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Derivation of Incremental Equations for PNF 
Nested Relations 
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Abstract 
Incremental view maintenance techniques axe required for many new types 

of data models that are being increasingly used in industry. One of these 
models is the nested relational model that is used in the modelling complex 
objects in databases. In this paper we derive a group of expressions for 
incrementally evaluating query expressions in the nested relational model. We 
also present an algorithm to propagate base relation updates to a materialized 
view when the view is defined as a complex query. 

Keywords: view maintenance, data warehousing, nested databases, partitioned 
normal form, incremental computation. 

1 Introduction 
Materialized views are stored data collections that are derived from source data. 
Materialized views have attracted a significant amount of attention in recent years 
because of their importance in data warehousing [5, 7, 20]. In using materialized 
views, an issue of fundamental significance is developing efficient methods for up-
dating the materialized views in response to changes in the source data; a procedure 
referred to as view maintenance. To maintain a materialized view, one has in gen-
eral a choice between recomputing the view from scratch or maintaining the views 
incrementally. The incremental method is generally considered to be less expensive 
[13, 4, 6] since the size of an update to the source data is generally small in relation 
to the size of the source data. To maintain a view incrementally, one computes 
the new view using the updates to the source data, the old view and possibly some 
source data. For example, let the view V be defined in the flat relational model 
(using set semantics) as V = tx] R2. For an insertion SRi to Ri, the incremental 
technique calculates the change to V as SV = SRi cxi R2 and computes the new 
view, V n e w , by V n e w = Vold U SV (where Vold equals Rx tx R2) [13, 6]. This ex-
pression is called an incremental propagation expression (or incremental expression 
(IE) for short) for the Join operator. 
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Incremental expressions for updating materialized views depend on the data 
model and query operators. Up to now, incremental equations have been derived 
for the models of flat relations [13], bags [4], and temporal data models [21]. Incre-
mental equations for the nested relational model, on the other hand, have not been 
studied. The nested relational model is important because of its usage in mod-
elling complex objects, a feature that has been incorporated in several commercial 
database systems such as Oracle8 and Illustra [18]. The nested model has also been 
used in data warehouses to model complex semantics [3], where incremental view 
maintenance has critical impact on system performances [20]. Further, the nested 
relational model is an important subclass of the object- relational model; a model 
that has been predicted to become the industry standard within the next few years 
[18]. Motivated by these observations, in this paper we derive IEs and develop a 
view maintenance algorithm for the nested relational model. 

Several variations of the nested relational model have been proposed in the 
literature, depending on whether null values are permitted [10], whether empty sets 
are permitted [2], whether atomic attributes form a key and what data manipulation 
operators are required [16, 15]. The model we use in this paper is the one proposed 
by [2] and called the Verso model which is based on partitioned normal form (PNF) 
relations [14]. The reason for adopting this model is because of its flexibility in 
supporting empty sets, the assumption that relations are in partitioned normal 
form (which has clearer semantics than general nested relations), and its ability to 
allow partial updates. Also, some commercial object-relational database systems 
such as Informix support the use of PNF relations. 

The main contributions of this paper are as follows. Firstly, we derive in-
cremental expressions for the data manipulation operators in the Verso model. 
Interestingly, these expressions differ significantly from those derived for the flat 
relational model [13]. Secondly, we propose an algorithm to propagate base relation 
updates to a materialized view when the view is defined as a complex nested rela-
tional algebra expression. Lastly, we implement our view maintenance algorithm 
and perform experiments to determine what we call the maintenance limit of our 
algorithm, which is defined to be the limit on the size of the update beyond which 
incremental maintenance is no longer cheaper than full view recomputation. This 
is an important issue and one that up to now has not been adequately investigated 
in the literature. 

The rest of this paper is organized as follows. In Section 2, we introduce the 
Verso model and its operators. In section 3, we define containment and disjointed-
ness properties for the PNF nested relations. These two properties will be used in 
Section 4 for deriving IEs. Section 4 contains IEs derived for PNF nested operators 
and the derivation proofs. In Section 5, we propose a view maintaining algorithm 
that maintains a view using IEs when the view is defined with multiple operators. 
Section 6 covers the implementation details of the IEs and performance analysis. 
In the last section of the paper, we give the conclusion. 
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2 Data Model and Operators 
In this section, we review the Verso data model and algebra defined in [2]. 

2.1 Trees 
A tree T is a finite, acyclic, directed graph in which there is a unique node, called 
the root and denoted by root(T), with in-degree (the number of edges coming into 
the node) 0 and every other node has in-degree 1. 

A node n' is a child of a node n (or equivalently, n is the parent of n') if there 
is a directed edge from n to n'. 

A node is a leaf if it has no children. 
The level of a node n in a tree T is the number of nodes on a path from the 

root of T to n. Thus, the level of the root node is 1 and the root node is said on 
the top level. 

The height of a tree is the maximum level of any node in the tree. 
A tree T' is a subtree of a tree T if the nodes of X" are a subset of those of T 

and for every pair of nodes n' and n, n' is a child of n in T if and only if n ' is a 
child of n in T'. 

A subtree T" is a child subtree of T if the root node of T' is a child of T and 
the set of all nodes of T' and the set of all nodes of the child of T are equivalent. 

2.2 Schema Trees and Nested Relation Schemas 
Let U be a fixed countable finite set of atomic attribute names. Each attribute name 
A £ U is associated with a countably infinite set of values denoted by dom(A). 

A schema tree T is a tree having at least one node; each node of the tree is 
labeled by a set of names from U. The names on the labeled nodes form a partition 
of U. 

A nested relation schema is the set of attribute names mapped from a schema 
tree T, denoted by sch(T), and defined recursively by: 

(i) If T contains only one node (the root), then sch(T) = {Ai,..., Am} where 
Ai, ..,Am are attributes labeled on the root of T; 

(ii) If Ti,...,Tn are child subtrees of T and A^,... Am are attributes labeled on 
the root of T, then sch(T) = {Au ...,Am, sch^),..., sch{Tn)}. 

In the schema definition, Ai,...,Am are called the atomic attributes while 
sch(Ti),...,sch(Tn) are called the structured attributes. We denote each struc-
tured attribute sch(Ti) (i = 1,..., k) by R% and simplify sch(T) by R. As a result, 
sch(T) = R = {Au ..., Am, Rl : sch(7\), .., R* : sch(Ti), ..., R*n : sch{Tn)}. 
Note that Rl is used only for referencing the schema of the child tree. If necessary, 
R* can be labeled at the edge from root(T) to root(Ti). 

Let R' = sch(T') and R = sch(T). R' is a subschema of R, denoted by R'<£R, 
if T' is a subtree of T. The level of an attribute in R is defined to be the level of 
the node in the tree where the attribute is labeled. When the leyel I of an attribute 
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is specially concerned, I is attached to the attribute name as a superscript: A\ or 
R*jl. The levels of the schema R is defined to be the height of T. If a schema has / 
levels, the schema is called a l-level nested schema. 

Because nested relation schemas are sets, set operations of union (U), difference 
(—), and intersection (fl) can be applied to the top levels of schemas. Subset (C) 
can also be defined on the top levels of two schemas. 

We define some short-hand notations for schemas. The set of atomic attributes 
on the top level of R is denoted by a(R) which is {Ai,...,Am}. The set of all 
structured attributes on the top level of R is denoted by P(R) which is R — a(R). 
The function au{R) is defined to return all atomic attribute names labeled on all 
nodes of the schema tree of R. 

The following is an example of a nested relation schema. 

Example 2.1. We introduce a nested relation schema for a student database. 
A student with the name of Name has studied some subjects Subjs*. The 
student has achieved a set of marks (denoted by Marks*) for each sub-
ject; each mark is for a different test type of the subject. The stu-
dent also has a set of telephone numbers stored in the database for the 
convenience of communication. The schema tree describing the student 
data is given in Figure 1. The schema of the schema tree is Stud = 
{A^ame, Subjs*:{sjName, Year, Marks*-.{testName, Mark}}, Tel*:{Tel}}. 

The schema is a three-level nested relation schema. On the first level, there 
is one atomic attribute Name and two structured attributes (structured at-
tributes) subjs* and Tels*. That is, a (Stud) = {Name} and fi(Stud) = 
{subjs*,Tels*}. The set of all atomic attributes of the schema is au(Stud) — 
{Name, sjName, Year, Tel, testName, Mark}. 

A subschema of Stud is sjTest = {sjName, tests* : {testName}} or studTel = 
{Name,Tels* : {Tel}}. 

Stud 

|Name| 

sjName, Year| | Tel | 

Marks* 

testName, Mark 

Figure 1: Schema tree Stud 

Now we define the notion of prime subschema. 
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Definition 2.1 (Prime Subschema). Let R = a{R){R^,..., R*n} and S = 
a(S){S*,..., 5*s}. S is a prime subschema of R, denoted by S%PR, if 

(1) a(R) = a{S) and 0(R) = /3(E) = <t>; 
(2) a(R) = a(S) and for each (k 6 [1, ...,ns]), there exists aRj ( j e [1, ...,nr]) 

such that SI is the prime subschema of Rj. 

Note that if S is a prime subschema of R, then a(S) = a(R) and the definition 
is recursive, which means that on each level of the two schemas, two corresponding 
structured attributes share the same atomic attribute set. The next example shows 
a prime subschema. 

Example 2.2. Let StudTel = {Name,Tels* : {Tel}}. Then StudTel is a prime 
subschema of Stud defined in Example 2.1 because the two schemas have the same 
set of atomic attributes {Name} on the top level and because Tels* in StudTel is 
the same as Tels* in Stud. 

2.3 Nested Relations 
We now recursively define the domain of a schema R, denoted by dom(R), by: 

(i) If R is of one level, dom(R) = dom(Ai) x ... x dom(Am)-, 
(ii) If R is of more than one level, then dom(R) = dom(Ai) x ... x dom(Am) x 

P(dom(R\)) x . . . x P(dorri(R*n)) where P(D) denotes the set of all nonempty, 
finite subsets of a set D. 

A nested relation over a nested relation schema R — {Ai,...,Am,Rl,...,R^}, 
denoted by r(R), or often simply by r when R is understood, is defined to be a 
finite set of elements from dom(R). An element i in a relation is called a tuple 
and has the form of t =< ai, ...,am,ri, . . . ,rn > where ai € dom(Ai) and rj, called 
a subrelation, is a relation over the definition of structured attribute R j . Each 
item, ai or r j , is called a value or a component. Two tuples are equivalent if their 
corresponding components are equivalent. 

The restriction of tuple t to attributes Ai and to Rj , denoted by t[Ai\ 
and t[Rj] respectively, is defined to be t[At] = m and t[R*] = rj. If Y = 

myR*y-Rny} is a subset of R, the restriction of t to the subset Y, 
denoted by i[Y], is defined to be a tuple < t[Aly], ...t[Amy], t[Rly], ...¿[ii 'J >. The 
restriction of relation r to Y, denoted by r\Y], is defined to be the nested relation 
{t[Y]\te r}. 

We now give an example of a nested relation. 

Example 2.3. Let Stud be the nested relation schema defined in Example 2.1. A 
nested relation r over the schema Stud is given in Table 1. There are three tuples 
in the relation: two tuples are for student Jack and one for John. Subrelations are 
labeled by pairs of curly brackets. 

