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SW-type puzzles and their graphs 

Benedek Nagy* 

Abstract 
In this paper, we present the SW-type of truth-tellers and liars puzzles. 

We examine the SW-type puzzles where each person can utter a sentence 
about the person's type and in which he uses only the "and" connective. We 
make the graphs of these puzzles. The graph of a puzzle has all information 
about the puzzle if we have no other information to solve the puzzle than 
the statements given (clear puzzles). We analyze the graphs of the possible 
puzzles. We give some transformations of graphs based on local information, 
for instance arrow-adding steps. These local steps are very helpful to solve 
these puzzles. We show an example that we can solve using these local steps. 
After this, we examine into the global properties of the graphs. We show a 
special example when the local steps do not help, but the puzzle is solvable 
by using global information. Finally we show a graph-algorithm which is a 
combination of local and global information, and show that it can solve the 
SW-type puzzles. 

Keywords: puzzles, truth-tellers and liars, graphs, graph-algorithm 

1 Introduction 
Games are as old as humanity. Nowadays most people connect them to computers. 
Game playing is also good time-spending activities. The problems needing more 
or less time to solve represent useful ways of spending one's spare time. A part 
of games are puzzles. Logical puzzles can be solved by a rational way of thinking. 
From children to very wise people everybody can find puzzles which develop their 
skills. It can be a good hobby as well. Therefore, logical puzzles are very useful 
to explore the ability of logical thought. There are many kind of puzzles. In 
this article, we consider a simple type called "truth-tellers and liars". In these 
puzzles, there are some people each of the following two types: either truth-teller, 
who can say only true statements; or liar, who can say only false statements. All 
participants have full information about the type of the others. Some of them claim 
about the type of the others. The puzzle is to figure out the types of each person. 
These problems are very popular. Smullyan examined such puzzles in scientifical 
and logical way ([7], [8], [9], [10]), where the participants was distinguished as 
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knights and knaves. In [6], satellites send messages informing mechanics whether 
the neighbouring satellites work properly, or not. In [1], [2] and in [3], Aszalos 
solves many puzzles by using tableaux method and Prolog language, as well. 

In this paper, we investigate a special type of truth-teller-liar puzzles. We show 
a characteristic example. 
Example 1.1. Consider the following problem. There are four people: Alice, Bob, 
Charlie and David. Each of them is either a truth-teller or a liar. They say: 

Alice says that Bob is a truth-teller and David is a liar. Bob says that Charlie 
is a liar. Charlie says that Alice is a truth-teller and David is a liar. 

Using Smullyan's method [7] we write the example in the next logical form: 

A = B A B = iC, C = AA^D 

One can check easily that valuation A = C = false, B — D = true gives valid 
formulae. Therefore a solution of the example that Alice and Charlie are truth-
tellers; Bob and David are liars. Moreover it is easy to check that the variables 
A,B,C,D have not other values such that all given formulae are true. So our 
solution is unique. 

In the next section we describe more precisely the SW-type truth-teller and liar 
puzzles. In [4] we presented a program in language C which can generate special 
SW-type puzzles. Now we will associate graphs to the puzzles, which are very 
useful to examine the structure of the puzzles, and we can solve a puzzle by using 
the associated graph. 

In section 3 we analyse the SW-type puzzles and we show some useful steps to 
solve them by using local information, in this section we will solve Example 1.1. 

In thé next sections, we show an example such that the local information is not 
enough to solve it. We show how we can use the global information of the graph 
to get the solution. We present a general algorithm mixed the local and global 
information. 

2 SW-type puzzles 
We need a few concepts to the mathematical discussion and so; we give some basic 
definitions and notations. 

The sentences which are not dividable to smaller sentences are called atomic (or 
simple) statements. In this paper, we use atomic statements only about a person's 
type as we seen in Example 1.1. 

In Example 1.1 there are 5 atomic sentences. Alice and Charlie tell two-two 
atomic statements and Bob tells one. 

