
Acta Cybernetica 16 (2003) 57-66.

On-Line Maximizing the Number of Items
Packed in Variable-Sized Bins

Leah Epstein* and Lene M. Favrholdt*

Abstract

We study an on-line bin packing problem. A fixed number n of bins,
possibly of different sizes, are given. The items arrive on-line, and the goal
is to pack as many items as possible. It is known that there exists a legal
packing of the whole sequence in the n bins. We consider fair algorithms that
reject an item, only if it does not fit in the empty space of any bin. We show
that the competitive ratio of any fair, deterministic algorithm lies between |
and and that a class of algorithms including Best-Fit has a competitive
ratio of exactly 2 n-i •

Keywords: On-Line, Bin Packing.

1 Introduction
The Problem. We consider the following bin packing problem. The input con-
sists of n bins, possibly of different sizes, and a sequence of positively sized items.
The bins as well as the sizes of the bins are denoted by B i , B 2 , . . . ,Bn- The items
arrive on-line, i.e., each item must be packed before the next item is seen, and
packed items cannot be moved between bins. The goal is to pack as many items
as possible into the TI bins. A bin is legally packed if the total size of the items
assigned to it is at most the size of the bin. This problem of maximizing the number
of items packed in a fixed number of bins is sometimes called dual bin packing, to
distinguish it from the classical bin packing problem which is to pack all items in
as few bins as possible. In [8] the problem is reported to have been named dual
bin packing in [18]. Note that this name is also sometimes used for bin covering
[2, 14, 15]. For a survey on classical bin packing in identical bins, see [16, 11].

"School of Computer Science, The Interdisciplinary Center, Herzliya, Israel.
Email: l e a f l i d c . a c . i l .
Research supported in part by the Israel Science Foundation, (grant No. 250/01-1)

t Department of Mathematics and Computer Science, University of Southern Denmark. Email:
lenemflimada.sdu.dk.
Supported in part by the Danish Natural Science Research Council (SNF) and in part by the
Future and Emerging Technologies program of the EU under contract number 1ST-1999-14186
(ALCOM-FT).

57

58 Leah Epstein and Lene M. Favrholdt

Throughout the paper, we restrict the input sequences to be accommodating
[6, 7], i.e., sequences that an optimal off-line algorithm, which knows all items in
advance, can pack completely. The reason for this restriction is that, for general
sequences, no on-line algorithm can pack a constant fraction of the number of items
that can be packed by an optimal off-line algorithm.

The problem can also be seen as a scheduling problem with n uniformly related
machines. In the basic scheduling problem, each job is to be assigned to one of
the machines so as to minimize the makespan. This problem was first studied for
the case of identical machines by Graham [17], and for uniformly related machines
by [1, 10, 4]. For a survey on on-line scheduling problems, see [20]. Consider a
scheduling problem with a deadline and assume that the aim is to schedule as many
jobs as possible before this deadline. If an optimal off-line algorithm can schedule
all jobs of any input sequence before the deadline, this problem is equivalent to our
problem. Our problem can also be seen as a special case of the multiple knapsack
problem (see [19, 9]), where all items have unit profit. (This problem was mainly
studied in the off-line environment.)

The Algorithms. In this paper we study fair algorithms [3]. A fair algorithm
rejects an item, only if the item does not fit in the empty space of any bin.

Some of the algorithms that are classical for the classical bin packing problem
(where the whole sequence of items is to be packed in as few bins as possible) can
be adapted to our problem. Such an adaptation for identical bins was already done
in [7]: the n bins are all considered open from the beginning, and no new bin can
be opened. We also use this adaptation. Since there is no unique way to define
First-Fit for variable sized bins, we discuss this in Section 3.

The Quality Measure. The competitive ratio of an on-line algorithm A for the
dual bin packing problem is the worst case ratio, over all possible input sequences,
of the number of items packed by A to the number of items packed by an optimal
off-line algorithm. Often an additive constant is allowed, yielding the following
definition of the competitive ratio.

