let COPT(I) be the cost
of the bins used by an optimal off-line algorithm. (CONL{I) can be abbreviated by
CONL and COPT (I) can be abbreviated by COPT-) Let R> 1.

An on-line algorithm is Д-competitive if there exists a constant b such that
CONL(I) < R • COPT (I) + b, for any sequence I of items.

The competitive ratio of an on-line algorithm is
r = in{{R | the on-line algorithm is R-competitive}.

If the additive constant b is zero or negative, the algorithm is called strictly
R-competitive. The negative results given in this paper are valid for the strict
competitive ratio as well as for the competitive ratio in general. The positive
results are valid for the general competitive ratio, as it is common for bin packing
type problems.

For randomized algorithms, the competitive ratio is defined similarly, but
CONL(I) is r ep l aced by E(CONL{I))-

A simple algorithm. The following algorithm achieves competitive ratio at most
2d for every set B. Hence the best competitive ratio for any set is Q(d). The
algorithm uses only "all-1" bins, and packs the items in a "next-fit" fashion. It
keeps one open active bin where all arriving items are packed, whenever an arriving
item does not fit, this bin is closed and a new active bin is opened. To show the
competitive ratio, partition all bins used by the algorithm into pairs, according to
the order they were opened. (If the number of bins is odd, the last one is ignored).
Now combine the contents of each pair. The items in the two bins could not fit
into one bin, since the second is opened when an item does not fit into the first.
Hence, at least one component of the combined contents is at least 1. Let W be the
total weight of items. Let X be the number of bins used by the algorithm. Then
W > (X -1)/2. The optimal off-line also need to pack the items hence COPT > W.
Since CONL = XD, we conclude that the algorithm is 2d-competitive.

Previous work. To the best of our knowledge, no results exist on variable-sized
vector packing. We mention the results for the classical on-line vector packing
problem, where В consists of a single, all-1 bin. There is only a small number of

On variable sized vector packing 49

results on on-line vector packing, and the problem seems to be difficult. Kou and
Markowsky [10] considered a class of algorithms for which there never exists a pair
of bins whose contents can be combined legally into a single bin. They showed that
any algorithm in this class is d + 1 competitive. Later [7] improved the analysis for
a d-dimensional version of first-fit to d+ 0.7. The lower bounds [6,1] are all below
2, tending to 2 as d goes to infinity. The best lower bound for d = 2 is 1.6712 given
by Blitz, Van Vliet, Woeginger in [1]. This large gap between the negative and
positive results (for large d as well as for d — 2) encouraged the current study of
the model with variable sized bins. The main questions were as follows: Are there
any examples for B where the competitive ratio is linear? Are there any examples
where the competitive ratio is constant?

The results. We answer both questions positively. Specifically, we show a set
B for which we design a constant competitive algorithm, moreover, for any small
e > 0, we give an algorithm of competitive ratio 1 + e (section 2). We further
design a set for which we show a lower bound of il(tf) on the competitive ratio of
deterministic and randomized algorithms (section 3). In section 4, we design an
algorithm for a special case d = 2 and |£?| = 3. This algorithm demonstrates the
simplicity in which it is possible to reduce the competitive ratio just by adding a
small number of bins to B.

Other related work. A survey on on-line bin packing problems is given in [3].
The one dimensional variable-sized bin packing problem was studied in several
papers [5, 9, 13, 2, 11, 4]. Those papers present and analyze various algorithms.
Csirik [2] showed that there exists a choice of a set of bins (containing two bins
of sizes 1 and 0.7) so that the competitive ratio (1.4) is much lower than the best
known lower bound (1.5401 [12]) for the basic bin packing problem (a single type of
bin which has size 1). In [4] improved upper bounds and new lower bounds for sets
of two bins are given. The overall upper bound on the competitive ratio presented
in that paper is 373/228 ss 1.63596.

2 A set with 1 + e approximation
In this section we introduce a bin set B for which an asymptotic competitive ratio,
arbitrarily close to 1 is achieved by deterministic algorithms. Even though the
algorithm is on-line, the methods are somewhat similar to those used in design of
polynomial approximation schemes for off-line scheduling problems (see e.g. [8]).

Let 0 < e < 1/3 be a small positive constant. Let A = Let (5 = 1/A.
We define the set Be of allowed bins, as the set of the vectors (a\S2,a262,..., ad52)
such that all a, are integer, and 0 < a; < A2 for 1 < i < d. The number of different
bins is at most (A2 + l)d = 0((^)2 d) . Note that taking a{ = A2 for all 1 < i < d
gives the "all-1" bin.