A nested relation is in Partitioned Normal Form(PNF) if all atomic attributes on 
the top level of the relation comprise the key and all subrelations are in partitioned 
normal form [14]. The nested relation in Table 1 is a PNF nested relation. 
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Table 1: A nested relation stud on schema Stud 

Name Snbjs' Tels' Name 
sjName Year Marks' Tel 

Name 
sjName Year 

testName \ Mark 
Tel 

Jack < 

( test 1 8 1 1 1 
DB 1998 I test2 90 I ( 04143 ] 

[ exam 80 J I J 1435 > 
, „ „ , f assl 60 I i 2302 J Java 1997 < . . > v ' 1 exam 80 1 

John { DB 1998 { f e f 2 J ] } } { 2354 } 

2.4 Verso Operators 
In this section we review the definitions of the Verso operators proposed in [2] and 
reviewed in [8]. 

Definition 2.2 (Expansion Operator). Let S be a prime subschema of R. Let 
s be a relation defined over S. The expansion of s to schema R is a relation over 
R, denoted by r)R(s), is defined recursively by: 

•>1R(S) = {x\3v £ s A x[a(i?)] = w[a(i?)] A V i e [ l , . . . , n ] 
(if i s ; A s;en;(x[RR] = T,Ri(v[S]])) 
else x[R*{ ] = <f> ) } 

The expansion operator recursively packs each tuple in s. with empty sets to 
make it match the schema of R. The next example shows the use of the operator. 

Example 2.4. Let s = {< Tony, {51234,51535} >} be a relation on schema 
S = {Name,Tels* : {Tel}}. Let Stud be the schema described in Example 2.3. 
Then, rjstudis) = {< Tony, <j>, {51234,51535} >} where the empty set <f> is the value 
packed for structured attribute Subjs*. 

Definition 2.3 (Projection Operator). Let S be a prime subschema of schema 
R. Let r be a relation defined over R. The projection of r onto S is a relation over 
S, denoted by ns(r), defined recursively by: 

(i) #s(r) = {x\x € r}, if R is flat; 
(ii) Tts(r) = {x\Mu e r ( x[a(i?)] = u[a(i?)] A V i e [ l , . . . ,ns] 

(X[S*] = KS:(U{R*}) where S ' ^ R * ) } 

The projection operator preserves key values of r on every level and recursively 
projects subrelations of r. Following is an example showing.the use of the projection 
operator. 

Example 2.5. Let pstud be the relation defined as in Table 1. Let StudTel = 
{Name, Tel* : {Tel}}. The projection of pstud to StudTel, i.e. ftstudTei{pstud!) is 
given in Table 2. 
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Table 2: Projection of pstud to StudTel 

Name Tels* Name 
Tel 

( 04143 ^ 
Jack ^ 1435 I 

1 2302 j 
John { 2354 ) 

We now define the selection condition for the Verso selection operator. 

Definition 2.4 (Atomic condition). An atomic condition ca over a schema 
R = {Au..., •n-m j •Ri>•••>#«} is defined, by ca = AiOai where Ai € {Ai,...,Am}, 
a» £ dom(Ai), and 6 € {<, <, >, >, =, 

An atomic condition is set to an atomic attribute on the top level of a schema. 

Definition 2.5 (Basic condition). A basic condition C& over a schema R = 
{A\, ...,Am,R[, ...,ii*} is defined by connecting a set of atomic conditions with V 
(or), A (and), -i (not), and brackets. 

Definition 2.6 (Selection condition). A selection condition c over a schema 
R = {Ai, ...,Am,R*, ...,i?*} is defined recursively by 

(i) c— (ci,) if R is flat; 
(ii) c=(cb A c ri : R\.C\6'r\ A ... A C™ : R*n.cn0'rn). 

In the condition c, crj ( j — l,...,n) is a reference name to the expression 
Rj.CjO'rj and ':' means 'defined by'. In R*.Cj6'rj, R*.Cj denotes the returned 
set selected from the subrelation over Rj by recursively applying selection 
condition Cj. The returned set then participates in the evaluation of 6'rj 
where rj is either the empty set <j> or the any set w 1 over Rj. When rj is cj>, 
6' is one of {=, while when rj is to, 6' is —. 
We call crj the existence condition on subrelation of R*. 

We now give an example of a selection condition. 

Example 2.6. For schema Stud = {Name, Subjs*:{sjName,Year, Marks*: 
{testName, Mark}}, Tel*: 
{Tel}} defined in Example 2.1, a select condition over the schema is c = (Name =' 
Jack' A Subjs* : (Marks* : (Mark > 90) ± <f>) £ 4> ). This selection condition 
selects a student named 'Jack' who has obtained at least a good mark (> 90) for 
some subjects. 

We use c&(a;[a:(.R)]) = true to denote the case where the key value of a tuple x 
makes an existence condition true. Accordingly, we use crj (x[#}]) = true to mean 
the case where a subrelation on R* makes an existence condition is true. 

1 'Any set' means that the number of elements in the set does not matter. 
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Definition 2.7 (Selection Operator). Let R = a(R){Rl,..., R„} be a schema 
and r be a relation over R. Let c be a selection condition defined with Definition 
2.6. The selection of r based one is a relation over R, denoted by crc(r), recursively 
defined by: 

(i) oc(r) = {x | i 6 r and c&(z[a:(i?)]) = true}, if R is flat; 
(ii) oc(r) = {x|3u £ r A c6(i[a(iZ)]) = true A x[a(i?)] = u[a(i?)] A 

V j € (1, ...^UcrMR*} = *CJ №,*]) ) = true ) } 

Example 2.7. We apply the selection to relation stud in Table 1 with the selection 
condition c defined in Example 2.6. The returned relation from the selection is given 
in Table 3. We take the second tuple, denoted by t2 in stud as an example to explain 
the operation. t2[Name] is 'Jack', which makes the basic condition Name — Jack' 
true. In the recursive part and on the inner-most level, the evaluation of (Mark > 
90) against Marks* is <j> since the mark in tuple of Marks* is less than 90. Therefore 
Marks*.(Mark > 90) ^ 4> is evaluated 'False'. Since t2[Subj*] has only one tuple 
and its subrelation is evaluated to 'False', so no tuple in t2[Subj*] can be selected. 
This makes Subjs*.(Marks*.(Mark > 90) <p) <f> 'False'. As a result, the 
evaluation of the selection condition against this tuple is 'False' and not in Table 
3. 

Table 3: &c (stud) 

Name Subjs* Tels* 
sjName Year Marks* Tel 

testName | Mark 

Jack { DB 1998 test2 90 } } J 04143 \ 
\ 1435 / 

Definition 2.8 (Union Operator). Let r and s be two relations over R. The 
union of r and s is a relation over R, denoted by r ® s, and recursively defined by: 

(i) r © s = {x\x £ r or x £ s}, if R is flat; 
(ii) r®s- { x | 3 u £ r A 3 » 6 s A a;[a(i?)] = w[a(J?)] = w[a(i?)] A 

Vi e [l,...,n]( x[R*i) = u[R*i] © v [ R f ] ) or 
3u£r A x[a(-R)] = •"[«(#)] ^ s[a(-R)j A x = u ) or 
3u € s A x[a(i?)] = w[a(i?)] £ r[a(i?)] A x = v )} 

The union operator recursively combines two tuples, one from each operand 
relation, if their key values match on each level. The operation guarantees that 
the output of the union is in PNF, i.e., there are no duplicate values for atomic 
attributes on each level of the relation. The next example introduces the use of the 
union operator. 
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Example 2.8. Table 5 shows the union of relation pstud in Table 1 and relation 
Spstud in Table 4. pstud and Spstud each has a tuple with key value of Jack. As a 
result, the subrelations of the two Jack tuples are combined. This rule is applied 
recursively until two assl tuples on the most internal level of java 1997 merges 
into one tuple in the union and ass2 of java 1997 is added to the union. The same 
combination applies to Tels*. 

Tuple John in pstud and tuple Andrew in Spstud do not match any tuples in 
the other relation, they appear the same as they were before the union. 

Table 4: Spstud 

Name Subjs' Tels-
sjName Year Marks* Tel 

testName Mark 

Jack ^ Java 1997 J ass 1 
1 ass2 { 54111 } 

Andrew { DB 1999 { testl 6 0 } } * 

Table 5: Union of pstud and Spstud 

Name Subjs' Tels' Name 
sjName Year Marks' Tel 

Name 
sjName Year 

testName | Mark 
Tel 

Jack 

DB 1998 

Java 1997 

54111 
04143 
1435 
2302 

John I DB 1999 f test 1 
| test2 »2U { 2354 } 

Andrew { DB 1999 { test l 6 0 } } 4> 

Definition 2.9 (Difference Operator). Let r and s be two relations over R. 
The difference of r and s is a relation over R, denoted by r © s, and recursively 
defined by: 

(i) r 9 s = {x\x G r and x g s}, if R is flat; 
(ii) rQs = { i | 3 u £ r A 3v € s A x[a(i?)] = u[a(H)] = u[a(i i)] A 

Vi e [1,.• •, ntj( x[R;] = © t/[JZJ] ¿<t> ) or 
3u£r A x[a(R)] = u[a(i?)] g s[a(i?)] A x = u } 

The difference operator is like the union operator in that it recursively differ-
ences subrelations if the key values of two tuples, one from each operand relation, 
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match. The output of the difference operator is a relation in PNF. The following 
example shows the use of the difference operator. 

Example 2.9. Table 6 gives the difference of pstud in Table 1 and the relation 
Spstud in Table 4. The difference is applied to the two tuples having the name of 
Jack in the two relations. This procedure recursively applies until it reaches the 
most inner level. As a result, in the most inner level the tuple assl of Java 1997 
does not appear in the result. The tuple John in relation pstud does not match 
any tuples in the relation Spstud and it appears the same in output. In contrast, 
the tuple Andrew in relation Spstud does not affect any tuple in pstud because of 
no match of key values and is excluded in the result. 

Table 6: pstud © Spstud 

Name Subjs" Tels* Name 
sjName Year Marks* Tel 

Name 
sjName Year 

testName \ Mark 
Tel 

Jack < 

( testl 81 4 ' 
DB 1998 ^ test2 90 i 

I. exam 80 . J 
„ Java 1997 { exam 80 } 

( 04143 Ï 
> ^ 1435 I 

{ 2302 J 

John { DB 1999 { ЩИ ¡ J } } ' ( 2354 } 

Definition 2.10 (Intersection Operator). Letr and s be two relations over R. 
The intersection of r and s is a relation over R, denoted by r Q s, and recursively 
defined by: 

(i) r © s = {x\x £ r and x £ s}, if R is flat; 
(ii) r © s = {z |3и £ r A 3v £ s ( x[a(R)} = u[a(i?)] = и[а(Д)] A 

Vi G (1, ...,n) ( x[R*] = «[Я?] © v[RT] ) } 

The use of the intersection operator is shown in the next example. 

Example 2.10. Table 8 shows the intersection of pstudi in Table 7 and pstud in 
Table 1. 