Definition 1.1. For any algorithm A and any sequence I of items, let A (I) be the
number of items packed by A and let OPT(I) be the number of items packed by an
optimal off-line algorithm. Furthermore, let 0 < c < 1. An on-line algorithm A is
c-competitive if there exists a constant b such that

k(I) > c • OPT(I) — b, for any sequence I of items.
The competitive ratio of A is

Ca = sup{c | A is c-competitive].

Note that since dual bin packing is a maximization problem, the competitive
ratio lies between 0 and 1.

If the additive constant b is zero or negative, the algorithm is called strictly
c-competitive. The bounds given in this paper are valid for the strict competitive
ratio as well as for the competitive ratio in general.

For randomized algorithms, the competitive ratio is defined similarly, but A(7)
is replaced by the expected value of A(7), E(A(I)).

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 59

The Results. We show the following results for fair algorithms on accommodat-
ing sequences.

• Any fair algorithm has a competitive ratio of at least and the competitive
ratio of Worst-Fit is exactly \ .

• A class of algorithms that give preference to smaller bins has a competitive
ratio of exactly 2n"_1. This class contains Best-Fit as well as the variant of
First-Fit that sorts the bins in order of non-decreasing sizes.

• Any fair, deterministic algorithm has a competitive ratio of at most | , and
any fair, randomized algorithm has a competitive ratio of at most

Previous Work. Dual bin packing in identical bins has been studied both in
the off-line version [13, 12] and in the on-line version for accommodating sequences
[6, 7, 3]. Even for identical bins, a restriction on the input sequences is needed in
order to be able to achieve a constant competitive ratio [7]. In [7], fair algorithms
are considered and it is shown that First-Fit has a competitive ratio of at least | on
accommodating sequences. An upper bound of | for any fair or unfair randomized
algorithm is also given. In [3], a (| — 4n

2
+1)-competitive unfair algorithm is given,

the negative result for fair deterministic algorithms is improved to 0.809, and the
bound of | for First-Fit is shown to be asymptotically tight (the upper bound
approaches | as n approaches infinity).

2 General Results on Fair Algorithms
In this section we show that, on accommodating sequences, the competitive ratio
of any fair, deterministic algorithm lies between | and | , and the competitive ratio
of any randomized algorithm is at most

2.1 Positive Results
The main result of this section is that any fair algorithm is ¿-competitive on ac-
commodating sequences. We need the following lemma which is adapted from a
similar lemma for identical bins in [7].

Lemma 2.1. For any fair algorithm, the number of rejected items is no larger than
the number of accepted items, if the input sequence is accommodating.

Proof. Given an instance of the dual bin packing problem with an accommodating
sequence I, we define a sequence I' as follows. Each accepted item of size x is
replaced by |_fj items of size s, where s is the minimum size of any rejected item.
Each rejected item is decreased to have size s. Clearly, a packing of all items of
I defines a legal packing of all items of I ' , hence I ' is also an accommodating
sequence.

Let P be the on-line packing of I and let P' be the packing of / ' induced by P.
Note that all items of I ' have the same size. Thus, to calculate an upper bound on

60 Leah Epstein and Lene M. Favrholdt

the number of items rejected we just need to find an upper bound on the number
of items of size s that fit in the bins after doing the packing P'.

For each bin Bt, let fcj denote the number of items in bin Bi in the packing P.
The empty space in Bi in the packing P' consists of the empty space in Bi in the
packing P and the space freed by the rounding down of the items packed in Bi.
The empty space in Bi in P is less than s, since the algorithm is fair, and the total
size of each original item was decreased by less than s. Thus, the empty space in
Bi in P' is strictly less than s(ki + 1). We conclude that the number of rejected
items is at most k» which is the number of accepted items. •

Corollary 2.1. Any fair algorithm has a competitive ratio on accommodating se-
quences of at least |.

We close this section with an easy lemma that will be needed in Section 2.2 and
Section 3. Let C be the set of non-empty bins in the optimal off-line packing. Let
N = \C\.