We define an algorithm which has asymptotic competitive ratio 1 + £ for the
set Be of bins. An item is called senior, if it has at least one component of size at
least S, and junior otherwise. Senior items and junior items are packed by different

50 Leah Epstein

methods. In both cases there is very little room left in the bins (apart from a
constant number of bins) and the competitive ratio is proved by area considerations.

Senior items: Each senior item is packed into a separate bin. Given an item
x — (x\,..., xd), x is packed into a bin b such that if b = (&i , . . . , bd) then bi > Xi
but bi - 52 < Xi. In other words, bi = rfi]<52-

Junior items: Those items are packed only into a subset of Be. Let Be(i) be
the subset of BE containing all vectors whose component i equals 1. Throughout
the algorithm, for each 1 < i < d there is one open bin of each size in Be(i), which
is used for junior items whose largest component has index i. Given a junior item
x = (xi,..., xd), let m = maxi<i<d Xi, let j be the minimum index of a component
which achieves the maximum (i.e. xj = m and xk < m for k < j). Let y = x/m.
The item is assigned into an open bin of size V = (6^,. . . , b'd) in Be(j) such that
b[= [|j](52. Note that component j of b' is 1. If the item does not fit into the
open bin, this bin is closed, a new bin of size b' associated with Be (j) is opened
and the item is assigned there. We are going to show that for every bin used by
our algorithm (apart from the last bin of every size in Be(i) for every 1 < i < d,
that is used for junior items), the cost of a bin is at most 1 + e times the weight of
items assigned to this bin. This would give

CoNL < (l + £)W + d\Be\ (1)

where W is the total weight of items in the sequence. Since COPT > W and \BE\
is constant (which depends on d and e), this gives an asymptotic competitive ratio
1 + e for a constant e. We analyze senior and junior items separately.

Bins with a senior item: According to the definition of the algorithm, each
bin contains a single item x. Let wb the weight of the bin b where x is assigned and
wx be the weight of x. By the algorithm wb < wx + d62. Since x is a senior item,
wx > 6, hence wb < wx(l + d6) < ^ (1 + e).

Bins with junior items: Consider a bin /3 = (f t , . . . , f3d) that was used
for junior items with maximal component of index k, and was closed during the
algorithm. Let y' — (y[,..., y'd) be the sum vector of items assigned to this bin..

We prove the following two claims.

Claim 2.1. For all 1 < i < d, f ; < y'k, and y'k>l-5.

Claim 2.2. For all 1 <i < d, y[> y'kPi - S2.

Before we prove the claims, we show this is sufficient to achieve the required
competitive ratio. We need to compare uip which is the cost of the bin /?, to the
weight of y', wyi, which is the weight of the items in the bin. By Claim 2.2.

d d
« v = Y,Y'I^Y'K I > - d 5 2 •

i=i t=i

Using this and the second part of Claim 2.1, we get wy> > — 5 — dS2) (since
wp > 1). It is left to show that 1/(1 — S — d62) < 1 + e. Since J < e/d it is enough
to show (e + l)2 < d which is true for e < y/2 - 1 (since d > 2).

On variable sized vector packing 51

To complete the proof, we need to prove the claims. We start by proving
Claim 2.1. Consider an item a = (a i , . . . , ad) assigned to a bin p. Then let k be
the maximal component of a which has the minimum index among the maximal
components. Then a was assigned according to component k. Recall that P is
calculated in the following way:

Pi = [^ 1 < 5 2

and hence pi > ai/ak. Since at/Pi < ak is true for all items in the bin, then also
y'ilPi < y'k- Now let 7 be the item that caused this bin to be closed. 7 did not fit
into the bin, but since it was inserted to a bin of the same size also for 1 < i < d,
l i / l k < Pi- Since 7 did not fit, for some component j, y'3 + jj > Pj. Hence
y'k + Ik > y'j/Pj + I j / P j > 1- Since 7 k <6 (junior item) we get y'k > 1 - 7* > 1 - S.
This proves Claim 2.1.

To prove Claim 2.2 recall that Pi < ai/ak + S2. Hence ai > akPi — akS2. Let
I be the set of all items assigned to p.

yi = "i > a k & ~ afc<52 =

a£/ ag/ ag/
(f t - ^ ^ a * = y'k(Pi-62) =

a€l
y'kPi-y'k¿2 > y'kPi-52.

The last inequality holds since y'k < 1. This completes the proof of Claim 2.2.

Theorem 2.1. The above algorithm has asymptotic competitive ratio of at most
1+e.