In this puzzles, if a person is a truth-teller then the conjunction of his atomic 
statements must be true. If a person is a liar then the conjunction of his atomic 
statements is false. In [5] we used these definitions to define S(trong) Truth-tellers 
and W(eak) Liars. 
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Figure 1: The graph of Example 1.1 

If a person remains silent then he may be Truth-teller or he may be Liar. We 
may know it only from the atomic sentences about his type. 

We call our puzzles SW-type because each person is an S truth-teller, or a W 
liar. 

In [4] we investigated clear and non-clear puzzles. A puzzle is clear, if we have 
no other information to solve the puzzle than the statements given. 

An example of a non-clear puzzle is someone's type or the number of truth-
tellers being known independently of the statements. In this paper, we examine 
only clear puzzles. Our example is a clear SW-puzzle. 

We use the value 1 to represent the truth-tellers, and the value 0 for the liars. 

Definition 2.1. The solution of a puzzle is a function which assigns either a 1 
or a 0 to each person, who is in the puzzle depending upon the truth-values of the 
statements he or she makes. Two solutions are different, if there is a person, whose 
type is not the same in these two functions. 

We say that a puzzle is good if it has a unique solution. 

In this paper we use three type of participants in dynamic way. The initial type 
is the unknown. The other two types are the known 1 and known 0. We will sign 
the known values at the participants who have it. Usually we will use the sets T 
and L as sets of truth-tellers and sets of liars, respectively. 

This paper will investigate clear puzzles only with solutions and the most of our 
results are about good puzzles. 

Definition 2.2. Puzzles are represented by directed graphs with a node of the graph 
for person in the puzzle. There are two types of arrows: if A said that B is a truth-
teller then we use a solid arrow from A to B; if A said that B is a liar then we use 
a dashed arrow from A to B. We will use N as the set of nodes and t, I as the sets 
of solid and dashed edges, respectively. 

We will use the names of persons as names of nodes, and sometimes as logical 
statements which can have either 0 or 1 values. We use the following notation: 
P(N,t,l) (where the nodes are Bi £ N, the solid and dashed edges tj £ t and £ 1 
respectively, and they are sorted pairs of nodes) as the associated graph of a puzzle. 

In Fig. 1 we show the graph of Example 1.1. 
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We say that the puzzles P and Q are equivalent if the solution(s) of P are the 
same as the solution(s) of Q. 

Now we continue the describing the SW-type puzzles, which are widely used. 
One can find them in almost every book on puzzles. 

According to our concepts, in these puzzles we have only S truth-tellers, and W 
liars, hence we can use conjunction in logical form of the sentences. In an SW-type 
puzzle, every person can make at most one complex assertion which has a truth-
value corresponding to the type of the person. The possible atomic sentences are: 
the man names a person, and he states that this person is a truth-teller (or he 
states, that this person is a liar). 

So in an SW-type puzzle with n persons, each person can claim at most one 
sentence, and it must be the following type: he names m persons (0 < m < n), and 
he states that all of them are truth-tellers, and he names k persons (0 < k < n), 
and he states that all of them are liars. So, there are two - maybe one of them or 
both empty, and not necessarily disjoint - sets of the persons for each member in 
the puzzle, about whom that member claims something. 

Definition 2.3. (Formal definition of SW-puzzles) Suppose that there are n people 
BuB2,...Bn. 
From, [7] and [4] we write the following logical form from the statements: if 
3j(BiBj G t or BiBj € t) then 

(*) Bi = { f \ Bj) A ( f \ -nBfc). 
BiBj^t BiBkei 

If all the conditions of a puzzle can be written by this way then it is a clear 
SW-puzzle. 

Now we consider that P is a graph of an SW-type puzzle. Let us examine the 
meaning of the arrows. 

If A states the atomic statement, that B is a truth-teller then A D B is valid 
(this is what the solid arrow means), or if A states, that B is a liar then the formula 
A D ~>B is true (it is a dashed arrow). In (*) we have equivalence, so we need one 
more concept: the relevant edges. 