Lemma 2.2. Given an accommodating input sequence, any fair algorithm rejects
at most N — 1 items.

Proof. If the on-line algorithm does not reject any items, its packing is optimal.
Assume now, that at least one item is rejected. Let s be the minimum size of any
rejected item. Since the algorithm is fair, the empty space in each bin is less than
s. Another trivial upper bound on the empty space in any bin B is the size B of
the bin. Thus, the total empty space in the on-line packing is strictly less than
Ns + ^he total empty space of OPT is at least Hence, since
OPT accepts all items, the total size of all rejected items is strictly less than Ns.
Since all rejected items are of size at least s, there are at most N — 1 rejected
items. •

2.2 Negative Results
In this section we show an upper bound of | for deterministic, fair algorithms and
an upper bound of | for randomized, fair algorithms.

We first prove the upper bound of § for the strict competitive ratio. This is
relatively easy for any n > 2. Consider for example the following instance with
n - 2 bins of size e, 0 < e < 1, one bin of size 2, and one bin of size 3. The input
sequence consists of two or three items that are all too large for the bins of size e.
The first item has size 1. If this first item is assigned to the bin of size 3, an item of
size 3 arrives next. Otherwise, two items of size 2 will arrive. In the first case, only
the first item is packed, since the second does not fit, and in the second case only
two items are accepted, the third does not fit. It is easy to see that both sequences
are accommodating. This gives an upper bound of | on the strict competitive
ratio, for n > 2. Applying Yao's inequality [21] as described in [5] on these two
sequences gives an upper bound of | on the strict competitive ratio for randomized
algorithms. This can be seen in the following way. Consider the sequence where

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 61

the first item of size 1 is followed by one item of size 3 with probability pi = |
and by two items of size 2 with probability p2 = | . An algorithm that packs the
first item in the bin of size 3 will have an expected performance ratio of at most
px • | + p2 • 1 = | . Similarly, an algorithm that packs the first item in the bin of
size 2 will have an expected performance ratio of at most pi • 1 + p2 • § = Thus,
no deterministic algorithm can have an expected performance ratio larger than |
on this sequence.

However, we are interested in negative results that hold for the competitive ratio
in general, and not only for the strict competitive ratio. By Lemma 2.2, the number
of rejected items is at most n — 1. As long as there is only a constant number of bins,
we can view the number of rejected items as just an additive constant, and hence
any fair algorithm has competitive ratio 1. Thus, to prove the following theorem,
we need to find arbitrarily long accommodating sequences with the property that
only | of the items are accepted.

Theorem 2.1. Any fair, deterministic on-line algorithm for the dual bin packing
problem has a competitive ratio of at most | on accommodating sequences.

Proof. For I = 1 , . . . , [f J, we give the pair of bins

B2t_i =2£ + 4ee and B2i = 2t + 2- \le,

where e < p- is a positive constant. Thus, \ l e < 1, 1 < I < [f j - If n is odd,
the last bin is of size | (so that no items are packed in that bin for the sequence
we define). The sequence contains 3 • items and is constructed so that exactly
2 • Lf J °f them are accepted.

The sequence is defined inductively in steps |_|-J, |_f J — 1, • • •, 1- In step k, two
large items are given and one small item is defined. The small items are given
after all large items and are defined such that they will be rejected by the on-line
algorithm. The sizes of the two large items are defined such that

• the on-line algorithm will pack them in B2k and B2k-i, one in each bin, and
• after packing the two items, the empty space in the two bins have the same

size denoted Ek.
For convenience we define ¿¡^f J + i = 0. As will be seen later, Ek+1 < Ek, 1 < k <
LfJ. Furthermore, we will prove that Ex < I.

