
Acta Cybernetica 16 (2003) 57-66. 

On-Line Maximizing the Number of Items 
Packed in Variable-Sized Bins 

Leah Epstein* and Lene M. Favrholdt* 

Abstract 

We study an on-line bin packing problem. A fixed number n of bins, 
possibly of different sizes, are given. The items arrive on-line, and the goal 
is to pack as many items as possible. It is known that there exists a legal 
packing of the whole sequence in the n bins. We consider fair algorithms that 
reject an item, only if it does not fit in the empty space of any bin. We show 
that the competitive ratio of any fair, deterministic algorithm lies between | 
and and that a class of algorithms including Best-Fit has a competitive 
ratio of exactly 2 n-i • 

Keywords: On-Line, Bin Packing. 

1 Introduction 
The Problem. We consider the following bin packing problem. The input con-
sists of n bins, possibly of different sizes, and a sequence of positively sized items. 
The bins as well as the sizes of the bins are denoted by B i , B 2 , . . . ,Bn- The items 
arrive on-line, i.e., each item must be packed before the next item is seen, and 
packed items cannot be moved between bins. The goal is to pack as many items 
as possible into the TI bins. A bin is legally packed if the total size of the items 
assigned to it is at most the size of the bin. This problem of maximizing the number 
of items packed in a fixed number of bins is sometimes called dual bin packing, to 
distinguish it from the classical bin packing problem which is to pack all items in 
as few bins as possible. In [8] the problem is reported to have been named dual 
bin packing in [18]. Note that this name is also sometimes used for bin covering 
[2, 14, 15]. For a survey on classical bin packing in identical bins, see [16, 11]. 
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Throughout the paper, we restrict the input sequences to be accommodating 
[6, 7], i.e., sequences that an optimal off-line algorithm, which knows all items in 
advance, can pack completely. The reason for this restriction is that, for general 
sequences, no on-line algorithm can pack a constant fraction of the number of items 
that can be packed by an optimal off-line algorithm. 

The problem can also be seen as a scheduling problem with n uniformly related 
machines. In the basic scheduling problem, each job is to be assigned to one of 
the machines so as to minimize the makespan. This problem was first studied for 
the case of identical machines by Graham [17], and for uniformly related machines 
by [1, 10, 4]. For a survey on on-line scheduling problems, see [20]. Consider a 
scheduling problem with a deadline and assume that the aim is to schedule as many 
jobs as possible before this deadline. If an optimal off-line algorithm can schedule 
all jobs of any input sequence before the deadline, this problem is equivalent to our 
problem. Our problem can also be seen as a special case of the multiple knapsack 
problem (see [19, 9]), where all items have unit profit. (This problem was mainly 
studied in the off-line environment.) 

The Algorithms. In this paper we study fair algorithms [3]. A fair algorithm 
rejects an item, only if the item does not fit in the empty space of any bin. 

Some of the algorithms that are classical for the classical bin packing problem 
(where the whole sequence of items is to be packed in as few bins as possible) can 
be adapted to our problem. Such an adaptation for identical bins was already done 
in [7]: the n bins are all considered open from the beginning, and no new bin can 
be opened. We also use this adaptation. Since there is no unique way to define 
First-Fit for variable sized bins, we discuss this in Section 3. 

The Quality Measure. The competitive ratio of an on-line algorithm A for the 
dual bin packing problem is the worst case ratio, over all possible input sequences, 
of the number of items packed by A to the number of items packed by an optimal 
off-line algorithm. Often an additive constant is allowed, yielding the following 
definition of the competitive ratio. 

Definition 1.1. For any algorithm A and any sequence I of items, let A (I) be the 
number of items packed by A and let OPT(I) be the number of items packed by an 
optimal off-line algorithm. Furthermore, let 0 < c < 1. An on-line algorithm A is 
c-competitive if there exists a constant b such that 

k(I) > c • OPT(I) — b, for any sequence I of items. 
The competitive ratio of A is 

Ca = sup{c | A is c-competitive]. 