Definition 2.4. In the graph P, we call an edge relevant edge if it is possible for 
it to stand for a liar's actual, false atomic statement. 

We will use this concept in dynamic way. First we assume, that all arrows are 
relevant. (We do not know yet if it was not possible for an edge to stand for a liar's 
false statement.) And while it turns out that an edge might not be relevant we 
assume that it is possible for it to stand for a liar's actual, false atomic statement. 
It is evident that there is at least 1 relevant arrow from the nodes which are type 
0, assuming that person said something. 
Notation 2.5. In the graph we cross the non-relevant edges. An edge is annotated 
with the sign '!' if there is only this relevant edge starting from that node.We will 
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use these notations in figures. In form P(N,t,l) we will use for a non-relevant edge 
AB (A,B € N) the sign AB (overlying). And for the unique relevant edge CD 
(where C, D £ N) we use the CD (underlying) form in text instead of the sign '!'. 
From here AB £ t means that one of the AB, AB and AB is in the set t, and 
similarly for the set 1. 

The following assertion shows how we can use the relevant edges to make the 
(*) form from the implications. 

If there is only one relevant edge from a node B, then we use equivalence in the 
formula instead of implication: BC £ t means that B = C; BC £ 1 means that 
B = -.C. 

Hence we can see that the graph of a puzzle represents really the sets of logical 
formulas of the puzzle. The nodes (Bi) like atomic statements ("Bi is a truth-
teller"), the arrows like logical connectives between them, and hence we can use 
them as logical statements also. 

3 Local steps in the graph 
Solving the puzzles requires some techniques which modify the graph of the puzzle. 
However our new graph is equivalent to the original. These local techniques are 
the following (we will give detailed description of them in this section): 

Definition 3.1. 
a) An arrow-adding step is the following: add a new (non-relevant) arrow to the 

graph such that all solutions remain such that our new graph is equivalent to 
the original. 

b) A node-union is when it turns out that two nodes must be same types, and 
we need use only one of them as common node. 

c) A subgraph is a basic scheme if the type of one of the nodes of this part can 
be only one of {0,1} according to the arrows in this part. 

d) An arrow is a valuable arrow, if we know the type of starting or the ending 
node, and we can infer the type of the other node (using only the information 
about the type of the first node, and the type of connection.) 

e) In arrow deletion and arrow change to irrelevant steps we will delete the 
arrows, which are non useful (we cannot use them to get new information, 
for example we know the type of both end-nodes), or we cross the edges, which 
we cannot use as relevant edges, but we may will use as valuable arrows. 

The basic schemes and the valuable arrows change the types of the nodes to 
known value. The node-union step decrease the number of nodes and use the new 
node as endpoint of the edges, which had endpoint one of the joined nodes. In an 
arrow-adding step we increase the number of edges, while in an arrow deletion we 
decrease it. 
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Now we have some lemmas about these local steps: when and how we can use 
them. 

First we show the arrow-adding steps. We add a new non-relevant edge to the 
graph in the following cases. (The new edge is non-relevant, because it is not a real 
statement in the original puzzle.) 

Lemma 3.2. The following steps are arrow-adding steps. The graphs before and 
after a step are equivalent. 

edge(s) in the graph before the step the new irrelevant edge(s) 
a) AC 6 I AC el 
b) AB,BC e t AC e t 
c) AB 6 t and (BC e I or CB e t)* AC,CAe 
d) AB e I and (BC or CB e l)* AC e t. 

If the new type of arrow with this direction has directly connected the nodes A 
and C, then we do not need the new edge (we already have edge which means this 
type of connection). 