The first large item given in step k has size 2k — Ek+1. Thus, the very first item
has size 2 • [^J, and the size of the first large item of each of the later steps depends
on the empty space created in the previous step. Since 2k — Ek+1 > 2k — 1 and all
previous bins Bn,... ,B2k+i have less than one unit of empty space, this item fits
only in B2k and B2k-i • What happens next depends on which of these two bins
the algorithm chooses.

Case 1: The first large item is packed in B2k_i. In this case, the next large
item has size 2k — Ek+1 + Ake. This item will be packed in B2k. Now, the empty
space in each of the bins B2k and B2k-1 is Ek = Ek+\ + ik£. The small item

62 Leah Epstein and Lene M. Favrholdt

defined in this step has size Sk = Ek + 4fce. Note that this item does not fit in B2k
or B2k-1, but the off-line algorithm can pack the first large item in B2k together
with the small item and put the second large item in B2k-\-

Case 2: The first large item is packed in B2k. In this case, the next large
item has size 2k — Ek+1 - 4ke. For k > 2, this item does not fit in B2k-2, since
2k - Ek+1 - 4fce > 2k - 1 - 4*e > 2k - 2 + 3 • 4fce, for n > 2, and B2k-2 =
2k — 2 + 2 • 4fc_2e. Hence, this item must be packed in B2k-\. Now, the empty
space in each of the bins B2k and B2k-i is Ek = Ek+1 + 2 • 4ke. The small item
defined in this step has size Sk = Ek+ 4ke. This item does not fit in B2k o r B 2 n ,
but the off-line algorithm can pack the first large item in B2k~i and put the second
large item in B2k-i together with the small item.

Note that Ek+1 + 4fce < Ek < Ek+1 + 2 • 4ke, 1 < k < Lf J. The first inequality
tells us that, to prove that none of the small items will be accepted, it suffices to
prove that Sk > Ei, 2 < k < This is easily done using the second inequality.
For 2 < k < LfJ,

k-1
Ei < Ek + 2 • < Ek + 4ke = Sk.

i-1
Finally,

LfJ
Ei < J + i + 2 • < 4 ^ J + 1 e < 4 ^ 1 + ! " " < l.

¿=i
•

We move on to randomized algorithms. Since the previous sequence was built
step by step, we need to give a simpler sequence in order to prove the following
theorem.

Theorem 2.2. Any fair randomized algorithm has a competitive ratio on accom-
modating sequences of at most |.

Proof. We use [f J bins of size 1 + e and |_f J bins of size 2 — e, where 0 < e <
If n is odd, the last bin is of size e. The sequence starts with |_f J items of size 1.
We describe a proof for deterministic algorithms first. Since the algorithm is fair,
all LfJ items are accepted. Let x be the number of bins of size 1 4- e that received
an item (no bin can receive more than one item). Then, exactly x bins of size 2 — e
are empty. What happens next depends on the size of x.

Case x < | • LfJ- In this case, the sequence continues with LfJ items of size
2 — e, and the on-line algorithm accepts LfJ + x items in total out of the 2LfJ.
This gives a fraction of

i f i ± ^ < i ± i = 4
2 L f J - 2 5'

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 63

Case x > | • [f J • In this case, the sequence continues with [^J items of size 1 +e
followed by |_fj items of size 1 — e. After the arrival of items of size 1, there are
LfJ empty bins. Thus, all items of size 1 + e are accepted and now each bin has
exactly one item. Items of size 1 — e can only be assigned to bins of size 2 — e that
contain an item of size 1, hence |_f J — x of them are accepted. Thus, the fraction

3LfJ - x 3 - 1 4
3Lf J 3 5

of the items is accepted.
To get a randomized result, let x be the expectation of the number of bins of

size 1 + e that got an item. The bound follows by linearity of expectation. •

3 Results on Specific Fair Algorithms
We now analyze specific algorithms. Some natural fair algorithms are First-Fit,
Best-Fit, and Worst-Fit. The algorithm First-Fit is not a single algorithm, but a
class of algorithms that give an order to the bins, and use the algorithm according
to this order, i.e., assign an item to the first bin (in the ordered set of bins) that
the item fits in. Among the various versions of First-Fit, two are most natural;
Smallest-Fit assigns an item to the smallest bin it fits into, and Largest-Fit assigns
an item to the largest bin it fits into. The other algorithms are used in their
classical version, i.e., Best-Fit packs each item in a bin where it will leave the
smallest possible empty space, and Worst-Fit packs it in the bin where it leaves the
largest empty space. We refer to these four algorithms as SF, LF, BF, and WF.