Note that since dual bin packing is a maximization problem, the competitive 
ratio lies between 0 and 1. 

If the additive constant b is zero or negative, the algorithm is called strictly 
c-competitive. The bounds given in this paper are valid for the strict competitive 
ratio as well as for the competitive ratio in general. 

For randomized algorithms, the competitive ratio is defined similarly, but A(7) 
is replaced by the expected value of A(7), E(A(I)). 
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The Results. We show the following results for fair algorithms on accommodat-
ing sequences. 

• Any fair algorithm has a competitive ratio of at least and the competitive 
ratio of Worst-Fit is exactly \ . 

• A class of algorithms that give preference to smaller bins has a competitive 
ratio of exactly 2n"_1. This class contains Best-Fit as well as the variant of 
First-Fit that sorts the bins in order of non-decreasing sizes. 

• Any fair, deterministic algorithm has a competitive ratio of at most | , and 
any fair, randomized algorithm has a competitive ratio of at most 

Previous Work. Dual bin packing in identical bins has been studied both in 
the off-line version [13, 12] and in the on-line version for accommodating sequences 
[6, 7, 3]. Even for identical bins, a restriction on the input sequences is needed in 
order to be able to achieve a constant competitive ratio [7]. In [7], fair algorithms 
are considered and it is shown that First-Fit has a competitive ratio of at least | on 
accommodating sequences. An upper bound of | for any fair or unfair randomized 
algorithm is also given. In [3], a ( | — 4n

2
+1 )-competitive unfair algorithm is given, 

the negative result for fair deterministic algorithms is improved to 0.809, and the 
bound of | for First-Fit is shown to be asymptotically tight (the upper bound 
approaches | as n approaches infinity). 

2 General Results on Fair Algorithms 
In this section we show that, on accommodating sequences, the competitive ratio 
of any fair, deterministic algorithm lies between | and | , and the competitive ratio 
of any randomized algorithm is at most 

2.1 Positive Results 
The main result of this section is that any fair algorithm is ¿-competitive on ac-
commodating sequences. We need the following lemma which is adapted from a 
similar lemma for identical bins in [7]. 

Lemma 2.1. For any fair algorithm, the number of rejected items is no larger than 
the number of accepted items, if the input sequence is accommodating. 

Proof. Given an instance of the dual bin packing problem with an accommodating 
sequence I, we define a sequence I' as follows. Each accepted item of size x is 
replaced by |_fj items of size s, where s is the minimum size of any rejected item. 
Each rejected item is decreased to have size s. Clearly, a packing of all items of 
I defines a legal packing of all items of I ' , hence I ' is also an accommodating 
sequence. 

Let P be the on-line packing of I and let P' be the packing of / ' induced by P. 
Note that all items of I ' have the same size. Thus, to calculate an upper bound on 
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the number of items rejected we just need to find an upper bound on the number 
of items of size s that fit in the bins after doing the packing P'. 

For each bin Bt, let fcj denote the number of items in bin Bi in the packing P. 
The empty space in Bi in the packing P' consists of the empty space in Bi in the 
packing P and the space freed by the rounding down of the items packed in Bi. 
The empty space in Bi in P is less than s, since the algorithm is fair, and the total 
size of each original item was decreased by less than s. Thus, the empty space in 
Bi in P' is strictly less than s(ki + 1). We conclude that the number of rejected 
items is at most k» which is the number of accepted items. • 

Corollary 2.1. Any fair algorithm has a competitive ratio on accommodating se-
quences of at least |. 

We close this section with an easy lemma that will be needed in Section 2.2 and 
Section 3. Let C be the set of non-empty bins in the optimal off-line packing. Let 
N = \C\. 

Lemma 2.2. Given an accommodating input sequence, any fair algorithm rejects 
at most N — 1 items. 