Proof. It is from the logical meanings of the edges. The case a) is from A D ->B 
is equivalent to B D ~>A, which is the meaning of the dashed arrow for opposite 
direction, case b) is from: A D B, B D C are the original arrows, and their logical 
consequence is A D C, the new arrow. In case c) £ means that we can use this 
step independently the direction of the dashed edge between B and C, because of 
point a), and 0 signs that we can add arrows with both directions because we have 
A D B, B D ~'C, therefore A 3 ->C is valid, and than using point a) C D ~>A also 
valid. In case d) the sign ty notes that the dashed edge between B and C must be 
only one relevant at least from one direction and we have no restriction about the 
relevance of other edges in these steps. Then A D ->B, B = ->C, which is implies 
that C = -iB, hence AD C. • 

The meanings of these new edges are about "that person could say these things 
also". In [3] Aszalós examines this modal operator in puzzles. 

According to the point a) of the previous lemma, if the relevance is not impor-
tant then we can use only dashed line instead arrows. (But sometime we need the 
directions of these arrows for using relevance.) 

Let us see how we modify the graph of the example using these steps. 
We note by sign ! the edge from B because it is unique. We can use arrow-

adding steps b) and c) among A, B and C (Fig. 2). 
Now, we can use arrow-adding step c) for CB e t, BC € 1 or for CA e t, AC € 1. 
Now we go back to the theory. We have a basic scheme: 

Lemma 3.3. If the graph of a puzzle P(N,t,I) contains dashed loop-edge AA e I, 
then the node A is type 0. 

Proof If there is a dashed loop edge at node A, then A D -iA, and it means that 
A must be a liar. • 
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Figure 2: The graph of the Example 1.1 after some arrow-adding steps 

Let us see our example. We get basic scheme at C (Fig. 3). Using the scheme 
first we write the sign 0 to the node (it is a known type), and after this we examine 
the arrows, which remain relevant. It is very important part of this local method. 
In the next part we examine the valuable arrows, and the arrows, which become 
irrelevant. So if we know the type of the node of an end of an edge, what do we 
know about the other end? 

Lemma 3.4. Let A,C £ N such a way that A is known type (let T and L be the 
known nodes with type 1 and type 0, respectively) as in the first column of the table 
and the noted edge between them is in P. The noted edge is a valuable arrow in the 
SW-puzzle if it is one of the following: 

the case of valuable arrow after valuation we have these information 
a) A ET, AC E t C is type 1 also 
b) AET, (AC or CAE I) C is type 0 
c) A E L.AC Et C is type 0 
d) A ET, CAE t C is type 1 
e) A E L, CA E t C is type 0 
f ) A E L, (AC or CA E I)* C is type 1 

this arrow must be unique relevant at least from one direction to use this step 

Proof. It is evident from logical meaning of the arrows. • 

At this point we detail the arrow-deletions and arrows changing to irrelevant 
steps. First of all, we note that the point d) and some special case of point c) in 
the previous lemma are this kind of steps also, as we will show in the next lemma. 
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Lemma 3.5. 
a) Let A, B and C be three nodes. If AB E I and BC or CB E I and the edge 

AC E t is already in the graph such that both arrows from A (the dashed edge 
to B and the solid one to C) are relevant then we cross out one of them. 

b) Our graph will be equivalent to the previous one in the following case also: let 
A, B and C be nodes such a way that AB £ t, (BC or CB £ I) and AC £ I 
where both arrows from A are relevant. In this case we cross out one of them 
from A. 

Proof. The connection between B and C means that B and C are different types. 
Hence if an arrow above is relevant in the solution then the other is relevant also. • 

Now we will show the other cases when we cross out or delete an arrow. 

Lemma 3.6. Each arrow which starts from a type 1 node will be irrelevant. 

Proof. Trivially, it is from the definition of relevant edge. • 

The following two lemmas are about that when we delete edges. We delete 
only edges, which have a known type end. If we cannot use an edge to get more 
information then we delete it. 

Lemma 3.7. Let T and L be the set of known type nodes (T is the nodes type 1, 
and L is the nodes type 0). Let A be a node, whose type is unknown at this time. 
If not only one relevant arrow started from the node A, but there is an arrow which 
goes to a known type node C, like 

a) AC £t,C £ T, and/or 
b) AC £ I, C £ L, 

then this arrow will be deleted. 