We start the analysis by showing that | is indeed the exact competitive ratio
of WF and LF.

Theorem 3.1. The competitive ratio of Worst-Fit and Largest-Fit on accommo-
dating sequences is

Proof. Let e > 0 be a constant such that £ < K Consider the following set of bins.
One large bin of size n and n - 1 small bins of size 1. The sequence consists of
n — 1 items of size 1 followed by n — 1 items of size 1 + e. Both algorithms LF
and WF assign all items of size 1 to the large bin. As a result, all bins have a free
space of size 1, hence none of the items of size 1 + e can be accepted. The optimal
algorithm assigns each small item to a small bin, and all other items to the large
bin; they all fit since

\ / ,, ^ (n + 1)(n - 1)
(1 + £)(n - 1) < - ^ '- < n .

n
This example in combination with Corollary 2.1 proves the theorem. •

We further analyze a class of fair algorithms called Smallest-Bins-First to which
SF and BF belong. This is the class of fair algorithms that whenever an item is

64 Leah Epstein and Lene M. Favrholdt

assigned to an empty bin, this is the smallest bin in which the item fits. There are
no additional rules, and the algorithm may use an empty bin even if the item fits
in a non-empty bin, as long as it uses the smallest empty bin for that. SF belongs
to this class according to its definition. BF belongs to this class since, among the
empty bins that an item fits into, it fits better into the smaller bins than the larger
bins. We give a tight analysis of this class as a function of n. Specifically we prove
the following.

Theorem 3.2. The competitive ratio of any Smallest-Bins-First algorithm on ac-
commodating sequences is 2n"_1.

Proof. If, after running the algorithm, all bins of the on-line algorithm are non-
empty, then there are at least n accepted items and at most n — 1 rejected items
(by Lemma 2.2). Thus, in this case, the competitive ratio is at least 2n-i •

Otherwise, consider the largest (last) bin b that remained empty after running
the on-line algorithm. We consider items of size smaller than or equal to b, and
items larger than b separately. Since a bin of size b is empty and no bin larger
than b is empty, according to the definition of the class of algorithms, each bin of
size more than b contains at least one item larger than b, namely the first item
packed in the bin. Moreover, all items of size at most b are accepted. Let xs be the
number of items in bins of size at most b and let nt be the number of bins larger
than b. Let Ns be the number of non-empty bins of OPT of size at most b and Nt
its number of non-empty bins larger than b. Clearly, xs > Ns (all those bins are of
size at most b and contain at least one item). We get that the number of accepted
items is at least xs + nt > Ns + Nt = N. Thus, by Lemma 2.2, the competitive
ratio is at least 2n~ i ^ 2^-i•

. To show that the result is tight for this class of algorithms, let e < ^ be a
positive constant. Consider the set of bins Bi = 1 + ei, i = 1 , . . . , n. The sequence
consists of n items, one of size 1 + e(i — 1) for each i = 1 , . . . , n, followed by n — 1
items of size ^ j . All algorithms in the class assign the item of size 1 + e(i — 1) to
Bi. All other items are rejected. The optimal off-line algorithm assigns each large
item except the first one to a bin of its size. The first item and the n — 1 small
items are assigned to Bn. •

Note that when n = 2, the lower bound of 2n"_t matches the general upper
bound of | .

4 Conclusion
We have proven an upper bound of | for all fair algorithms. We have also shown
that any fair algorithm accepts at least half of the items, and that some algorithms
do significantly better for very small n. It is left as an open problem to design a fair
algorithm with a competitive ratio significantly larger than | for any n, or prove
that this is not possible. It is also unknown how much unfair algorithms can be
better; the best negative result for those is which holds even for identical bins [7].