Proof. If the on-line algorithm does not reject any items, its packing is optimal. 
Assume now, that at least one item is rejected. Let s be the minimum size of any 
rejected item. Since the algorithm is fair, the empty space in each bin is less than 
s. Another trivial upper bound on the empty space in any bin B is the size B of 
the bin. Thus, the total empty space in the on-line packing is strictly less than 
Ns + ^he total empty space of OPT is at least Hence, since 
OPT accepts all items, the total size of all rejected items is strictly less than Ns. 
Since all rejected items are of size at least s, there are at most N — 1 rejected 
items. • 

2.2 Negative Results 
In this section we show an upper bound of | for deterministic, fair algorithms and 
an upper bound of | for randomized, fair algorithms. 

We first prove the upper bound of § for the strict competitive ratio. This is 
relatively easy for any n > 2. Consider for example the following instance with 
n - 2 bins of size e, 0 < e < 1, one bin of size 2, and one bin of size 3. The input 
sequence consists of two or three items that are all too large for the bins of size e. 
The first item has size 1. If this first item is assigned to the bin of size 3, an item of 
size 3 arrives next. Otherwise, two items of size 2 will arrive. In the first case, only 
the first item is packed, since the second does not fit, and in the second case only 
two items are accepted, the third does not fit. It is easy to see that both sequences 
are accommodating. This gives an upper bound of | on the strict competitive 
ratio, for n > 2. Applying Yao's inequality [21] as described in [5] on these two 
sequences gives an upper bound of | on the strict competitive ratio for randomized 
algorithms. This can be seen in the following way. Consider the sequence where 
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the first item of size 1 is followed by one item of size 3 with probability pi = | 
and by two items of size 2 with probability p2 = | . An algorithm that packs the 
first item in the bin of size 3 will have an expected performance ratio of at most 
px • | + p2 • 1 = | . Similarly, an algorithm that packs the first item in the bin of 
size 2 will have an expected performance ratio of at most pi • 1 + p2 • § = Thus, 
no deterministic algorithm can have an expected performance ratio larger than | 
on this sequence. 

However, we are interested in negative results that hold for the competitive ratio 
in general, and not only for the strict competitive ratio. By Lemma 2.2, the number 
of rejected items is at most n — 1. As long as there is only a constant number of bins, 
we can view the number of rejected items as just an additive constant, and hence 
any fair algorithm has competitive ratio 1. Thus, to prove the following theorem, 
we need to find arbitrarily long accommodating sequences with the property that 
only | of the items are accepted. 

Theorem 2.1. Any fair, deterministic on-line algorithm for the dual bin packing 
problem has a competitive ratio of at most | on accommodating sequences. 

Proof. For I = 1 , . . . , [f J, we give the pair of bins 

B2t_i =2£ + 4ee and B2i = 2t + 2- \le, 

where e < p- is a positive constant. Thus, \ l e < 1, 1 < I < [ f j - If n is odd, 
the last bin is of size | (so that no items are packed in that bin for the sequence 
we define). The sequence contains 3 • items and is constructed so that exactly 
2 • Lf J °f them are accepted. 

The sequence is defined inductively in steps |_|-J, |_f J — 1, • • •, 1- In step k, two 
large items are given and one small item is defined. The small items are given 
after all large items and are defined such that they will be rejected by the on-line 
algorithm. The sizes of the two large items are defined such that 

• the on-line algorithm will pack them in B2k and B2k-i, one in each bin, and 
• after packing the two items, the empty space in the two bins have the same 

size denoted Ek. 
For convenience we define ¿¡^f J + i = 0. As will be seen later, Ek+1 < Ek, 1 < k < 
LfJ. Furthermore, we will prove that Ex < I. 

The first large item given in step k has size 2k — Ek+1. Thus, the very first item 
has size 2 • [^J, and the size of the first large item of each of the later steps depends 
on the empty space created in the previous step. Since 2k — Ek+1 > 2k — 1 and all 
previous bins Bn,... ,B2k+i have less than one unit of empty space, this item fits 
only in B2k and B2k-i • What happens next depends on which of these two bins 
the algorithm chooses. 