Proof. Prom the logical meaning of the arrows from A, we can use the (*) formula. 
We have a conjunction in left hand side, these edges means values 1 in this con-
junction. We can delete these values if it is not alone in this side. But there is 
other relevant edge from A, therefore we delete these arrows. • 

Lemma 3.8. If we know about the node A that it is type 0 (A £ L), and there is 
a relevant arrow from A to a node C, like 

a) AC £ t, A, C £ L, or 
b) AC El, A£ L andC £T 

then we delete all other arrows starting from A. 

Proof. We can use (*). This formula must be valid independently the values of the 
other atomic sentences in the left hand side. • 
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Figure 4: The graph after deleting edges 
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Figure 5: The solution of Example 1.1 on the graph 

After using basic schemes we can use the point b) of lemma 3.7. We delete and 
cross the edges, which were relevant until this step. 

Now we continue the solution of our example. 
We can evaluate the value of B by step f) of lemma 3.4, hence B is type 1. We 

delete the edges AB, CB, BC, AC and CC (lemma 3.7). And we can sign the 
arrow AD by ! (Fig. 4). 

We can use the step lemma 3.5. to cross out an edge from C. But after this we . 
can ! sign the other arrow from C hence we can use valuable-arrow steps and get 
the value 0 for A and 1 for D. Therefore the result is: Alice and Charlie are liars, 
Bob and David are truth-tellers (Fig. 5). 

In general case it is possible that we need the node-union step. We can use node 
union step in the following situation: 

Lemma 3.9. If there are two nodes A and B, such that AB £ t (the unique relevant 
arrow from A goes to B, and it is solid), then we unite these nodes. The united 
node has label "A,B" and we have all edges at this node which were into/from A 
and B but the AB € t edge. And if there was relevant BA also, then after the 
node-union we have a relevant loop arrow at this node. The new graph is equivalent 
to the original one in the following sense. In the solution of the previous graph the 
nodes A and B have the same value as in the solution of the new graph the united 
node with label "A, B"; and all other nodes have the same value, respectively. 

Proof. From the logical meaning of the edge AB £ t we know, that A = B. So all 
edge, which had endpoint A or B must be valid in the new graph. There were not 
more relevant edges from A, and we have all relevant edges from B. • 
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Sometimes we have information that two nodes are the same type but we cannot 
use node-union. Therefore we need the concept of parity of nodes, what we can use 
usually after the arrow-adding steps. 

Definition 3.10. Two nodes are in parity, if they are connected by solid arrows 
by both directions. We will use the notation A В to show that there are solid 
arrows between them, in both way. 

(And we may use, that each node in parity with itself, because we can add solid 
loop arrow for each node, А э A must be valid.) 

Lemma 3.11. The nodes in parity have same value. 

Proof. Assume, that A and В are in parity. Then from logical meanings of the 
solid arrows: Ad В, В D A: A = B. • 

Lemma 3.12. If from a node there are more same-type (solid or dashed) relevant 
edges going to the nodes which are in parity, then we can keep only one of them 
relevant, and we cross the others. 

Proof. The nodes in parity are same type, so all these relevant edges mean true 
atomic statements, or all of them mean false atomic statements. So it is equivalent 
to only one independent statement. Easy to show, that the new graph is equivalent 
to the previous one. • 

Remark 3.13. If from a node A there are more than 1 same-type edge going to 
the node B, then we leave only one of them. If there was relevant one among them, 
then we keep a relevant one, and delete the others. 

Remark 3.14. If an edge is relevant in the solution, then it must be relevant also 
in the original graph of the puzzle. 

4 The global properties of the possible puzzle-
graphs 

Now, before we examine how we can use the global information of a puzzle-graph, 
we make some statements about the possible graphs. 