Proof. Follows from (1). •

3 A set with only approximations
In the introduction we showed that for every set, there exists an algorithm with
competitive ratio 0(d). However, in the previous section we showed a set where it
is possible to get an 1 + e approximation. In this section we show a set for which
we give a lower bound of Cl(d) on the competitive ratio.

We give a deterministic lower bound, and later show how to extend it to a
randomized lower bound.

We start by a description of B. The set B contains apart from the vector
(1 , . . . , 1) also 2d/2 vectors which are called small bins. (We assume that d is even,
for odd values of d it is possible to use the construction for the even dimension
d— 1, setting the last component to zero in all items, and in all the bins apart from
the "all-1" bin.)

52 Leah Epstein

For k = 1 , . . . ,d/2, the (2k - l) t / l and the (2k) l h components of the bins are
either ^ and d d - i or and ^ (respectively). Since every pair has two
options, there are

2 d/2
such possible bins. Throughout the sequence, the optimal

off-line cost is going to be Q(n/d). There are d/2 phases of items, with n items
in each. (We pick n to be a large constant so that the lower bound is valid also
for general competitive ratio and not only strict competitive ratio.) All items have
weight 0(1 /d?). Note that all bin costs are 0(1 /d) (apart from the "all-1" bin
whose cost is d).

We now define the items of phase i. In phase i, for all items and for all j > 2i,
the jth component is zero. The components 2i — 1 and 2i are both ¿57. For all
j < i, the components 2 j - 1 and 2 j are either 0 and -¿¡j or and 0 (respectively).
Note that there can fit only at most one item of each phase in a small bin. The
choice of the (2j — l) t h and the (2j) t h coordinates is done according to the behavior
of the algorithm until the completion of phase j.

We say that the algorithm "may use" a bin in phase j if the bin is opened in
phase j or if it was opened during phases 1,..., j — 1 and can still accommodate an
item of phase j.

For 1 < j < | , let Nj be the number of small bins, where the (2j)th component
is ¿jj-, that the algorithm may use for items in phase j. (Not including bins opened
after the arrival of the items of phase j + 1.) If j > 1, in the beginning of phase
j, some old bins cannot accommodate any more items due to a wrong structure of
the (2j — 3)th and the (2j — 2)th components, those bins will never be used again.
For 1 < j < | , let Mj be the number of other small bins that may be used in phase
j , that have the opposite structure of components 2j and 2j — 1 than bins counted
in Nj. Note that the numbers Mj and Nj include new small bins opened during
phase j, and previously opened bins that can still be used (the latter is true only for
j > 1). If Nj < Mj then all future items have a zero in the (2 j) t h component and

in the (2j — l) t h component. Otherwise, the structure is opposite. Hence all
the MJ bins will never be used in the first case, and all NJ bins will never be used
again in the second case. We use the following notations for 0 < j < d/2 — 1. For
0 < j < | — 1, let Lj be the number of small bins opened in phase j + 1 arid let Sj
be the number of items assigned to an "all-1" bin in phase j +1. For 0 < j < f — 1,
let Kj be the total number of small bins that the algorithm may use in phase j +1.
According to the above definitions, for 0 < j < Kj~i = Mj + Nj and

Kj = Lj + m i n (N j , M j) < Lj + Kj-i/2 . (2)

Since all items have either JT in both the first and the second components, or in
one of the first two components, the algorithm can pack only at most d1 items in one
large bin. Hence CONL > (52J=0 SJ)/D + 1/DYFJ^1 LJ. We need to get a bound
on those two sums. Note that in order to pack all items, for j > 0, Kj + Sj > n.
Using (2) we get that Lj + Sj > n — Kj~i/2. Lj + Sj represents the number of
items that need to be either assigned to "all-1" bins, or have new bins opened for
them.

On the other hand (2) gives the relations between the number of valid bins in

On variable sized vector packing 53

phase j + 1 to valid bins in phase j (0 < j < d/2 - 1). Summing up the two

equations for all 1 < j < § - 1, and setting L = o LJ, K = o and

5 = E f c 1 Sj, we get:

L-L0 + S-S0>(^-l)n~l/2(K-Ki_1).

and
K - K0 < L - L0 + 1 / 2 { K - K I ^) .

Hence L+S+\K > L0+S0+in-n+l/2KI_1, and L-K/2 > -K0+L0+l/2KI_1.
Since Lo + So > n (need to assign all items of phase 1), and all variables are non-
negative, L + S + K/2 > f n . Since K0 = L0 then L-K/2 > 0. Hence 2L + S > f N .
We are interested in (5 + L)/d. Easy substitution gives CONL > (S + L)/d >
(L + S/2)/d > n / 4 .