Case 1: The first large item is packed in B2k_i. In this case, the next large 
item has size 2k — Ek+1 + Ake. This item will be packed in B2k. Now, the empty 
space in each of the bins B2k and B2k-1 is Ek = Ek+\ + ik£. The small item 
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defined in this step has size Sk = Ek + 4fce. Note that this item does not fit in B2k 
or B2k-1, but the off-line algorithm can pack the first large item in B2k together 
with the small item and put the second large item in B2k-\-

Case 2: The first large item is packed in B2k. In this case, the next large 
item has size 2k — Ek+1 - 4ke. For k > 2, this item does not fit in B2k-2, since 
2k - Ek+1 - 4fce > 2k - 1 - 4*e > 2k - 2 + 3 • 4fce, for n > 2, and B2k-2 = 
2k — 2 + 2 • 4fc_2e. Hence, this item must be packed in B2k-\. Now, the empty 
space in each of the bins B2k and B2k-i is Ek = Ek+1 + 2 • 4ke. The small item 
defined in this step has size Sk = Ek+ 4ke. This item does not fit in B2k o r B 2 n , 
but the off-line algorithm can pack the first large item in B2k~i and put the second 
large item in B2k-i together with the small item. 

Note that Ek+1 + 4fce < Ek < Ek+1 + 2 • 4ke, 1 < k < Lf J. The first inequality 
tells us that, to prove that none of the small items will be accepted, it suffices to 
prove that Sk > Ei, 2 < k < This is easily done using the second inequality. 
For 2 < k < LfJ, 

k-1 
Ei < Ek + 2 • < Ek + 4ke = Sk. 

i-1 
Finally, 

LfJ 
Ei < J + i + 2 • < 4 ^ J + 1 e < 4 ^ 1 + ! " " < l. 

¿=i 
• 

We move on to randomized algorithms. Since the previous sequence was built 
step by step, we need to give a simpler sequence in order to prove the following 
theorem. 

Theorem 2.2. Any fair randomized algorithm has a competitive ratio on accom-
modating sequences of at most |. 

Proof. We use [f J bins of size 1 + e and |_f J bins of size 2 — e, where 0 < e < 
If n is odd, the last bin is of size e. The sequence starts with |_f J items of size 1. 
We describe a proof for deterministic algorithms first. Since the algorithm is fair, 
all LfJ items are accepted. Let x be the number of bins of size 1 4- e that received 
an item (no bin can receive more than one item). Then, exactly x bins of size 2 — e 
are empty. What happens next depends on the size of x. 

Case x < | • LfJ- In this case, the sequence continues with LfJ items of size 
2 — e, and the on-line algorithm accepts LfJ + x items in total out of the 2LfJ. 
This gives a fraction of 

i f i ± ^ < i ± i = 4 
2 L f J - 2 5' 
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Case x > | • [f J • In this case, the sequence continues with [^J items of size 1 +e 
followed by |_fj items of size 1 — e. After the arrival of items of size 1, there are 
LfJ empty bins. Thus, all items of size 1 + e are accepted and now each bin has 
exactly one item. Items of size 1 — e can only be assigned to bins of size 2 — e that 
contain an item of size 1, hence |_f J — x of them are accepted. Thus, the fraction 

3LfJ - x 3 - 1 4 
3Lf J 3 5 

of the items is accepted. 
To get a randomized result, let x be the expectation of the number of bins of 

size 1 + e that got an item. The bound follows by linearity of expectation. • 

3 Results on Specific Fair Algorithms 
We now analyze specific algorithms. Some natural fair algorithms are First-Fit, 
Best-Fit, and Worst-Fit. The algorithm First-Fit is not a single algorithm, but a 
class of algorithms that give an order to the bins, and use the algorithm according 
to this order, i.e., assign an item to the first bin (in the ordered set of bins) that 
the item fits in. Among the various versions of First-Fit, two are most natural; 
Smallest-Fit assigns an item to the smallest bin it fits into, and Largest-Fit assigns 
an item to the largest bin it fits into. The other algorithms are used in their 
classical version, i.e., Best-Fit packs each item in a bin where it will leave the 
smallest possible empty space, and Worst-Fit packs it in the bin where it leaves the 
largest empty space. We refer to these four algorithms as SF, LF, BF, and WF. 