Lemma 4.1. There is no good and clear SW-type puzzle only with solid arrows. 

Proof. It has at least two different solutions: everybody is truth-teller; or each 
person is a liar. • 

Lemma 4.2. There is no good and clear SW-type puzzle, whose solution is that 
each person is a truth-teller. 

Proof. In the graph of this puzzle there are only solid arrows. So according to the 
previous lemma, our statement is true. • 
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Lemma 4.3. If the graph of a clear and good puzzle has two or more components, 
then this puzzle falls apart: we have two or more less clear and good puzzle. 

Proof. In a clear puzzle in a component there is no information about the nodes in 
other components. • 

According to the previous lemma, we assume that our graph has only one com-
ponent, or we can solve the less one-component's puzzles. 

The following lemma plays important rule when we use global information of a 
graph. 

Lemma 4.4. There is no dashed edge between two type 1 nodes in the solution. 

Proof. If a node is type 1, then all dashed arrows from it must go to type 0 nodes. 
• 

Lemma 4.5. We know from Lemma 4-1 that there is a dashed edge in the puzzle, 
but from the previous lemma we know that this edge cannot be between type 1 nodes. 
So there must be a type 0 node in an end of each dashed edge. 

Lemma 4.6. Let T be the set of the truth-tellers in the solution. Then there is no 
solid arrow from this set which goes outside T. 

Proof. If a solid arrow starting from a type 1 node goes to a node A, then A must 
be type 1 also. • 

Lemma 4.7. If there is a directed circle built by solid arrows, then all nodes in 
this circle are in parity. 

Proof. Easy by using arrow adding steps b). • 

Lemma 4.8. Parity is an equivalence relation among nodes. 

Proof. Each node is in parity with itself, according to the note after the Definition 
3.10. The symmetry come from the definition. It is transitive (if A B, B O- C 
then A <s> C) because we can use step b) of Lemma 3.2. • 

Lemma 4.9. Let P be the graph of a good, clear SW-puzzle, and T be the set of 
type 1 nodes in the solution. If it is a node B, who is liar in the solution of P and 
he remained silent, then we can use arrow-adding steps for a new dashed edge from 
B to a truth-teller, or we can use node-union step to join B to an another liar. 

Proof. We assume that the graph is connected. If there is dashed edge from T to 
B, then we can use arrow-adding step a), and we get a new dashed edge from B 
to a truth-teller. If there is no edges between T and B originally, then must be an 
arrow from a liar to B. Let L is the set of nodes, which are not in T and differ from 
B. In this case originally there is not edge between T and B. (From B does not 
start any, and from T to B there is no solid arrow (Lemma 4.6.), and we assumed 
that there is nor dashed edge.) But the P was connected, so there must be edges 



78 Benedek Nagy 

from L to B. If there was a solid arrow from L to B, which is uniquely relevant 
from where it starts then we must use node-union step. And in final case there is 
no uniquely relevant arrow to B. which means that all non-silent liars have other 
arrows meaning his lie. But in this case it is also a solution, when T\J{B} is the sets 
of truth-tellers, and L is the set of liars. So in this case we get contradiction. • 

Lemma 4.10. Let P be the graph of a good, clear SW-puzzle, and T be the set of 
type 1 nodes in the solution. After all usual arrow-adding and node-union steps for 
P there is not possible only one node, which is not in T, and not connected with 
an element of T by dashed edge. 

Proof. We can assume, that P is connected, and we have no usual arrow-adding or 
node-union steps. From Lemma 4.2. we know, that there must be a node outside 
of T. Now we have two possibilities: B said something, or he remained silent. 
If he said something, and in the solution he is a liar, then must start a relevant 
arrow from B. If he said about a truth-teller C, that C is a liar, then this edge is 
dashed between B and T. If he said about a liar C that, C is truth-teller, then -
because of all liar, but B are connected \yith T by dashed edge - the arrow-adding 
step c) (Lemma 3.2) is useful, and we get a dashed edge between B and T. In the 
case when B was silent, we can use the previous Lemma 4.9 for using node-union 
step. • 

Lemma 4.11. If in the good and clear puzzle's solution everybody is a liar, and 
the graph of the puzzle is connected, then after the possible arrow-adding and node-
union steps we get a puzzle with only one node with two kind of loop edges. 