On-Line Maximizing the Number of Items Packed in Variable-Sized Bins 65

Acknowledgment: We would like to thank Joan Boyar for reading and comment-
ing on the paper. We also thank the editor Gerhard Woeginger for suggesting the
title.

References
[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and 0 . Waarts. On-Line Routing of

Virtual Circuits with Applications to Load Balancing and Machine Scheduling.
Journal of the ACM, 44(3):486-504, 1997. Also in Proc. 25th ACM STOC,
1993, pp. 623-631.

[2] S. F. Assmann, D. S. Johnson, D. J. Kleitman, and J. Y. Leung. On a Dual
Version of the One-Dimensional Bin Packing Problem. Journal of Algorithms,
5:502-525, 1984.

[3] Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N.
Nielsen. Fair versus Unrestricted Bin Packing. Algorithmica, 34(2): 181-196,
2002. Preliminary version at SWAT 2000, volume 1851 of LNCS: 200-213,
Springer-Verlag, 2000.

[4] P. Berman, M. Charikar, and M. Karpinski. On-Line Load Balancing for
Related Machines. Journal of Algorithms, 35:108-121, 2000.

[5] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[6] J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmica,
25:403-417, 1999.

[7] J. Boyar, K. S. Larsen, and M. N. Nielsen. The Accommodating Function:
A Generalization of the Competitive Ratio. SIAM Journal on Computing,
31(1) :233—258, 2001.

[8] J. L. Bruno and P. J. Downey. Probabilistic Bounds for Dual Bin-Packing.
Acta Informatica, 22:333-345, 1985.

[9] C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem.
In Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
213-222, 2000.

[10] Y. Cho and S. Sahni. Bounds for List Schedules on Uniform Processors. SIAM
Journal on Computing, 9:91-103, 1988.

[11] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation Al-
gorithms for Bin Packing: A Survey. In Dorit S. Hochbaum, editor, Ap-
proximation Algorithms for NP-Hard Problems, chapter 2, pages 46-93. PWS
Publishing Company, 1997.

66 Leah Epstein and Lene M. Favrholdt

12]. E. G. Coffman Jr. and J. Y. Leung. Combinatorial Analysis of an Efficient
Algorithm for Processor and Storage Allocation. SI AM Journal on Computing,
8(2):202—217, 1979.

13] E. G. Coffman Jr. J. Y. Leung, and D. W. Ting. Bin Packing: Maximizing
the Number of Pieces Packed. Acta Informática, 9:263-271, 1978.

14] J. Csirik and J. B. G. Frenk. A Dual Version of Bin Packing. Algorithms
Review, 1:87-95, 1990.

15] J. Csirik and V. Totik. On-Line Algorithms for a Dual Version of Bin Packing.
Discr. Appl. Math., 21:163-167, 1988.

16] J. Csirik and G. Woeginger. On-Line Packing and Covering Problems. In Amos
Fiat and Gerhard J. Woeginger, editors, Online Algorithms, volume 1442 of
LNCS, chapter 7, pages 147-177. Springer-Verlag, 1998.

17] R. L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell Systems
Technical Journal, 45:1563-1581, 1966.

18] J. Y. Leung. Fast Algorithms for Packing Problems. PhD thesis, Pennsylvania
State University, 1977.

19] S. Martello and P. Toth. Knapsack Problerris. John Wiley and Sons, Chichester,
1990.

20] J. Sgall. On-Line Scheduling. In A. Fiat and G. J. Woeginger, editors, Online
Algorithms: The State of the Art, volume 1442 of LNCS, pages 196-231.
Springer-Verlag, 1998.

21] A. C. Yao. Towards a Unified Measure of Complexity. Proc. 12th ACM
Symposium on Theory of Computing, pages 222-227, 1980.

Received February, 2003