Table 7: A nested relation pstudi 

Name Subjs' Tels' 
sjName Year Marks' Tel 

testName \ Mark 
Jack { DB 1998 { exam 80 } } 83304143 
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Table 8: pstud © pstudi 

Name Subjs* Tels* 
sjName Year Marks* Tel 

testName | Mark 
Jack { DB 1998 { exam 80 } } <t> 

Definition 2.11 (Joinable schémas). Let S and R be two schémas satisfying 
a(R) — a(S). Then R and S are joinable schémas if there exists a schema T such 
that (1) au(T) = au(R) Uau(S); (2) both R and S are prime subschemas ofT. 
We call T the joined schema. 

Example 2.11. Let Stud be a schema defined in Example 2.3. Let S = 
{Name,Addrs* : {Addr}} be another schema which describes the student ad-
dresses. Stud and S are joinable because a(Stud) = a(S) and there exists a schema 
T = {Name, Subjs* : {Subj, Y ear, Marks* : {TestName, Mark}},Tels* : 
{Tel}, Addr s* : {Addr}} such that (1) av(T) = av(Stud) U a y (5); (2) Stud 
and S are prime subschemas of T. So T is the joined schema. 

Definition 2.12 (Join). Let S and R be joinable schémas and T be the joined 
schema. Let r and s be relations on R and S respectively. The join of r and s is a 
relation over T, denoted by rc<Js, defined recursively by: 

(i) rtxjs = {x\x £ r A x £ s}, if R — S = T are flat; 
(ii) r & s = {x\3u £ r A 3 d ê s A x[a( i î ) ] = ti[a(.R)] = u[a(-R)] A V i e [ l , . . . , n 

(if 3R*ÇPT* A 3 S * K ^ T * (X[T;\ = u [ i # * w [ S j E ] ; o r 
if 3 R*<G?T* A FI S*K&T* ( x[T*} = u[R*]) or 
if 3 S*K^T* A FL R*&>T* ( x[T*} = v[Sj;]) ) } 

The join operator joins two relations based on the equivalence of the values of 
the atomic attributes starting from the top level. The next example shows the use 
of the join operator. 

Example 2.12. Let pstud be defined in Table 1. Let studAddr be a relation 
defined in Table 9. The results of join of pstud and studAddr is shown in Table 10. 

Table 9: studAddr 
Name Addrs* Name 

Addr 
John (12 Newton st, 5 Darling av } 

The Verso operators presented in this section have the property of preserving key 
attributes on all levels. In other words, all operators do not shrink or expand keys of 
relations. For example, the projection operation only projects structured attributes 
but not atomic attributes. This property guarantees the results of operations are 
in partitioned normal form. 
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Table 10: The join of pstud and stAddr 

Name Subjs" Tels' Addrs* , 
sjName Year Marks' Tel • Addr 

testName Mark 

John | DB 1999 1 testl 
test2 S}} { 2354 } j 12 Newton st \ 

} 5 Darling av j 

3 Containment and Disjointedness in Nested Re-
lations 

In this section, we review the definitions and results from [11] concerning the prop-
erties of containment and disjointedness in PNF relations. These results will be 
used in deriving IEs in the next section. At the same time, we compare the proper-
ties of containment and disjointedness for nested relations with the corresponding 
properties in flat relations. 

In flat relations [13, 4], disjointedness means that when an insertion is made to 
a relation, the tuples to be inserted should not be included in the relation; whereas 
containment means that when tuples are deleted from a relation, the deleted tuples 
should be contained in the relation. It is also desirable in many applications, such 
as those involving triggers or real-time databases, that the changes to the view 
computed using IEs also satisfy the containment and disjointedness properties. 

The issue of how to extend the definitions of containment and disjointedness 
from flat relations to PNF relations is not as straightforward as might first appear. 
This is discussed in more detail in [11] but we briefly summarise our approach here 
for the sake of completeness. In [11] we adopted the approach of [10, 15]. In this 
approach we require that the definitions for containment for and disjointedness 
must be faithful and precise. By faithful, we mean that the definitions for con-
tainment and disjointedness for PNF relations should coincide with the definitions 
for containment and disjointedness for flat relations when the PNF relations are 
in fact flat. By preciseness we mean that the properties should coincide with the 
corresponding properties for flat relations when applied to the total unnnests of the 
PNF relations. 

For containment, we proposed the following definition in [11] and showed it to 
be faithful and precise. 

Definition 3.1 (Containment). Let r and Sr be two instances over schema R. 
Then 6r is defined to be contained in r, denoted by Sr © r, if: 

(i) when R is flat, Vu 6 Sr A v 6 r; 
(ii) when R is not flat, Vu e Sr A 3u £ r A t;[a(i?)] = u[a(i?)] A Vi 6 

[1, ...,nr](v[Ri]<a u\R*\). 

For example in Table 11, Jrffir . However, we note that in this table that Sr is 
not a subset of r. 
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Table 11: Relations showing the containment 

A B' A 
B 

a l {61} 

A B* A 
B 

dl {i>l,f>2} 
6r 

Also, in [11] we show that nested containment has the following properties. 
These properties will be used in the next section. 

Theorem 3.1. Let r and ôr be two instances over schema R. Then the following 
are equivalent: 

(i) Sr<ar; 
(ii) r © 5r = 5r; 

(iii) r © ôr = r. 

As for disjointedness, the following definition was proposed in [11] and shown 
to be faithful and precise. 

Definition 3.2 (Disjointedness). Let Sr (f> and r be two relations over schema 
R. Sr is defined to be disjoint from r, denoted by Sr r, if 

(i) r is <j>; 
(ii) when R is flat, Vîi £ Sr A v 0 r; 

(iii) when R is not flat, Vug Sr, 
(a) v[a(R)} <£ r[a(R)} or 
(b)3u£ r, u[a(.R)] = u[a(i?)] and 

3 i(v[R*]^4> A t,[iÇ] 

For example, the two relations shown in Table 12 are disjoint. 

Table 12: Two cases of disjointedness 

A B* C" A 
B C 

a {61} { c i } 

A B* C* A 
B C 

a {62} {c2> 
Sr r 

We now introduce another type of disjointedness which, when it holds, we will 
show in the next section to considerably simplify incremental equations. 

Definition 3.3. Let r\ and r2 be two nested relations defined over schema R and let 
AC R. Then a tuple x £ r\ is .4-disjoint from r2 if x[A] is not in r2[A\ (otherwise 
x is said A-overlapping with r2). The two relations ri and r2 are defined to be A-
disjoint if every x £ ri is A-disjoint from r2 (note that the definition is symmetric). 

We now illustrate the definition by Example 3.1. 
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Example 3.1. There are three relations r0 , rlt and r2 defined over a schema 
R = {A,B,C* : {C},D* : {D}} in Table 13. Let Y = {B,C*}. Then r0 and n 
are R-Y disjoint, but r0 and r2 are not. This is because R — Y = {A, D*} while 
roKA.D ' J JnnKA.D*}] = 4> and r 0 [ { A f l ' } ] n r 2 p , O * } ] = {< au{dud2) > 

The first tuple in ro is a R — Y overlapping tuple with r2 while the second tuple 
in r0 is a R - Y disjoint tuple with r2. 

Table 13: An example for R - Y disjointedness 

A B c* D* 
c D 

ai bi {ci,c2} {dud2} 
a.2 bi {ci,c2} {di,d2} 

r 0 

A B C' D* A B 
c D 

oi b2 {ci,c2} {di} 
r 1 

A B C' D" A B 
c D 

a i 62 {ci,C2} {di, (¿2} 
ri 

4 Incremental Equations for Nested Operators 
In this section, we derive incremental expressions for the nested operators defined 
in Section 2. We assume that the update to a relation is a full tuple update, i.e., the 
updating tuples and the relation have the same schema. Otherwise, if the schema 
of the update is a prime subschema of the updated relation, we assume that the 
expansion operator has been applied to expand the updating tuples into full tuples. 

We firstly give a general overview of what we are aiming to derive in this sec-
tion of the paper. We are aiming to derive equations of the form opu(r@Sr) — 
f(opu(r),r,6r) in the case of a unary query operator opu, and opt(r@5r,s) = 
f(opb(r, s),r,s,Sr) in the case of a binary operator opb- In this notation @ means 
either the PNF union operator © or the PNF difference operator ©; r and s are 
called base relations; Sr is called the update to the base relation and / is a func-
tion. We call opu(r) and opi,(r,s) the old views, opu(r@5r) and opi,(r@5r, s) the 
recomputation, f(opu(r),r,Sr) and f(opb(r@s),r,s,Sr) the incremental com-
putation. For each equation, we use the abbreviation of LHS for left hand side 
and RHS for right hand side. 

It is particularly desirable if the RHS of the IE for an operator take the sim-
ple form of opu(r)@opu(5r) (opb(r, s)@opb(Sr, s)). We call this form of IE the 
standard form. The advantage of this form is that is does not involve extra 
operators. When the size of the increment is small, in general it is much more 
efficient to compute the new view incrementally than by recomputation. Standard 
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IEs may not exist for some operators, but we can in some cases still derive IEs in 
the limited standard form which means a standard form attached with some 
conditions. The advantage of the limited standard form of an IE is that it reveals 
the reason why the IE can not be standard. However, the test of conditions in the 
limited standard form can be costly because recursive traversal down to subrela-
tions is needed and there is no index possible for the internal subrelations. To avoid 
testing the expensive conditions, we define the implementation form for IEs. In 
the implementation form, the concept of the attribute disjointedness defined in the 
last section is used and testing the expensive conditions is replaced by top level 
selection. 

We note that we use induction to prove the IEs in the section because all the 
operators involved in IEs of the section are recursive. In the proofs of induction, we 
will firstly prove that an equation is correct for a flat relation and then prove the 
equation is correct for a n-level nested relation if it holds for (n — l)-level nested 
subrelations. 

4.1 Incremental Equations for the Expansion Operator 
Theorem 4.1. Let S be a prime subschema of a schema R and let r and Sr be two 
instances over S. Then the following two expressions for the expansion operator 
are true. 

r)R{r © Sr) = T)R(r) © r]R(Sr) (1) 
tir(r © Sr) = TjR(r) © t]R(Sr) (2) 

Proof. 
Proof of Equation 1: 

(1) Base Case: when R = S are flat, the equation holds. The proof is obvious. 
In this case, by the definition of expansion, on LHS: r}R(r) = r, i]R(Sr) = Sr, 
r)R{r) © riR(Sr) = r ®Sr. on RHS: r)R(r © Sr) = r © Sr. Base case is proved. 

(2) Induction: suppose i]R- («[£*]© u[S*]) = r]R- {u[S*}) ® ijR. (v[S*]) where u £r 
and v £ Sr. We prove the equation is correct over r and Sr. 
(a) rfR(r © Sr) C T]R(r) © T]R{Sr) 

For a tuple x £ rjR(r © <5r), by the definition of union, x is expanded 
from a tuple u of r, a tuple v of Sr, or a tuple unioned from u and v. 
(i) x is expanded from u (i.e. u[a(ii)] £ <5r[a(i?)]): 

x = u[a(R)](riaiu[Si])...(i,It:nu[S^]) . 
m+l...nr 

On RHS : since u £ r, the expansion of u, which is the same as x, is 
contained in r}R(r). Because expansion does not change key values 
of tuples, u[a(ii)] £ <5r[a(fl)] u[a(/2)] ft ^(s)[<*(#)]. Further, 
the union in RHS does not change values of the tuple expanded from 
u. Hence, x £ (r}R(r) ffir?/i(<5r)). 