Proof. Easy to show, that for one node it is the unique puzzle. We will show that 
if we have more nodes then we can use node-union steps (and we get smaller and 
smaller puzzle with same solution). 

If there was a node without starting relevant edges, then we can use node-union 
step by using Lemma 4.9. Now, we assume that we already used all possible arrow-
adding steps. It is evident, that all relevant edges in the solution are solid, because 
each person is a liar. If from a node there is only one relevant arrow, then we must 
use node-union step. In other case from each node must start at least two relevant 
arrows. Let A be a node. Let TA be the set of nodes, which we can reach from A 
by directed solid arrows. (By using arrow-adding steps it is evident, that we have 
a direct arrow from A to each element of TA.) The set TA is finite, let Yi, Y2,... Yk 
the subsets of TA, such that all nodes in a Yi are in parity. Then we can use Lemma 
3.12, so in each Yj there at most only one relevant edge from each node is inside of 
Y\. If there is a node, for which only one relevant edge remains, then we can use 
node-union. If such a node does not exist, then an other relevant arrow starting 
from all node in Y\ to outside of Y|. So there is at least one set Yj, which differs 
from YJ, and there is relevant arrow from Yj to Yj. But there is the same situation 
with Yj. So if we cannot use a node-union step inside of Yj then a relevant edge 
must go to another Yk. But we have only finite number of set Yn. So we must have 
a circle by using directed solid arrows among the sets Y inside in TA- But it means, 
that two or more sets are in parity. It is a contradiction. 
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So it is not possible that we cannot use node-union step, if we have at least two 
nodes. • 

The following theorem is a summary of the previous lemmas. It shows the global 
information of the graph, what we can use in the next section. 

Theorem 4.12. Let P be the graph of a good, clear SW-puzzle, and T be the set 
of type 1 nodes in the solution. After all usual arrow-adding and node-union steps 
put L be the set of the nodes which are connected to T by a dashed edge. If P is 
connected then there is no node in P which is not in T U L. 

Proof. Let S be the set of the nodes, which are nor in T, neither in L. We will 
show that 5 will be empty set. From Lemma 4.10. we know, that it is impossible 
that S has only one element. Let us see how the set S connected to the other sets. 
According to Lemma 4.6. and the definition of set S from T there is no arrow to S. 
And there is no relevant edge from S to T (the solid arrows are not relevant, and 
there is no dashed edge between S and T). So from the nodes in S all relevant edges 
go to liars. If there is a relevant arrow from S to L, it must be solid, therefore we 
can use arrow adding step c), and we have a dashed edge between T and S, which 
contradicts the definition of S. So all relevant edges from S are in inside of S. But 
if there is a node A in set S from which there are not at least two relevant edges, 
then we can use node-union step (which is contradict to our assumption, that we 
already used these steps). So we are in the same situation as the proof of Lemma 
4.11. As we state there, because these sets are finite, we have contradiction. So S 
must be the empty set. • 

5 The general solving method 
We know everything which we need to solve puzzles with the graph method. 

Now we describe our method: 

Algorithm 5.1. 

0. Let Bi be the nodes of the graph. Draw the initial graph of the puzzle using 
only relevant edges. 

Part I. (Graph-changing, by using local information) We try to use the following 
steps. 