On the other hand, the optimal off-line algorithm picks n small bins according
to into which bin, an item of the last phase fits. Since f (^7) = d2j-i, it is possible
to place one item from each phase in a bin, the bin cost is 0 (1 /d) and hence
COPT = ®(n/d). The competitive ratio follows.

To extend the proof for randomized algorithms, each one of the variables should
be replaced by the expectation of this variable. By linearity of expectation, we get
the same lower bound.

This proves the following Theorem.

Theorem 3.1. There exists a finite set of bins, for which every deterministic or
randomized algorithm for bin packing has competitive ratio fl(d).

4 A special case for d = 2
In this section we demonstrate by example, that letting the algorithm choose the set
B, even if its size is very limited, allows the algorithm to improve the competitive
ratio it achieves. In particular we consider d = 2 and |£?| = 3. In section 1 it
was shown that if \B\ is large enough (but finite), it is possible to achieve a very
small competitive ratio. Here we focus on an example where |B| is small, but a
simple algorithm already improves on the best known algorithm for the classical
case B1 = {(1,1)} given in [7] (whose competitive ratio is 2.7).

Let B = {(1,1), (1, /Li), (fi, 1)}. The constant 0 < p, < 1/2 is fixed later. We
partition items into two classes:

• Items (/?, 7) where /3 < 7.
• All other items (i.e. items (/?', 7') where /3' > 7').

Each one of the two classes is packed separately, independently from the other
class. We explain how to pack the first class, the algorithm for the second class is
symmetric (i.e. bins of size (1, ¡1) are used instead of bins of size (/1,1) and so on).
The class is partitioned into six sub-classes. The algorithm also packs each one of

54 Leah Epstein

the six sub-classes separately, independently from the other sub-classes. Let a be
a constant 0 < a < 1/3, whose exact value is fixed later. The sub-class of an item
(/3, 7) is determined as follows:

• Sub-Class 1: 7 > 1/2 and P > p..
• Sub-Class 2: 7 > 1/2 and / ?< / / .
• Sub-Class 3: a < 7 < 1/2 and /3 > p/2.
• Sub-Class 4: a < 7 < 1/2 and /3 < /¿/2.
• Sub-Class 5: 7 < a and /3 > ¿¿7.
• Sub-Class 6: 7 < a and /3 < /¿7.

Each item of sub-classes 1 and 2, is packed as an only item in a bin. For sub-class
1 the bin is of size (1,1) and for sub-class 2 the bin is of size (p, 1). Items of sub-
classes 3 and 4 are packed in pairs (from the same sub-class). Pairs of sub-class 3
use bins of size (1,1) whereas pairs of sub-class 4 use bins of size (p, 1). By the
definition of this class, (i.e. the conditions on 7 and /3), any two items of each of
those sub-classes can fit into a bin together. The algorithm always has at most
one bin for sub-class 3 with a single item. The same is true for sub-class 4 as well.
The items of sub-class 5 are packed by a next-fit manner into bins of size (1,1).
The items of sub-class 6 are similarly packed into bins of size (p,l). In each of
those two sub-classes, there is always one active bin. When an item does not fit,
the bin is closed, and a new active bin is opened for the sub-class. Consider the
sub-class 6. Given a set of items A, let a = (ai, <22) be their sum vector. Then if
02 < 1, ai < pa2 < p. Hence < 1 is a satisfactory condition for all items in A
to fit into one bin of size (p, 1). For sub-classes 3 and 5, it is easy to see that the
second component determines whether an item fits into a non-empty bin. This is
true since for all items /3 < 7, but all the bins are of size (1,1).

Next, we calculate the amount of occupied space in all closed bins. Those are
all bins for sub-classes 1 and 2, and all bins but the very last ones opened for
sub-classes 3, 4, 5 and 6. Those four last bins add an additive constant which is
calculated later.
Sub-Class 1: The minimum weight of an item is 1/2 -f p and the cost of a bin is
2.
Sub-Class 2: The minimum item weight is 1/2 and the cost of a bin is 1 + p.
Sub-Class 3: The weight of a pair of items is at least 2(a + p/2) = 2a + p. The
cost of the bin is 2.
Siib-Class 4• The weight of a pair of items is at least 2a, the cost of a bin is 1 + /1.

Before we proceed to the other two sub-classes, we discuss the way next-fit runs
in those two cases. Consider a case where a new bin is opened, when an items
does not fit into the previous active bin. By the above arguments, it means that
the second component of an item can determine whether it fits. Since the second
component is bounded by a, all closed bins are occupied by at least 1 — a in that
component. Bins of sub-phase 5 are also occupied by at least (1 — a)p in the first
component.
Sub-Class 5: The weight of items in a closed bin is at least (1 — a)(l + p), and

On variable sized vector packing 55

the cost of a bin is 2.
Sub-Class 6: The weight of items in a closed bin is at least 1 — a, and the cost of
a bin is 1 + fx.