(ii) x is expanded from v: this case is symmetric to the last case. 
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(iii) x is expanded from the union of u and v ( u[a(.R)] = w[a(ii)]): 
The union of u and v is u[a(JQ](u[Sr] © w[5;])...(u[5^] © «[5^]). 
Then x is expanded from this union, 

m + l . . . n r 
the induction assumption that the equation holds on level (n — 1), 
we have union and expansion are exchangeable on second level. 
Then 

m + l . . . n r 
By rewriting, 
X = u[a(R)}(miu[Sl] © m'MSt])>-(VR'mu[S^] © 
mmv[SZl})(<j>®<t>)...(<jXB<t>) s v ' 

from m+1 to nr 

By definition of union and expansion, x is the union of the expan-
sion of u and the expansion of v. So the tuple x is contained in 
RHS. 

Item (a) is proved. 
(b) T]R(r)(Br}ii(8r) C T}R(r®6r) The proof is similar to Item (a) and omitted. 

The equation is proved. 
Intuitively, the expansion operator packs the structured attributes in R but not 

in 5 with <f>. It changes neither values for the structured attributes nor the key 
values of r and Sr. As a result, expansion does not affect the union property of 
r and Sr, and the equation is correct. In other words, the expansion operator is 
faithful [10] with respect to the union operator. 

Proof of Equation 2: 

(1) Base case: when R = S are flat, the equation holds. In this case, bythe 
definition of expansion, on LHS, t]R(r) — r, TjR(Sr) = Sr, rm(r) QrjR(Sr) = 
r © Sr. On RHS, r)n(r QSr) = r © Sr. Base case is proved. 

(2) Induction: suppose tjh? (u[5*] 0 u[S*]) = rjR- (u[S*]) © r)R- (v[S*]) where u € r 
and v € Sr. We prove the equation is correct over r and Sr. 
(a) rm(u[S]ev[S\) C J?ij(u[5]) © 77fl(u[S]) 

For a tuple x 6 (?jii(u[S] © u[5])), there must exit a tuple x' € (r © Sr) 
such that x is expanded from x'. By the definition of difference, x' must 
be produced from r and Sr in two disjoint cases, 
(i) x' is from r: 3 u € r, u[a(iZ)] 0 ¿r[a(i?)], x' = u. 

In this case, x is expanded from u as x = 
u[a(R)]nRMSi])---V^[SL]) On RHS : u £ r => 

m + l . . . n r 
the expansion of u, which is the same as x, is contained in 
VR' (u[S*]). Because expansion does not change key value of tuples, 
u[q(/?)] k ¿r[a(i?)] u[a(-R)]. ^ r/fl((5r)[a(ii)]. By the definition 
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of difference, the expansion of u is not changed by difference. So 
x € RHS. 

(ii) x' is the difference of tuples from r and Sr: 3 u G r, 3v 6 5r, 
u[a(JQ] = v[a(fl)] 
x' = u[a(R)](U[Si] © v[S;])...(u[S^) © v[S^]) and Ei 6 
[ i , . . . , m ] M s : ] e v [ s ; ] ) t 4 > 
x is expanded from x': 
X = u[a(R)](nRMSfiev[S;]))...(riRm(u[Sttev[Sti)) and 

m + l . . . n 
3 i 6 [1,..., TO], (u[S*] © u[St*]) ± 4>. 
Note that expansion adds empty sets to the structured attributes. 
It does not change the values of existing attributes. Therefore, 
(u[S*}ev[S*)) (mAS^emASi]) ? <f>. By rewriting x, 
we have 
X = u[a(R)]{riRlu[Si] e m A S i ] ) - ^ ^ ] © 
r)Rmv[S*m])(<f>e4>)...(<fiQ<l>) and 3 i € [1,...,rn], ( w A S i ] © v V ' 

from m+1 to n 

mAS*}) i <f>-
This just equals to the difference of the expansion of u and the 
expansion of v in RHS . So we proved that x € RHS. 

Item (a) is proved. 
(b) tfa (u[Si]) © № (v[Si]) C r)Ri (u[Si] © v[Si]) 

This item is proved in a similar way as in Item (a). 
Equation 2 is proved. • 

4.2 Incremental Equations for the Projection Operator 

Lemma 4.1. Let S be a prime subschema of R. Let r and Sr be instances over R. 
Then, the following two equations hold. 

ns(r © Sr) = 7fs(r) © ns(Sr) (3) 
fts(f © Sr) = fts(r) © fts(Sr) © fts(r Q Sr) (4) 

Proof. 
Proof of Equation 3: 

(1) Base case: when R = S are flat, the projection does nothing to tuples in r 
and s. So the equation holds. 

(2) Induction: suppose that for u G r and v e s, fts, ("[/?!•] © w[/?*]) = 
© № > ] ) ) , we prove fts(r © s) = (fts{r) © fts(s)). 

(a) fts(r © s) C ( f t s ( r ) © fts(s)) 
For a tuple x € fts(r ® s), there must exist a tuple x' £ (r © Sr) such 
that x is the projection of x'. x' is generated by the union in 3 cases: 
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(i) 3 u £ r A u[a(i?)] g <$r[a:(i?)] and x' is produced by it: 
In this case, x is the expansion of u. On RHS, u £ r => x ££ fts(r); 
the projection does not change the key value of a tuple. Therefore 
no tuple in ns(Sr) will affect x £ ns(r) when the union is conducted. 
x £ ( n s ( r ) © T T S ( S ) ) . 

(ii) 3 v £ Sr A u[a(/i)] £ r[a(i?)] and x' is produced by v: Symmetric 
to case (i). 

(iii) 3 u £r A 3u £ 6r A u[a(ii)] = i;[a(ii)] and x' is the union u and 
v: x' = u[a(E)](u[i?r] © v[i?i])...(U[J£r] © v[R^r])f 
x is the projection of x': 
x = u[a(R)]{*s>MRl] evm-insMRns} ©«J) 
By the induction assumption, 
x = u[a{R)]{*S'MRi\) 9 *S'1(v[Rl}))...(*SnMKs}) © 

On RHS: let the projection of u be denoted by xu and the projection 
of v be denoted by xv. Then xu £ #s(r) and xv £ ns{Sr): 
xu = u[a(R)](isMR^)--^sM(Ks)})) 
x" =v[a(R)}(fiS;(v[Rl})).-.(*s-M(Rns)])) 
The union of xu and xv produces: u[a(i?)](#s* © 
*5? («[i2i])).:.(#5„(ti[K.]) e *sMK.])) => * 
Consequently, x £ {ns(r) © ns{s)). 

Item (a) is proved. 
(b) (7rs(r)©7rs(s)) C 7rs(r ffis): This proof is similar to Item (a) is omitted. 

The equation is proved. 

Proof of Equation 4: We only need to prove that ^s(r) © ns(Sr) Q © Sr) 
because of Theorem 3.1. 

(1) Base case: when R = S are flat, the projection does nothing to tuples in r 
and s. 7rs(r) © ns(Sr) = ns(r Q Sr). 

(2) Induction: suppose that for u £ r and v £ s, (^.(ufi?^]) © 
№;])) ® (u[R*} © we prove (tfs(r) © ns(s)) ® ns(r © s). 

For a tuple x £ (^s(r) © ns(s)), x is produced in two cases: 
(i) x is the difference of xu and xv where xu £ 7Ts(r) and xv £ ns(Sr): 

Suppose xu is the projection of u € r and xv is the projection of v £ r. 
By the definition of projection, we have 
x" - u[a(R)}(nsl(u[Rt}))...(^M(Rnsm 
x" - v[a(RWsl(v[Rl])).Ms'nM(R*ns)})) 
By the definition of difference, 
X = U F A M ^ H I ? ; ] ) © ts-MRl)))-(*snAu[Ks}) © *sMK.])) 
and 3i £ [1, ...,ns](#Si(u[R;]) © *s>[i?*]) # <t>)-
From {TtSi{u[R*}) © TtSi(v[R*i}) i <f>) we have zt[i?*] © ^ 0 because 
projection makes a tuple have less attributes. 
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On RHS: the difference of u and v produce a tuple y E (r 0 <5r): 
y = u[a(i2)](u[J2i] e G v[R£r]) since 3 i E 

The projection of y produces y' in RHS: 
y' = u[a( i i ) ] (#si (u№] e v[Rl})-(*s„MKs] ev[R*ns]) and 3i E 
[1 na](«[J2?] ©«[ii?] 0). 
By induction assumption, all subrelations of x are contained in the ac-
cording subrelations of y'. Therefore, a; is tuple-contained in y'. 

(ii) x is in 7rs(r) and x[a(i?)] 0 Sr[alpha(R)]: This prove is the similar to 
Item (i) in the proof of Equation 3 and omitted. 

The containment is proved. 
• • 

Equation 4 reveals that ns(rQs) may not be contained in (ns(r) © tts(s)). The 
following lemma gives the reason. 

L e m m a 4.2. 
•¿rsirQSr) = •Ks(r)Qfts(Sr) iff recursively 3uE.rA3vE.6rA = t;[a(j4)] A 

3 j E [l-mMiRj)} © vKRj)} jL <f © *s>v[R*}) ± <t>). 

The proof of the Lemma is the reverse of the proof of Equation 4. Generally, 
(u[i?i]©v[.R*] <j>) i=> (is, J- <t>) because the projection makes 
a tuple shorter. The shortened parts might be the difference of u[R*) and v[R*\. 
Once this difference is shortened, i s , (u[i?*]) and become the same. So, 

(u[-R*]) © ftSi(v[R*]) 4>) may not be true. When the condition in the lemma 
is true, the equation becomes true. 

The next example shows the importance of the condition in the lemma. 

Example 4.1. Let R = {A,B* : {B},C* : {C}} and 5 = {A,B* : {5}}. Let 
r and Sr be two instances over R shown in Table 14. We see that © Sr) ^ 
7fs(r) © nT(Sr). This is caused by the first tuple of r and in the first tuple of Sr. 
The order of difference and projection on the two tuples affect the result. 

When the two tuples are differenced first, the result is < a\,(j>, {ci} >, The 
projection of the tuple is < ai, <f> > which is in the recomputation of r © Sr). 

However, when the two tuples are projected, we obtain < a\, {61} > and < 
ai, {bi} > respectively. The difference of these two tuples results none in the 
result. 

Based on the two lemmas given above, we propose the following implementation 
form of IEs for the projection operator. 