1. Use all possible node-union steps. (Lemma 3.9.) 
2. Use all possible arrow-adding steps. (Lemma 3.2.) 
3. Cross as many arrow possible. (Lemmas 3.5, 3.12, and 3.13) 

If these steps cannot be repeated any more, then we continue by Part II. 
Part II. (Choosing the set of truth-tellers, T, by using global information) 

4. Make the matrix of the subgraph of dashed edges. (Use only the edges of I.) 
5. Choose a maximal set of nodes T, which are not connected with dashed edges. 
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A Ar '' B # 

D E F 

Figure 6: Graph of the Example 5.5 

6. Check the following property: if there is a relevant arrow from each node 
which is not in T and is not silent originally, like dashed arrow to inside T, 
or solid arrow to outside T, then we have the solution. 

If the property in step 6 is not true, then we choose another set T in step 5. 
The solution is: all persons in T are truth-teller, and the others are liars. 

Theorem 5.1. (Completeness and soundness of the algorithm) Let P be the graph 
of a connected, good and clear SW-type puzzle. We can solve P by using Algorithm 
5.1. 

Proof. It is clear, that the Part I. of the algorithm stops, because P is finite. It 
is evident, that we have only finite possibility to choose the set T. Let us assume, 
that we finished Part I. Let T' be the set of truth-tellers in the solution. T" is 
maximal because of Theorem 4.12, so we can choose T' as set T. We show that 
the property in point 6 must be true for this unique solution. Indirectly, assume 
that there is an - originally not silent - node B not in T for which we have nor 
solid relevant arrow to outside T neither dashed relevant edge to inside T. Then B 
did not lie originally, but he said something, hence he must be a truth-teller. But 
we have a dashed edge between the truth-tellers and B. It contradicts to Lemma 
4.4. • 

Remark 5.2. In the case when each person is a liar our T set is empty. In this 
case according to Lemma 4-11 we have a puzzle with only one node after the steps 
of Part I. 

Remark 5.3. Our algorithm detect if a puzzle has not any solution. 

And now we show an interesting example. In Lemma 4.1 we can see, that 
there is no good and clear SW-type puzzle only with solid arrows, now we show 
an example of a good and clear SW-type puzzle with only dashed edges. It is very 
nice symmetric example. 
Example 5.4. A: B and D are liars. B: C and E are liars. C: A and F are liars. 

D: B and C are liars. E: A and C are liars. F: A and B are liars. 
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A B C D E F 
A X X X X X 

B X X X X X 

C X X X X X 

D X X X 

E X X X 

F X X X 

Table 1: The matrix of the graph 

We can see that we have no local graph-step to use, so we cannot solve this 
puzzle without global information. There are two arrows starting from each nodes. 

Now we solve this puzzle: As we can see, that we cannot use any steps of Part 
I of our algorithm. So we use Part II. 

Let us make the matrix of the graph, which shows if two nodes are directly 
connected by a dashed edge. We use step 4. 

The matrix of the graph in the table. 
Our maximal T sets are the following: {^4}, {B}, {C}, {D, E, F} . Easy to show 

in the original graph, that the condition of point 6 is not true for the first 3 sets. 
Our solution is D, E and F are truth-tellers, A, B and C are liars. 

6 Summary 

In this paper we defined and examined the SW-type of truth-tellers and liars puz-
zles. We represented these puzzles with graphs, which are very useful to examine 
and solve these puzzles. We examine what the edges of the graphs mean logically. 
The graph of a puzzle has all information about the puzzle in case of clear puzzle. 
We took some interesting statement about the possible structure of the puzzles. 
We used some local information steps in a graph as valuable arrows, arrow-adding, 
node-union steps and basic schemes. We showed that there is no clear and good 
SW-type puzzle with only solid arrows. Later on we presented a special example, 
when we have only dashed arrows. Finally we showed a graph-algorithm, which 
based on both local and global information of the graph, and it can solve the clear 
and good SW-type puzzles. The advantage of this method is to avoid case sepa-
rations, which occurs for instance in tableaux method and requires great care for 
programmers. Using our method we need memory only size of n2 for a puzzle with 
n persons to store our graph. 

Using this approach from graph theory we can solve the puzzles in a new think-
ing way. Our theory connects the special type of satisfiability problems to graph 
theoretical problems. 
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