Let c be the maximum ratio of cost to weight in sub-classes 3, 4, 5 and 6.
Specifically

2 1 + p 2 1 + n
c - m a H 2 a + f x , 2 a , (1 _ a) (1 + / i) > l _ a > •

Since a < 1/3, we do not need to consider the fourth possibility. Hence

, 2 1 + fi 2
C _ m a X 4 a + iz' 2a ' (1 — a)(l + /i) '

Taking a to be a solution of 8a;3 — 8a;2 + 5a; — 1 = 0 and p, = (1 — 3a)/a, all other
values are the same (this gives a « 0.302, p « 0.315, c « 2.177). Consider now
also bins used for the symmetric case, i.e. the class of items (P',j') where ¡3' > 7'.
There are at most 4 bins of cost I + p and 4 bins of size 2 that might be open but
not occupied by enough weight, and are ignored in previous calculations. We add
those into the calculations to get the value of the additive constant.

Let NL be the number of bins used for sub-class 1 (in both classes) and NG the
number of bins used for sub-class 2 (in both classes). Let W be the total weight of
all items. Clearly, COPT > W. Also COPT > NL + NS- The last inequality is true
since those items can be packed either alone (possibly together with items of other
sub-classes) or in pairs, in bins of size (1,1). Hence the cost of the optimal off-line
algorithm for each such item is at least 1 (if all items of sub-classes 3, 4, 5 and 6
are ignored).

The weight of items packed into closed bins of sub-classes 3, 4, 5 and 6 is at
most W - 1/2NS - (1/2 + p)NL.

Hence

CONL < c(W - 1/2NS - (1 / 2 + H)Nl) + (1 + p)Ns + 2NL + 12 + Ap

< CCOPT + NS(1 + p - c / 2) + NL(2 - c / 2 - cp) + 12 + Ap

For the above choices of a and p,

1 + n - c/2 = 2 - c/2 - en « 0.226 .

Hence CONL < 2.403COpt + 13.26.
This proves the following Theorem:

Theorem 4.1. The competitive ratio of the above algorithm is 2-403.

5 Conclusions
We have seen that there is a large difference between possible competitive ratios for
different sets, and that the competitive ratio can actually vary between 1 and Q(d).
The classical case (B = {(1 ,1 . . . , 1)}) seems to be easier than the most difficult
cases, but harder than the easiest cases. We conjecture that the competitive ratio
for that problem should be non constant, but sub-linear.

56 Leah Epstein

References
D. Blitz, A. Van Vliet, and G. J. Woeginger. Lower bounds on the asymptotic
worst-case ratio of online bin packing algorithms. Unpublished manuscript,
1996.

J. Csirik. An online algorithm for variable-sized bin packing. Acta Informática,
26:697-709, 1989.

J. Csirik and G. Woeginger. On-Line Packing and Covering Problems. In Amos
Fiat and Gerhard J. Woeginger, editors, Online Algorithms, volume 1442 of
LNCS, chapter 7, pages 147-177. Springer-Verlag, 1998.

L. Epstein, S. S. Seiden, and R. van Stee. New bounds for variable-sized and
resource augmented online bin packing, submitted, 2001.

D. K. Friesen and M. A. Langston. A storage-size selection problem. Inform.
Process. Lett., 18:295-296, 1984.

G. Galambos, H. Kellerer, and G. J. Woeginger. A lower bound for online
vector packing algorithms. Acta Cybernetica, 11:23-34, 1994.

M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. C. Yao. Resource
constrained scheduling as generalized bin packing. J. Comb. Th. Ser. A.,
21:257-298, 1976.

D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms
for scheduling problems: Theoretical and practical results. J. of the ACM,
34(1):144-162, 1987.

N. G. Kinnersley and M. A. Langston. Online variable-sized bin packing.
Discr. Appl. Math., 22:143-148, 1988.

L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM
J. Research and Development, 21:443-448,1977.

S. S. Seiden. An optimal online algorithm for bounded space variable-sized bin
packing. In Proceedings of the 27th International Colloquium on Automata,
Languages and Programming, pages 283-295, 2000.

A. Van Vliet. An improved lower bound for online bin packing algorithms.
Inform. Process. Lett., 43:277-284, 1992.

G. Zhang. Worst-case analysis of the FFH algorithm for online variable-sized
bin packing. Computing, 56:165-172, 1996.

Received February, 2002