T h e o r e m 4.2. Let S be a prime subschema of R. Let r and Sr be instances over 
R. Then, the following two equations hold. 

rts(r © Sr) = 71 s(r) © ns(Sr) 
7Ts(r © Sr) = <7a(fl)0Sr[a(fl)](#s(r)) © ^s(<?a(fl)€ir[a(fl)] W © Sr) (5) 
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Table 14: Relations for Example 4.1 

A B* C' A 
B c 

a i {öl} {a} 
Û2 {bi,b2} {ci,C2} 
0.3 {b2,b3} {ci,C3} 

A B* C' A 
B c 

ai {M {C2} 
a. 2 {bub2} {ci,C2} 
Û3 {¿>3} {C3} 

A B" 
B 

a i M 
03 (M 

Sr •#s(r 6 Sr) 

A B-A 
B 

Q3 {f>2} 
fis(r) G fis(Sr) 

The first equation has been proved in Lemma 4.1. We now prove the second 
equation. From Lemma 4.2, the none equivalence of ns(r & Sr) and ^s(r) © ns(Sr) 
is caused by a(.R)-overlapping tuples in r and Sr. . Based on this observation, in 
Equation 5, we delete from the old view © Sr) the tuples that are produced 
by key value overlapping tuples in r. We then recompute the a (R)-overlapping 
tuples in r and Sr by ^s(^a(fl)e<5r[a(fi)](r) © 8r). At last, the recomputed tuples 
are inserted to the view. 

4.3 Incremental Equations for the Selection Operator 
Incremental equations for the selection operator can not be in the standard form 
because of the following lemma. 

Lemma 4.3. Let r and Sr be two relations over schema R. Let c be a selection 
condition defined with Definition 2.6. Then ac{r) is not always contained in âc(r © 
Sr) and âc(r Q Sr). 

This lemma is supported by the next example. 

Example 4.2. Let r and Sr be two relations given in Table 15 and c = {B* 
(j), C* = 4>} be a selection condition. The selections of r, r © Sr, and r QSr are also 
given Table 15. Obviously, oc(r) is not contained in ac(r © Sr) and âc(r © Sr). 

Since it is not possible to have the standard form of IEs for the selection op-
erator, we derive IEs in the limited standard form for the selection operator if we 
impose restrictions on r and Sr. 

Lemma 4.4. Let r and Sr be two relations over schema R. Let c be a selection 
condition defined with Definition 2.6. Then the following equations are true. 

(i) âc(r © Sr) = âc(r) Q âc{Sr) i f f 3 (u G r A v G Sr A u[a(A)] = u[a(A)]) , 
then recursively Vie [l,...,n] ( cr2(trCi (u[-Rt*]) © <rCi (f[/î*])) = true A 
Cri(àCi(u[R1])) = true A cri(âCi №*])) = true A 3 i(u[Rl] © ^ 
4> A â C i ( u [ R i ] ) e * c M R ; ] ) ï < t > ) 

(ii) ac(r@8r) = âc(r) © âc(Sr) i f f 3 (u G r A v G Sr A u[a(A)] = w[a(A)]), then 
recursively V î G [l,...,n] (cri(<TCi(u[iîi])) = true A Cri(oCi(v[Ri])) = true) 

We now choose to prove the first equation. The proof of the second equation is 
similar to that of the first one. 
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Table 15: Relations for Example 4.2 

A B' c* 
B c 

ai {Öl} 4> 
as {65} 4> 

A B' C' 
B C 

i i {{>2} {C2> 
as {bs,b6} 4> 

r 
A B* C* 

B C 
ai {biM) {c2} 
as {¿>5, M <t> 

r © Sr 

Sr 

A B* C* A 
B c 

as {61} <t> 
r Qôr 

A B* C* 
B c 

ai ( M <fi 
as {65} <t> 

»c(r) 

A B* c* A 
B c 

as {bs,b6} {<t>} 
dc(r © Sr) 

A B' c* A 
B c 

a 1 {61} {4>} 
Sc(rQ Sr) 

Proof. 
Proof of Equation (i) in Lemma 4.4: 

(1) Base case: when /9(i?) = <t>, r and Sr are flat. The equation becomes oCb(r — 
Sr) = oCb(r) - aCb(Sr). The correctness of this equation is proved in [13]. 

(2) Induction: when r is not flat and <rCi ( " № ] © « № ] ) = oCi MR-])GaC i ("[#*]) 
where u € r and v € Sr, we prove the equation is correct below. 

(a) ac(r-©<5r) C 3c(r) Q &c(Sr) 
For x 6 &c(r © Sr), there exist a tuple x' in (r © Sr) such that c(x') is 
true, x' is computed by tuple u 6 r and tuple v £ Sr in one of two ways. 
(1) u[a(i?)] i 5r[a(fl)] and x' = u. Thus, 

x = u[a(/?)](<7Cl(u[/?J])...(<rc„ (u[ii*]) where Ci,(u[a(i?)]) = true and 
Vi,cri((7c,.(u[i?*])) = true. 
In RHS, the selection of u produces tuple y (= x) in ac(r): 
y = u[o:(i?)](iTc1 (u[i?j,])...(<rCn(u[ii*]) where c6(u[a(i?)]) = true 
and Vi(cri(<7Ci(u[i?*])) = true). 
Since selection does not change the key value of a tuple, we have 
u[a(iZ)] £ ¿r[a(i?)] = > y[a(R)] £ <Tc(Jr)[a(JR)]. By definition of 
difference, no tuple in ac(Sr) affects y when difference is conducted 
in RHS. After difference, y is still the same as x. So, x is in RHS. 

(2) u[a(ii)] = u[a(i?)] and x' is the difference of u and v. That is, 
x' = u[a(R)](u{Rl] 0 t>[fli])...(u[J£] e u[J?;]) where 3i(u[iif] G 
u[i?*] (f>). In this case, the selection of x' gives 
x = u [a ( f l ) ] (* e i (u[Rl\ © ̂ [i?I]))...(ac„ ( « № ] 9 v[R^])) 
where ct(u[a(ii)]) = true and Vi(cri(<TCi(u[.R*] © w[J?t*])) = true) 
and 3i(u[R*]ev[R*] ± <j>). 
By induction assumption, 
x = U[a(E)](aCl(W[i?i,]) © *CI («))•••№>[/£]) © acJv[R*n})) 
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where ct(u[a(.R)]) = true and Vi(cri(iCi(u[iZi] 9v[iÇ])) = true) 
and 3 © £ 4>). 
In RHS , the selection of u and v results tuple yu £ àc(r) and tuple 
yv G âc(s): 

y« = u[a(iî)](«îCl(«[iîî]))...(<iCn(u[iî;])) where <*(«[«(£)]) = true 
and Vi{cri{cCi («[/?,•])) = true). 
yv = w[a(iî)](5cx(w[^Î]))-(<ic.(«[«;])) where C(,(u[a(.R)]) = true 
and ViicviifTciM-R?])) = true). 
Let y be the difference of yu and yv (because of u[a(iï)] = u[a(i?)]): 
y = u K i ^ K ^ M i î ï ] ) © * C l № î , ] ) ) » - ( * e > [ i £ ] ) © 
where C(,(u[a(iî)]) = true, c&(t>[a(.R)]) = true, Vi(cri(^Ci(u[iîJ'])) = 
true and cri(âCi(î;[iî?])) = true), and 3 i ( d " c . © èCi{v[R*}) ± 
4>). 

The conditions attached to x and to y are the conditions attached 
tot he equation. When these conditions are true, x equals to y. 
Hence x is in RHS. 

(b) àc(r)eâc{s) ç âc(res) 
This proof is the reverse of the proof of Case (a). 

The equation is proved. 
• 

We use the next example to show the importance of the conditions attached to 
the equations in Lemma 4.4. 

Example 4.3. Let R — {A, B* : {B}, C* : {C}} and let r and Sr be two instances 
over R and given in Table 16. Let the selection condition be c = (̂ 4 = ' a[,C = 
<f>). LHS=<rc(r © Sr) = <j>] while RHS= âc(r) © àc{Sr) (p. The reason is that 
the condition of subrelations over C* being empty is violated by r and Sr: the 
subrelation {ci} in r is not <f>. 

Since the equations in Lemma 4.4 can not be applied to this example. The new 
view has to be recomputed. 

Table 16: Relations for Example 4.3 

The above lemma indicates that the reason for not being able to derive a stan-
dard IE for the selection operator is that r and Sr having a(ii)-overlapping tuples. 

The conditions attached to the equations in Lemma 4.4 are recursive. In other 
words, the conditions have to be tested against subrelations on all levels. This 
can be very time consuming because of traversing down to deep levels and because 
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there is no index possible for subrelations in a relation. Furthermore, after the 
test,' the conditions may be violated, in this case, we have to recompute to view. 
Those tuples that have been traversed for testing the conditions will be traversed 
again for the recomputation. Double traversal causes the test plus recomputation 
to be more expensive than just recomputation without the pre-test. To overcome 
the disadvantage of the performance, in the next theorem we avoid the test of the 
conditions by proposing IEs in the implementation form. 

Theorem 4.3. 

<Jc(r Q Sr) = ia(fl)№[a(fl)](ic(r)) © &c(&a(R)e6r[a(R)](r) Q Sr) (6) 
<7c(r © Sr) = ^a(R)iSr[a(R)}(^c(r)) © Vc(Pa(R)€6r[a(R)](r) © Sr) (7) 

In the theorem, a(R)-overlapping tuples are recomputed while other tuples are 
computed incrementally. The IEs in the theorem can applied without limitation. 

4.4 Incremental Equations for the Intersection Operator 
The next Lemma indicates that the IE for the intersection operator with union is 
in the standard form. However, the IE for the intersection operator with difference 
can not be in the standard form since (r © s) © (Sr © s) is contained in (r © Sr) © s, 
but not the other way around. 

Lemma 4.5. Let R be a schema and r, Sr, and s be instances over R. Then 

(r eSr) © s = (r © s) e (Sr Qs)®(reSr)Qs (8) 
(r ®Sr) © s = (r © s) © (Sr © s) (9) 

We choose to prove Equation 8. The proof of the other equation can be achieved 
in a similar way. 

Proof. 
Proof of Equation 8: To prove the equation, we only need to prove (r © s) © 
(Sr © s) <5 (r © Sr) © s because of Theorem 3.1. 

(1) Base case: when R is flat, the equation is true since in flat case, (rQSr)Qs = 
(r © s) O (Sr © s) is proved in [13]. 

(2) Induction: we suppose that for u E r A v G Sr A w G s, (u[i?*] © to[i?*]) © 
№*] © ® («[#*] © u[i?*]) © w[R*}. We prove (r © s) © (Sr © s) ® 
(r © Sr) © s. 
For x G ((r®s)Q(SrQs)), there exist tuple xu E (rQs) and tuple xv G (SrQs) 
such that x is the difference of xu and xv. By the definition of the difference, 
x is computed in the following ways from xu and xv. 
(a) xu[a(R)] = xv[a(R)} then x is the difference of xu and xv. 

Because xu is the intersection of u E r and w G s while xv is the 
intersection of v G Sr and w E s, i.e., 
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x" = ulaiEmulRnOwlR^-iulR^OwlR*,.]) and 
= «[a(*)](t;[/îî] © tu[JÎÎ])...(t>[J£r] O w[R*nr]). 

