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Abstract 

This work focuses on the search aspect of speech recognition. We describe 
some standard algorithms such as stack decoding, multi-stack decoding, the 
Viterbi beam search and an A* heuristic, then present improvements on these 
search methods. Finally we compare the performance of each algorithm, grad-
ing them according to their performance. We will show that our improvements 
can outperform the standard methods. 

KeyWords. search methods, stack decoding, multi-stack decoding, Viterbi 
beam search. 

1 Introduction 

In any speech recognition system, the real task is to find the most probable word 
(sequence of phonemes) for a given speech signal. However, as the number of 
possibilities is extremely high, and most of them will have very low probabilities, we 
need efficient algorithms to reduce the enormous search space. There are numerous 
standard methods for doing this, and some rarely used heuristics. We implemented 
and tested some of them, and adapted these according to our needs. Our aim 
was to construct a faster method which recognized the same amount of words. 
The methods were tested within the framework of our segment-based recognition 
system, the OASIS Speech Laboratory [7, 8]. 
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2 A Segment-based Speech Recognition Approach 
In the following, the speech signal A will be treated as a chronologically increasing 
series of the form a\a2 . . . atm a i , while the set of possible phoneme-sequences will 
be denoted by W. Essentially the task here is to find the word w € W defined by 

where P{w) is known as the language model. 
If we optimize P(io|A) directly, we use a discriminative method, while if we 

use Bayes' theorem and omit P{A), our approach is generative. Moreover the 
recognition process can be frame-based or segment-based, depending on whether 
the model incorporates frame-based or segment-based features. The widely-used 
HMM is a frame-based, generative method, but in the following we will describe 
the recognition process in a segment-based, discriminative approach (c.f. [8]). 

We assume that P(w\A) = P{wi\A) = PJi P{wi\A{), i.e. that the phonemes 
are independent, and for a word w = o i . . . 0/ a phoneme Oi is based on Ai = 
a j d j + i . . . Oj+ r_i (an r-long segment of A, where A = A\ ... An). With this Ai 
segment, a phoneme classifier identifies the phoneme by some method using long-
term features; in our recognition system, the OASIS Speech Laboratory, Artificial 
Neural Networks (ANNs) [3] are used, but the way the classifier actually works is 
of no concern to us here. 

To determine the values of these P(wi\Ai) functions, we need to know the exact 
values of the AjS, which are determined by their start and ending times (the above 
j and j + r — I values). Alas, this is quite a hard task, and because automated 
segmentation cannot be done reliably, the program will make many segmentation 
hypotheses, so we must include this segmentation T in our formulae: 

P{w\A) = p(w> T\A) = £ PMT, A) • P(T\A) « maxP{w\T, A) • P(T\A) 

For a given T, P(w\T, A) can be readily calculated with the phoneme clas-
sifier, and we handle P(T\A) using ANN-s as well. For this two-class training, 
the elements of the "phoneme" class were marked by hand, while the others in the 
"anti-phoneme" class were constructed from randomly selected parts of two or more 
phonemes. This allows us to employ the same set of features in the segmentation 
procedure that was used for phoneme recognition. 

3 Overview of Robust Search Methods 

3.1 Definition of the search space 
Before presenting the algorithms, we have to define some basic terms and notations. 
An array T„ = [io, h,..., tn] is called a segmentation if 0 = io < ti < • • • < tn < 

w = arg max P(w\A) = arg = arg max P(A\w) • P(w), 
W 

T T 
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tmax holds, i.e. they axe in increasing chronological order. We also require that 
every phoneme fit into some overlapping interval [ti,tj] (i,j £ {0, . . . n } , 0 < i < 
j <n), i.e. the former speech segments are referred by their start and end times. 

Given a set of words W, Prefk(W) will denote the k-long prefixes of all the 
words in W with at least k phonemes. Then we may construct the search tree in 
a recursive manner: ho — (0, [fo]) will be the root of the tree, and Prefi(W) x T^ 
will contain the first-level vertices. Then, for a (0102 . . . Oj, [¿¿0,... ,i» .]) leaf we link 
all (0102 . . . ojOj+1, [ t i 0 , . . . , tij, tij+1 ]) € Prefj+1{W) x Tl+1 nodes. 

When one or more hypothesis is discarded due to its high cost, we say that it 
was pruned. 