We start the analysis by showing that | is indeed the exact competitive ratio 
of WF and LF. 

Theorem 3.1. The competitive ratio of Worst-Fit and Largest-Fit on accommo-
dating sequences is 

Proof. Let e > 0 be a constant such that £ < K Consider the following set of bins. 
One large bin of size n and n - 1 small bins of size 1. The sequence consists of 
n — 1 items of size 1 followed by n — 1 items of size 1 + e. Both algorithms LF 
and WF assign all items of size 1 to the large bin. As a result, all bins have a free 
space of size 1, hence none of the items of size 1 + e can be accepted. The optimal 
algorithm assigns each small item to a small bin, and all other items to the large 
bin; they all fit since 

\ / ,, ^ (n + 1 )(n - 1) 
(1 + £)(n - 1) < - ^ '- < n . 

n 
This example in combination with Corollary 2.1 proves the theorem. • 

We further analyze a class of fair algorithms called Smallest-Bins-First to which 
SF and BF belong. This is the class of fair algorithms that whenever an item is 
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assigned to an empty bin, this is the smallest bin in which the item fits. There are 
no additional rules, and the algorithm may use an empty bin even if the item fits 
in a non-empty bin, as long as it uses the smallest empty bin for that. SF belongs 
to this class according to its definition. BF belongs to this class since, among the 
empty bins that an item fits into, it fits better into the smaller bins than the larger 
bins. We give a tight analysis of this class as a function of n. Specifically we prove 
the following. 

Theorem 3.2. The competitive ratio of any Smallest-Bins-First algorithm on ac-
commodating sequences is 2n"_1. 

Proof. If, after running the algorithm, all bins of the on-line algorithm are non-
empty, then there are at least n accepted items and at most n — 1 rejected items 
(by Lemma 2.2). Thus, in this case, the competitive ratio is at least 2n-i • 

Otherwise, consider the largest (last) bin b that remained empty after running 
the on-line algorithm. We consider items of size smaller than or equal to b, and 
items larger than b separately. Since a bin of size b is empty and no bin larger 
than b is empty, according to the definition of the class of algorithms, each bin of 
size more than b contains at least one item larger than b, namely the first item 
packed in the bin. Moreover, all items of size at most b are accepted. Let xs be the 
number of items in bins of size at most b and let nt be the number of bins larger 
than b. Let Ns be the number of non-empty bins of OPT of size at most b and Nt 
its number of non-empty bins larger than b. Clearly, xs > Ns (all those bins are of 
size at most b and contain at least one item). We get that the number of accepted 
items is at least xs + nt > Ns + Nt = N. Thus, by Lemma 2.2, the competitive 
ratio is at least 2n~ i ^ 2^-i• 

. To show that the result is tight for this class of algorithms, let e < ^ be a 
positive constant. Consider the set of bins Bi = 1 + ei, i = 1 , . . . , n. The sequence 
consists of n items, one of size 1 + e(i — 1) for each i = 1 , . . . , n, followed by n — 1 
items of size ^ j . All algorithms in the class assign the item of size 1 + e(i — 1) to 
Bi. All other items are rejected. The optimal off-line algorithm assigns each large 
item except the first one to a bin of its size. The first item and the n — 1 small 
items are assigned to Bn. • 

Note that when n = 2, the lower bound of 2n"_t matches the general upper 
bound of | . 

4 Conclusion 
We have proven an upper bound of | for all fair algorithms. We have also shown 
that any fair algorithm accepts at least half of the items, and that some algorithms 
do significantly better for very small n. It is left as an open problem to design a fair 
algorithm with a competitive ratio significantly larger than | for any n, or prove 
that this is not possible. It is also unknown how much unfair algorithms can be 
better; the best negative result for those is which holds even for identical bins [7]. 
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