So x is the difference of xu and xv : 
x = O «i[fl|]) © № * ] 0 u;[flï]))...((u[Jî;r] © Mi?*r]) 9 
( « r ] © t « r ] ) ) 
where (u[(i2J)] 9 (*>[/£] © w[Rf]) ± <j>. 
By induction assumption, 
x = u[a(R))((u[Rl) 9 v[Rl}) © ])...((«,.] © v[R*nr]) 0 w[R^r]) 
where (u[JÇ] 0 [/?*]) © (v[Rfl © M № ) ] ) ^ 4> 
In RHS, since u[a(-R)] = ti(a(iî)], the difference of u and v (u ^ v, 
otherwise x does not exist) in (r 9 s), denoted y', is 
y' = u[a(R)]{u[Rl] 9 v [ R { ] ) . 9 v[R^r)) 
where (u[R^] © v[R*]) + cj> 
By intersecting y' and w (u[a(i?)] = z;[a(iî)] = w[a(.R)]), we have a 
tuple y in RHS as 
y = «[a(H)]((u[J^] © v[Rl]) Q W[iîî]))...((u[iî;r] © v[RZr]) O w[R^r])) 
where (4R?]©î;[(i?;)])^<A 
Because (u[R^] © w[R*}) © (w[jR*] © ^ 4> => (№,*] © v[R*}) © 
ui[iîi]) t̂  (f> =>• (u[(i?*)] © ^ <f> (not vice versa), x equals to y or 
tuple-contained in y. Therefore x is in RHS. 

(b) xu[a(-R)] 0 (Sr © s)[a(R)]: then x = xu. 
xu is computed by intersecting i i E r and w € s. That is, 
x = xu= u[a(i?)](u[i?i] © t«[i î î ] )-(«[^ir] © « № ] ) • 
In RHS, u[a(i?)j ^ ¿r[a(.R)]: This can be proved by the inverse method. 
Suppose there is tuple v € Sr such that w[a(i?)] = u[a(iî)], the inter-
section of v and w (u[a(.R)] = w[a(iî)]) result in a tuple xv e (Sr © s) 
such that xv[a(R)] = u[a(.R)] = xu[a(iî)]. This is a contradiction to the 
condition of xu[a(.R)] 0 (Sr © s)[a(iî)]. Thus, u[a(.R)] 0 <Jr[a(.R)]. 
Prom this point, we conclude that there is not tuple in Sr affecting u 
during the difference of (r © s). So the intersection of u and w is the 
same as x. Consequently, x is in RHS. 

This proof of ((r © s) © (<5r © s)) <5 ((r © s) © t) is done. 
The equation is proved. • 

If restrictions are placed on relations r and Sr, it is possible to derive IEs in 
the limited standard form for the intersection operator as shown in the following 
result. 

L e m m a 4.6. (r © Sr) © s = (r © s) 9 (Sr O s), if recursively 
3 u ' e r A 3 u € <5r A 3 i d é s A u[a(-R)] = u[a(-R)] = w[a(.R)] A 
3 i ^ K R ^ e v ^ R i ) } ^ ^ A ( n [ № ) ] 0 w p , ) ] ) e M № ) ] 0 w [ № ) ] ) ^ ) . 

The condition attached to the lemma is extracted from the proof of Equation 
8. We now use Example 4.4 to show that a standard IE is not valid unless the 
relations satisfy the condition of Lemma 4.6. 
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Example 4.4. Let r, Sr and s be relations given in Table 17. After recomputation 
and incremental computation, (r © Sr) © s (r © s) © (Sr © s). This is because the 
first tuple in r, i r and s violates the condition. 

Table 17: Relations for Example 4.4 

A B* A 
B 

a 1 {bub2} 
a2 { 6 2 , 6 3 } 

13 {64} 
Ü4 {M 

A B* A 
B 

a\ {bi,b3} 
Ü 2 {bi,b2} 
0 3 { 6 3 , 6 4 } 

Sr 

A B* A 
B 

a i { 6 1 } 

0.2 { 6 2 , 6 3 } 

<13 { 6 4 } 

a 4 { 6 5 } 

A B* A 
B 

a i <fi 

a 2 { 6 3 } 

Û 4 { 6 5 } 

(r QSr)Qs 

A B* 
B 

a2 { 6 3 } 
Ü4 { 6 5 } 

( r 0 s ) e (Sr 0 s) 

A closer inspection of this example and the previous results indicates that the 
reason for not being able to derive a standard IE for the intersection operator is 
caused by a(i?)-overlapping tuples in r and Sr. If we treat these tuples separately 
then we can derive IEs in the implementation form that is more efficient than 
recomputation. 

Theorem 4.4. Let R be a schema and r, Sr, and s be instances over R. Then 

(rQSr)Qs = âa(R)2Srla(R)] (rQs) © ((<Ta(«)e5r[a(fl)] (r)) eSr)Qs (10) 

(r © Sr) © t = (r © s) © (Sr © s) (11) 

The next example shows the usage of Equation 10. The example also shows 
that Equation 10 is more efficient than recomputation. 

Example 4.5. Let r, Sr and s be relations given in Table 17. The incremental 
computation using Equation 10 is given in Table 18. We see that ©z2 is the same 
as recomputation (r © <Sr) © £ in Table 17. We note that we did not recompute the 
intersection of tuple < a4, {65} > in r and s. This is where Equation 10 is cheaper 
than recomputation. 

Table 18: Use of Equation 10 

A B* A 
B 

ai { 6 1 } 

a2 {b2,b3} 
a 3 { 6 4 } 

<X4 { M 

ai 
a2 
03 
6r[A] 

A B* A 
B 

a 4 { 6 5 } 

z 1 
r O s 

Zl = Va(.R)tST[a(R)]('T O S) 

A B* 

B 
ai <t> 
02 

Z 2 

A B* A 
B 

a\ 4> 
Û2 ( M 
Ü4 {h} 
Z1 © 22 

Z2 = ((¿a(H)€ir[a(K)](r)) G Sr) O S 
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4.5 Incremental Equations for Join Operator 
Theorem 4.5. Let R and S be joinable schemas. Let r and Sr be instances over 
R and s be an instance over S. The following two equations hold. 

(r 9 (5r)txis = (r&s) © (Jrt&s) © (r © ¿r)cSas (12) 
(r © ¿r)cSas = (rcxjs) ffi (Srt&s) (13) 

We choose to prove the first equation. The proof of the second equation is 
similar to that of the first one. 

Proof. 
Proof of Equat ion 12: To prove the equation, we only need to prove (rt&is) © 
(Sr&s) Q (r 9 ¿r)c£js because of Theorem 3.1. 

Let R = a{R){Rl,...,R*nr} and S = a(R){Sl,..., S*s}. Let r and 6r be relations 
on R and s be a relation on S. Let T = a{R){Tf, ...,T*t} be joined schema of R 
and S. 

(1) Base case: when R = S = T = a(R), i.e. all schemas are flat and the same, 
(rtks) 9 (¿rc*a,.s) = (r 9 <5r)t<is. This is because when relations are flat, 
join operation is equivalent to set intersection operation. The equivalence is 
proved in [13]. 

(2) Induction: we assume that for u E r A v E 6r A w E s, (u[i?j]tfiaii;[(5fc)]) 9 
(« [¿^^[ (Sfc ) ] ) § (u[R*j] 9u[i^])t£m[(S i :)]. We prove (r&s) 9 (Sr&s) ® 
(r 9 ¿r)t&s . 
For x E ((n&is) 9 (¿rt&s)) inLHS, there exist xu E (rc&s) and xv E (¿rt*as) 
such that x is the difference of xu and xv. By the definition difference, we 
have 

(rcSsi) 9 (s&i) 
= {a;|a;[a(i?)] = xu[a(i?)] = ^[«(i?)] A Vi(xp7] = xu[T?} 9 xv[T*]) A 

3i{x[T*)j:4>) or 
x[a( i i ) ] = xu[a{R)) / V i » [ a ( f l ) j A x = xu } 

where by the definition of join, 
xu E {xu\3u E r A 3w E s A x"[a( f i ) ] = u[a(f i ) ] = iu[a(.R)] A Vi 

(zu[7;*] = u[/2;]tfiji«[5JE], if RjCPTi A S^Ti or. 
xu[T*] = u[i?*], if RjCPTi A pSk<QTi or 
xu[T*j = w[Sl], if /9 Rj^Ti A Sk^Ti ) } and 

xv E e Sr A 3w E s A xv[a(i?)] = v[oc(R)] = w[a(i?)] A Vi 
{xv[T*} = w[ii;]£m[S£], if Rj^Ti A Sk^Ti or 
xv[I?] = v[R*l if Rj <£pTi A $Sk(c Ti or 
xv[T*] = w[S*k], if £ Rj^Ti A Sk€PTi ) } 

We replace xu and xv with their definition in the difference. Because the 
schema of xu and xv are the same, each case in xu matches that in xv, and 
does not match any of the other two cases. For this reason, we first consider 
the first case of xu and the first case of xv in the first case of the difference. 
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We then consider the second and third cases of xu and xv respectively in the 
first case of the difference. After that, we consider each case of xu and xv in 
the second case of the difference. From this procedure, we get the following 
expression. In the expression, for the simplicity, we do not write the schema 
conditions explicitly below. 

(rc5as) © (¿rt&s) 
= { x | ( 3 u € r A 3v€(Sr A 3 w £ s A 

x[a(R)] = u[a(i?)] = i;[a(i?)] = io[a(J?)] A 
Vi(x[T*] = (u[R*]&w[S*k}) © (v[R3]*w[St]) or 

x[T*} = u[R*] © v[R*] or 
x[T*]=w{S*k]ew{S*k}) A 

3i(x[T*]?<l>) or 
(3 u Er A V u 6 Sr A 3w € s A 

z[a(.R)] = u[a(R)] = w[a(R)] ± v[a(iZ)] A 
VHx[Tt] = (u[R*]tkw[S*k]) or 

x[Tt) = u[R*} or 
x[T*]=w[S*k}) } 

Now we consider (r © 5r-)c<]s in RHS. Let y £ (r © ¿r)cSjs and yu € (r © Sr). 
By the definition of join, we have 

(r © Sr) cki s 
={y|y[a(fl)] = < /> (# ) ] = Ma(i?)] A " 

Vi(j/[I?] = if R j & T i A S k ^ T i or 
y[Tt] = y»[R*], if Rj^Ti A £ Sk^Ti or 
y[Tf] = w[S*k}, if ¡B RjSTi A Sk^Ti ) } 

where by the definition of difference, 
yu 6 {yu\3u£ r A 3v £Sr A = u[a(i?)] = u[a(.R)] A 

Vj(yu[R*} = u[R*] © «[/?*]) A 3 j(u[R*] © * <t>) or 
3 u € r A VveSr A yu[a(R)} = u[a(ii)] ± v[a{R)] A yu = u } 

Replace yu with its definition in the RHS, 

(r©(5r)t<]s 
= {i/|3 u£r A3v£ Sr A 3w £ s A 

y[a(R)] = w[a(i?)] = = w[a(R)] A 
vi(y[T?] = (u[R*} et/[fl;])tMsfc*] or 

y{Tl]=u[R*]ev[R*} or 
y[T*}=w{S*k]) 

3j{u[R*]ev[R']^<j>) or 
3u £ r A Vii 6 Sr A 3w £ sA 

y[a(R)] = u[a(J2)] = u>[a(Jl)] # v[a{R)} A 
Vi(y[T?] = u[R]]*w[St] or 

y[T*]=u[R*} or 
y[T*] = w[s;]) } 

Now we compare x and y. The second case of x equals to the second case 
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of y with conditions. With the induction assumption, the first case of x 
equals to the first case of y with the condition that 3 i(x[T*] ± <j>) 
3j(u{R;]ev[R*}?<j>). 
We now prove that 3 i(x[Tf] ^ <f>) =» 3 j («[/?*] Qv[R*] ± </>) but not vice 
versa. In the first case of x, x[T*] is computed in two ways (note that 0 
w[Sl] always results 0 while we are discussing not being tf>). 