For the algorithms, certain notations are employed. means that a variable 
is assigned a value; "4=" means pushing a hypothesis into a stack. A H(t,c,w) 
hypothesis is a triplet of time, cost and a phoneme-sequence. Extending a hypoth-
esis H(t,c,w) with a phoneme v and an ending time U results in a hypothesis 
H'(t', c', w'), where t' = U, w' = wv, and c' = c + Cj, Cj being the cost of v in an 
interval [i, ti). This is equivalent to p' = p • pi, where p', p and pi are the proba-
bilities of H', H, and v in an interval [t,ti), respectively, and ct — —In pi. We are 
looking for the hypothesis with the lowest cost. 

3.2 Stack decoding 
The stack decoding algorithm [2] is time-asynchronous, i.e. it compares hypotheses 
with different ending times. 

In the first step of the process we place the initial hypothesis into the stack. 
Then we pop the hypothesis in order to examine and extend it. Next, we put all 
the new hypotheses into the stack and pop the most probable of them. We repeat 
the process until the popped hypothesis reaches the end of the utterance. 

The above algorithm works because it extends hypotheses, and their cost in-
creases since we add these costs (non-negative real numbers) together. Thus, when 
we reach the end of the utterance, all unexamined hypotheses will have higher costs 
than our actual solution. 

In practice it is common to use a finite stack. However, for large vocabularies 
and/or sentences (those with a huge search space) there is a danger that it will 
eliminate the best scoring hypotheses with a greater end time. Another problem 
with this method is that, by increasing the length of an utterance, the run time of 
the stack decoding algorithm will increase exponentially. 

3.3 An A* heuristic 
The A* search [4] algorithm is also a common method for finding a near-optimal 
solution. Here, besides the g{H) value for a hypothesis H (the cost so far), there is 
a h(H) value for estimating the cost of the remaining path. We put the hypotheses 
into a stack and sort them using f(H) = g{H) + h(H). Basically, this is just a 
variation of the stack decoding method. 
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Algorithm 1 Stack decoding algorithm 
Stack <= Ho(to, 0,0) 
while Stack is not empty do 

H(U,p,w) top(Siacfc) 
if U = tmax then 

return H 
end if 
for ti = ti+1 . . . tmax do 

for all {t> | wv e Prefi+iength of w} do 
H'(ti,p',w') extend H with v on [£»,£/] 
Stack H' 

end for 
end for 

end while 

Jelinek offers a method for constructing a heuristic based on examples. The 
exact formulae can be found in [6]. The idea behind it is simple enough. An 
evaluation is made on segmented, tagged data in order to calculate the average 
(or the minimum) cost per unit time. It should then give a good estimate of 
the cost for the remaining time. As regards the optimality criterion, the estimate 
must be not greater than the actual cost. It is quite hard to meet this criterion 
using the average-value based approach, but fairly straightforward to satisfy with 
the latter. However, when we calculate the minimum cost per unit time using the 
latter version, there is a certain loss of efficiency although it is still somewhat better 
than the simple stack decoding method. The solution might be to use some hybrid 
combination of the two. 

Algorithm 2 Universal A* algorithm 
Stack <= #o(io,O,0) 
while Stack is not empty do 

H(ti,p,h,w) top (Stack) 
if ti = tmax then 

return H 
end if 
for ti = t i+ i . . . tmax do 

for all {D | wv G Prefi+iength 0f w} do 
H'(ti,p',h',w') extend H with v on [£¿,<¿1 
Stack <= H' 

end for 
end for 

end while 
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3.4 Multi-stack decoding 
This method is a time-synchronous modification of stack decoding. Instead of using 
just one stack (where the elements cannot truly be compared because most of them 
have different end times), we assign one stack for each time instance. Advancing in 
time, we can pop each hypothesis one at a time from the given stack, extend them, 
and put the new hypotheses into the right stack (which depends on their new end 
time) [1]. 

Obviously stack size is very important in this method as it can affect accuracy. 
Overly large stacks result in a large search space (and unnecessarily long run time), 
while very small stacks can prune those hypotheses whose extensions might be 
better at a later time. Note that, for a given stack size, the run time of the 
algorithm depends only on the length of the utterance (or, to be more precise, on 
the number of possible segments). 