• x[T?) = u[R*j] © v[R*j] ± 4). This is equivalent to 3 (u[R}] © ^ <f> 
of y side. 

• x[T?] = ± <j>. By the induction assump-
tion, we have x[T*] = (u[R]] © v[.R}])i£iiu[S£] ^ <f> By the definition of 
join, © ^ D & ^ s , * ] ¿ 4 > = > © «[/?.;]) ? 4>-
However, from (u[/?*] © w[i?*]) / </> we can not get (u[/?*] © 

<f) because the join of two non-empty sets can be an 
empty set. Consequently, (u[_R}] © v[R^]) ± (j> (u[i?;]i£iio[SjJ]) © 
(v[R*)&w[S*k}) ± <j>. 

Because the condition of x can lead to the condition of y to be true, any x 
in LHS is contained or tuple-contained in RHS. However, the condition of y 
can not always lead to the condition of x to be true, y is not always included 
in RHS. 
In summary, we proved that (rcxis) © (¿rt&is) © (r © <5r)c*as. 

• 

Equation 12 can be simplified if restrictions are placed on the update Sr. 

Lemma 4.7. Let R and S be two joinable schemas. Let r and Sr be instances over 
R and s be an instance over S. The following equation holds. 

(r © ¿r)i&is = (rixis) © (¿rcias) iff r and Sr are a(R)-disjoint. 

The proof of the lemma is similar to the proof of Equation 12. We now give an 
example to show the importance of the condition in the lemma. 

Example 4.6. Let r, Sr, and s be three relations given in Table 19. The recom-
putation (r ©<5r)t*as and the incremental computation (rtxi s) © (¿rcfias) of the join 
operator are also included in the table. Because r and Sr have a(i?)-overlapping 
tuples, the recomputation contains more tuple than incremental computation does. 

Consider the performance and implementation, as we analyzed in Subsection 
4.3, we give the following IEs in implementatation form. In the theorem, a(R)-
overlapping tuples in r and Sr are recomputed while other tuples in Sr are incre-
mentally computed. 

Theorem 4.6. Let R and S be two joinable schemas. Let r and Sr be instances 
over R and s be an instance over S. The following two equations hold. 

( r e 5 r ) & S = ¿a(R)g6r[a(R)](r&s) © ((<?a(fl)edr[a(fi)](r) ©¿O&s) (14) 
(r © ¿r)cxis = (rcxis) © (<5rt&s) (15) 
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Table 19: Relations for Example 4.6 

A B* c' A 
B c 

ai {M id] 
a 2 {foil { C 2 , C 3 } 

<13 {biM { c i } 

A B* c* A 
B c 

ai {61} { a } 
0,2 {M { C 3 } 

a 3 {62,63} W 

A C' D* A 
C C 

0,1 {*} {<M 
a 2 {ci} {¿2} 
a3 {M {<M 

A B* c* D' 
B c D 

a2 <t> 4> m 
«3 {61} 4> 

(r © 5r)cSjs 

5r 

A B* C' D* A 
B c D 

a 3 {61} 4> 4> 
(rtxis) © (Srt&s) 

4.6 Discussion 
In this subsection, we highlight some of the important features of the IEs derived 
in the last section and discuss the differences between incremental expressions for 
flat relations and for nested relations. 

Firstly, we note that some (but not all) of the incremental expressions are in 
the standard form since the expressions do not involve recomputing the new view. 
The performance gain of this type of IEs is obvious. This is the case where the 
update is an insertion and the operators are expansion, intersection, projection, or 
join. However, the IEs for some operators, e.g. Equation 8, involve recomputation. 
These types of IEs do not avoid view recomputation unless restrictions are placed 
upon the update. A similar situation occurs with the flat relational projection 
operator where the incremental expression involves view recomputation [13]. This 
highlights the fact that some views are impossible to maintain efficiently if the only 
information available is the view itself. This has lead to the development of other 
techniques which use counts [6] or auxiliary relations [19] to improve efficiency by 
avoiding view recomputation. Similarly, one expects that views involving nested 
operators can be more efficiently maintained if more information than just the view 
is stored. 

In comparing the equations derived in the last section and those in [13] for 
the flat relational model, one notes that not only are the equations in this paper 
generally more complex but also the symmetry shown in the equations of [13] is 
absent in the expressions of the nested operators. For example, in flat relations the 
incremental expressions for selections and joins are similar for both insertions and 
deletions and are computed as <rc(r±s) = ac(r)±ac(s) and (r±s)&it = r&t±s&it 
respectively. This symmetry is absent in the equations derived in Section 4. 

Apart from the difference of patterns of IEs, the containment and disjointedness 
properties used in deriving IEs for flat relations and those used for nested relations 
are different. The containment and disjointedness for flat relations are defined on 
set semantics. A tuple contained in a set means that the tuple is a member of the 
set. In nested relations, however, a tuple is contained in a nested relation does not 
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mean that the tuple exists in the relation. The tuple may be contained in a tuple 
of the relation. Tuple containment becomes a core concept in the containment for 
nested relations. Similarly, the disjointedness for nested relations is built on the 
basis that two tuples are disjoint if one tuple has a subrelation that is disjoint from 
the corresponding subrelation of the other tuple. 

Compared with the equations for flat relations, our equations in the imple-
mentation form incrementally compute the view update to the maximum extent 
and avoid full view recomputation by recomputing only key attribute overlapping 
tuples. The performance gain from the implementation form is obvious. This is 
because in the implementation form, we make full use of indexes on the top level 
to select key attribute overlapping tuples. We avoid to test the complex conditions 
of IEs in the limited standard form and avoid full view recomputation. 

5 Incremental Maintenance of Views with Com-
plex Queries 

In this section, we present a technique for the incremental maintenance of PNF 
views expressed as complex queries using the incremental equations derived pre-
viously. Our technique can handle both insertions and deletions. However, for 
simplicity of exposition we assume that the update is a single insertion to a base 
relation. 

Our technique is firstly to represent the query expression for the view as an 
expression or operator tree. In this representation, the leaves of the tree are the 
base relations, the interior nodes are the query operators and the root of the tree 
represents the final view. Our technique then computes the change to the view in 
a 'bottom' up fashion starting with the changes to the leaf nodes and then propa-
gating the changes upwards in the expression tree using the incremental equations 
derived previously. To be more precise, we can express the technique in the fol-
lowing algorithm (iri represents the intermediate relation corresponding to node i 
in the tree, ir? and i r ^ are the intermediate relations corresponding to the child 
nodes of node i). 

Algor i thm 5.1. (Maintaining views wi th complex queries) 
Inpu t : the operator t r e e and the i n s e r t i o n s 6r t o r 
Ou tpu t : update to the view 
Do: For each node i do 

if Siri' or Sir^' i s non-empty, then 
compute Siri according to IEs derived in previous sec t ions , 

end i f ; 
endfor ; 

The use of the algorithm is illustrated by the next example. 

Example 5.1. Let relation pstud be defined in Table 1. Let relation subjLect be 
defined in Table 20. We define a query to list 
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• the name of a student; 
• the subject taken by the student in 1998 if the student gets all marks over 69 

for every test; 
• the lectures for the taken subject. 

This query can be expressed as 
View = Tt{Name,Subj':{sjName,Year,Lecf-.{Lect}}}{ 

(0Subj':(Year=98 A M A R K S ^ M A R K Y ^ ^ ^ I P S T U C ^ ^ S U B J L E C T ) ) 

Table 21 shows the instance of the view. 

Table 20: Relation subjLect 

Name Sub s* 
s j Name Year Lects* 

Lect 

Jack 

John 

( DB 
\ DB 
j DB 
{ DB 

98 
96 
98 
96 

{Ben,Tom) 1 
{Kaven} J 

{Ben, Tom} 1 
{Kaven} J 

Table 21: The materialized view View before update 

Name Subjs' 
sjName Year Lects* 

Lect 
Jack { DB 98 {Ben, Tom}} 

We now update relation pstud. The update to pstud is an insertion Apstud 
given in Table 22. The update is propagated through the following steps. 

• AV3 
={< Sean, {< DB, 98, {< exam, 90 >} >}, <t> >} 

• AV2 = AV3tk subjLect 
={< Sean,{< DB, 98, {< exam, 90 >},{< Ben >,< Tom >} > 

• AVj — ^{Name,Subj' :{sjName,Year,Lect': {Lecf}}} (AV2) 
={< Sean, {< DB, 98, {< Ben >, < Tom >} >} >} 

• View = View © AVi is given in Table 23. 
In the above procedure, we only computed the view update having the tuple of 

'Sean'. We did not compute the tuple 'Jack' that had been in the old view. When 
tuples in the old view are numerous, our way of maintaining the view can have 
better performance than recomputation. 



124 Jixue Liu and Millist Vincent 

Table 22: An update Ar to r 

Name Subjs' Tels' 
sjName Year Marks * Tel 

testName | Mark 
Sean {DB 98 {exam 90} } <t> 

Table 23: The materialized view View after update 

Name Subjs* 
sjName Year Lects* 

Led 
Jack { DB 98 {Ben, Tom}} 
Sean { DB 98 {Ben,Tom}} 

6 Implementation and Performance Analysis of 
IEs 

In this section, we present the results of our performance analysis of the IEs we 
derived. A detailed description of implementation can be found in [12]. 

6.1 The database 
We employed a university database for the implementation. It contains five rela-
tions. The schema of each relation is described in Figure 24. The schema Stud 
has been described in Example 1. The schema Teach describes the lecturer names 
(IcName) for each subject in a year. Led is a schema modeling the information 
of lecturers. Test is the schema to describe the test details for a subject in a year. 
The last schema, Hobby, describes hobbies of a student. 

Table 24: Schemas of the university database 

Name Subjs* Addrs' Name 
sjName Year Marks' Addr 

Name 
sjName Year 

TestName | Mark 
Addr 

schema Stud of relation pstud 
sjName Year IcNames' 

IcName IcName Salary Speciality 

schema Teach of relation teach schema Led of relation le 

sjName Year TestNames' 
TestName | Description 

Name Hobbies' 
Hobby 

schema Test of relation test schema Hobby of relation hobby 

The implementation was performed on a Pentium 166 PC computer with two 
hard disks, 96 MB of memory, and Microsoft Windows NT 4.0 operation system. 



Derivation of Incremental Equations for PNF Nested Relations 125 

The database management system used was the Informix Database Server with 
Universal Data Operation (IDS/UDO) version 9.14. Clients interface and pro-
grams are connected to the server by TCP/IP loop-back connection [9], which is 
the only option for Windows NT platform. The query language we use for the 
implementation is the OR-SQL proposed in [17]. 

6.2 The Cost Model 
The cost model for the performance analysis involves the costs of view creation, 
incremental maintenance, and recomputation. Each cost is the time for computing 
an item in an IE. We use the IE for the join operator with a deletion update as 
an example to show the relationship between the costs in the cost model and the 
items of the equations following. 

(r © <5r)&s = ®» (<Ta(H)eír[Q(ñ)](r) G> 6 r ) & s (16) 
v ' > S v 

Crec Cdct
 Cin> C „ „ , C " " B ° ' " C 

We now detail each cost. 
• ccre is the time for creating the materialized view rtfts. 
• crec, on the left hand side, is the time for recomputing the view when an 

update happens to a deriving relation of the view. 

. • cmtn on the right hand side, is the time for incrementally maintaining the 
view using right hand side of incremental equations when an update hap-
pens to a deriving relation of the view. This time consists of the following 
components. 

- Cdei is the time for deleting from the old view the tuples derived from 
а(Д)-overlapping tuples in r. 

- Cins is the time for inserting the tuples of the view update into the view. 
Since the tuples in the view update are а(Д)-disjoint with the view 
because of the select operation against r, this insertion in fact is the set 
operation. 

- Cqvi IS the time for selecting a(i?)-overlapping tuples from r, the relation 
that is being updated. 

- ссть labels the time to conduct PNF union or difference between a(R)-
overlapping tuples of r and Sr. 

- Cinc denotes the time for computing the view update using the operator 
that defines the view (e.g., сйз). 

After defining all the costs, the total maintenance time is given by: 

CMTN CDEL CINS COV\ + Ccm& + Cjnc 

where costs of Cdei, Cins, covi, and ссть are not operator specific. 
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With this cost model, a typical performance analysis diagram is like the one 
shown in Figure 2. The horizontal axis indicates the different update sizes while the 
vertical axis indicates the relative time to view creation. There are three lines in the 
diagram. One is labeled by 'rec' and shows the relative time of view recomputation: 
Crec/Ccre- It goes downward from top-left corner when updates are deletions. When 
the update size reaches 50% of the original size, it should come down to 50% along 
the vertical atxes. 

The second line is labeled by 'inc' and shows the relative time of cjn c /c c r e . It 
goes up from the lower-left corner. This line is drawn by using updates that do 
not have A-overlapping tuples with r. Because there are no A-overlapping tuples 
in the update, no recomputation and no deletion from the old view are needed 
for the incremental maintenance. Therefore, It is an ideal line for incremental 
maintenance. When the size of the update reaches 50%, this line will cross with 
'rec' at 50% of the vertical axis. This line and the location of the cross serve to 
check the correct of the implementation programs. 

The third line labeled by 'mtn' is the relative time for general incremental 
maintenance: c m t n / c c r e . It goes up from the lower-left corner. The intersection of 
the two lines 'rec' and 'mtn' being located at over 50% of the vertical axis and less 
than 50% of the horizontal axis. The horizontal coordinate of the the intersection 
point is called the maintenance limit. It is the size of an update with which the 
time of incremental maintenance is equivalent to the time of view recomputation. 

The 'mtn' line in the figure is the worst case where all tuples in Sr are a(R)-
overlapping with r and produce tuples in the view update to be inserted into the 
old view. Lines 'mtn' and 'inc' are the minimum and maximum boundaries for the 
incremental maintenance. The actual maintenance limit, depending on the update 
type and a(i?)-overlapping property, falls within the boundaries. 

Selection with del. upd. to 'sd' (Ivl 3) 
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20 
0 • 

Jk—Î 

0 80 • 
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~ 60 • g 
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Figure 2: The performance analysis for selection on 3rd level 

6.3 Maintenance Limit 
In this section, we analyze the maintenance limit for the selection operator and the 
join operator. 
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6.3.1 Selection Operator 

To study the maintenance limit for the selection operator, we simulate a query of 
listing all tuples of table stud if a student has at least one good mark (> 90) for at 
least one subject. The query is 

Qs: S E L E C T * FROM stud s WHERE EXISTS 
( S E L E C T * FROM table(s.Subjs*) j WHERE EX ISTS 

( S E L E C T * FROM tablefl.Marks*) WHERE Mark> 90) ); 
The selection condition Mark > 90 in the query is set up on third level of 

relation stud with the selectivity being 10%. 
The view defined with this query is maintained using the right hand side of 

Equation 6. 
The performance analysis diagram has been given Figure 2. From the diagram, 

we see that the maintenance limit is about 32%. 
We also analyzed the maintenance limits for the cases where selection conditions 

are on the first level and the second level respectively. The maintenance limits for 
selection condition on all levels are listed in Table 25. 

Table 25: Maintenance limits for selection 

condition level 1st 2nd 3rd 
limits(%) 18 40.5 32 

6.3.2 Join Operator 

The query we study the maintenance limit of join operator is Qjn. 
Qjn: S E L E C T * FROM stud s WHERE EXISTS 

( S E L E C T * FROM table(s.Subjs*) j, test t 
WHERE j.sjName=t.sjName AND j.Year=t.Year 
AND EX ISTS ( S E L E C T * FROM tableQ.Marks*) a, table(t.TestNames*) b 

WHERE a.TestName=b.TestName) ); 
In this query, test joins Stud on the second level and the third level of Stud. 
We also simulated join operations on the first level and the second. The tree 

presentation of the join in the three levels is given in Figure 3. The maintenance 
limits for the three case is given in Table 26. 

Table 26: Maintenance limits for join 

condition level 1st 2nd 2nd & 3rd 
limits(%) 21 44 36 

The data in the table is quite similar to that of Table 25. So, we omit the 
explanation. 
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sd_dctail sd 

(a) (b) 

(c) 

Figure 3: Joins on different levels 

The above data is obtained by applying updates to table stud, which we call 
the left operand of the join. We now consider the cases where updates are applied 
to the right operand of the join. 

Line 'inc-lv3' in Figure 6.3.2 is the case where the right operand joins stud on 
the third level. The figure shows that the incremental maintenance cost does not 
vary with the change of the size of updates to the right operand. This maintenance 
cost is almost the same as the view creation time. This is because the navigation of 
stud down to the third level consumes most of the time of the join operation. Line 
'inc-lv2' and Line 'inc-lvl' of the figure indicate that as the level on which the right 
operand joins stud becomes shallower, the cost of the incremental maintenance 
changes toward the trend of updates to stud. 

7 Conclusion 
In this paper, we derived IEs for the operators of PNF nested relations. We derived 
IEs in three forms: the standard form, the limited standard form, and the imple-
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Effect of different join levels 
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Figure 4: The performances when other joining tables are updated 

mentation form. The standard form is the ideal form that we first aimed to achieve. 
If an IE can not be in the standard form, we proposed the limited standard form. 
This form aims to reveal the reason why the IE can not be standard. After the 
limited standard form, by considering performance of testing complex conditions, 
we have derived IEs in the implementation form to avoid testing such conditions. 

In this paper, we also implemented IEs for the nested relations in the Informix 
Universal Database Server. A database with multi-level nested relations was cre-
ated in the database server. We implemented the PNF operators using ESQL/C 
functions. With the operators and the relations in the database, views were cre-
ated and the incremental equations are implemented. Afterward, the performance 
of each incremental equation was analyzed. 

The performance analysis show that the PNF union and difference operations 
are the main reasons causing performance decrease of the incremental computation. 
Generally, the maintenance limits of the incremental equations are between 17-44%. 
As the number of nested levels increase, the maintenance limit decreases. 

Nested relations are closely related to the new emerged semi-structured data 
protocol XML (extensible Markup Language) [1]. Because of this, the IE ex-
pressions derived in this paper have the potential to be adapted for the use in 
maintaining XML views. However, the adaption will not be direct because XML 
allows missing elements and flexible structures. This leads to null sub relations 
which challenge the adaption. We leave this as future research work. 

References 
[1] Serge Abiteboul. On views and xml. PODS, pages 1-9, 1999. 

[2] Serge Abiteboul and Nicole Bidoit. Non first normal form relations: an alge-
bra allowing data restructuring. Journal of Computer and System Sciences, 
33(3) :361-393, 1986. 



130 Jixue Liu and Millist Vincent 

[3] Stijn Dekeyser, Bart Kuijpers, and Jan Paredaens. Nested data cubes for olap. 
LNCS 1552, Advances in Database Technologies, 1998. 

[4] Timothy Griffin and Leonid Libkin. Incremental maintenance of views with 
duplicates. SIGMOD Conference, pages 328-339, 1995. 

[5] Ashish Gupta and Inderpal Mumick. Materialized Views - Techniques, Imple-
mentation, and Applications. The MIT Press, 1999. 

[6] Ashish Gupta and Inderpal S. Mumick. Maintaining view incrementally. SIG-
MOD Conference, 1993. 

[7] Ashish Gupta and Inderpal S. Mumick. Maintenance of materialized views: 
problems, techniques and applications. IEEE Data Engineering Bulletin, spe-
cial issues on materialized views and data warehousing, 18(2), 1996. 

[8] Richard Hull. A survey of theoretical research on typed complex database 
objects. In J. Paredaens, editor, Databases, pages 193-255. Academic Press, 
London, 1987. 

[9] Informix. Informix-universal server administrator's guide, version 9.1. 1997. 
Informix Corporation. 

[10] Mark Levene. LNCS 595, The Nested Universal Relation Database Model. 
Springer-verlag, Berlin, 1992. 

[11] Jixue Liu and Millist Vincent. Containment and disjointedness in partitioned 
normal form relations. Acta Informática, 38:325-342, 2002. 

[12] Jixue Liu, Millist Vincent, and Mukesh Mohania. Implementation and perfor-
mance analysis of incremental equations for nested relations. IDEAS, pages 
398-404, 2000. 

[13] Xiaolei Qian and Wiederhold Gio. Incremental recomputation of active rela-
tional expressions. IEEE Transactions on Knowledge and Data Engineering, 
3(3):337-341, 1991. 

[14] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended algebra and calcu-
lus for nested relational database. ACM Transactions on Database Systems, 
13(4):389-417, 1988. 

[15] M A Roth, H F Korth, and A Silberschatz. Null values in nested relational 
databases. .Acia Informática, 26(7):615-642, 1989. 

[16] Mark A. Roth and James E. Kirkpatrick. Algebras for nested relations. Data 
Engineering Bulletin, ll(3):39-47, 1988. 

M. Stonebraker and Paul Brown. Object-relational DBMSs tracking the next 
great wave. Morgan Kaufmann Publishers, Inc. California, 1999. 



Derivation of Incremental Equations for PNF Nested Relations 131 

[18] Michael Stonebraker and Dorothy Moore. Object Relational DBMSs, the Next 
Great Wave. Morgan Kaufman publishers Inc., 1996. 

[19] M. Vincent, M. K. Mohania, and Y. Kambayashi. A self maintainable view 
maintenance technique for data warehouses. COMAD, pages 7-22, 1997. 

[20] Jennify Widom. Research problems in data warehousing. CIKM, pages 25-30, 
1995. 

[21] Jun Yang and Jennifer Widom. Maintaining temporal views over non-historical 
information sources for data warehousing. EDBT, pages 389-403, 1998. 

Received February, 2002 