Algorithm 3 Multi-stack decoding algorithm 
Stack[i0] -<= H o ( i o ,O,0) 
for time = to ... tmax do 

while not empty(Stack[£ime]) do 
H(t,p,w) top(Stack[iwne]) 
if time = tmax then 

return H 
end if 
for ti = time + 1... tmax do 

for all {v | wv G Prefi+tength of w} do 
H'(ti,p',w') extend H with v on [ti, ti] 
Stack[iz] <i= H' 

end for 
end for 

end while 
end for 

3.5 Viterbi beam search 
The standard Viterbi search algorithm is just the standard time-synchronous ex-
haustive search method but, as it stands, it is practically unusable. However, with 
a small modification it can be made rather effective. We employ a variable T called 
beam width; for each time instance t we calculate Dmin, i.e. the lowest cost of the 
hypotheses with the end time t, and prune all those hypotheses whose cost D falls 
outside Dm in + T [5]. The value of the beam width is found by trial and error. 

Several versions of this method exist. When choosing one we might use dif-
ferent beam widths for different end times (using greater values at the beginning 
of words). Or we could calculate the beam width dynamically (i.e. keeping the 
best N hypotheses - which is identical to the multi-stack decoding algorithm - , or 
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reducing the beam width when the probabilities start to decrease). In trials so far 
we have tested this method only with a constant beam width. 

Algorithm 4 Viterbi beam search algorithm 
Stack[i0] <= iio(to, 0,0) 
for time = to .. . f max do 

while not empty(Stack[iime]) do 
H(t,p,w) •<— top(Stack[iime]) 
if time = tmax then 

return H 
end if 
for ti = time + 1 . . . tmax do 

f o r al l {l> | WV € Prefi+iength of w } d o 
H'(t[,p',iu') extend H with v on [time,t{\ 
Stack[ij] <= H' 
Prune Stack[t;] with beam width T 

end for 
end for 

end while 
end for 

4 Refinement of the Multi-stack decoding algo-
rithm 

When calculating the optimal stack size for multi-stack decoding, it is readily seen 
that this optimum will be the one with the smallest value where no best-scoring 
hypothesis is discarded. But this approach obviously has one major drawback. 
Most of the time bad scoring hypotheses will have to be evaluated owing to the 
constant stack size. If we could only find a way of estimating the required stack size 
at each time instance, the performance of the method would markedly improve. 

One possibility might be to combine multi-stack decoding with a Viterbi beam 
search. At each time point we keep the n best-scoring hypotheses, and discard those 
which are not close to the peak (thus the cost will be higher than the best cost plus 
the beam width). Here the beam width can also be determined empirically. 

One surprising thing is that when we determine the optimal parameters (stack 
size and beam width) for the two methods (multi-stack and Viterbi beam), both 
parameters can be used together, thus making the combined search method work 
faster than either of them separately. We found that this worked for both test sets. 

Yet another approach for improving the multi-stack method is that we can 
predict, at a given time instance, what stack size should be sufficient. We devised 
two improved methods based on this. 

We trained an ANN to predict whether, at a given time instance, a bound 
between phonemes exists or not. Then, at each time instance, this ANN returns a 
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Figure 1: Bound probability - stack size diagram with the best fitting curve 

probability p for this. In the first improvement we compare this p to a parameter 
I: if p < I, we use a smaller-sized stack ( c m j „ ) , and a bigger (cmax) one otherwise. 

We could also improve the model by fine-tuning it. To find a function that ap-
proximates the necessary stack size based on the output p of the ANN, we conducted 
an experiment. We recognized a set of test words using a standard multi-stack de-
coding algorithm with a large stack size. Then we examined the path which led 
to the winning hypothesis (or the first n hypotheses), and noted the required stack 
size and the phoneme-bound probability p at each time instance. The points of 
Figure 1 show the necessary stack sizes as a function of p. 

For a phoneme-bound probability p (supplied by the ANN), we found that a 
min(co + eCl P+C2 , C3) size stack was satisfactory. Obviously, the value for c% comes 
from the test of multi-stack decoding, and the value for cq from an examination of 
the.previous improvement (as Cmi„). After, for a given c\, C2 can be determined by 
trial and error. The best fitting curve was plotted in Figure 1. 

5 Experimental results 

5.1 The testing sets 
In trials we tested the above methods and their variations using varying parameters, 
namely different dictionary sizes, words, and other parameters which are method 
dependent (e.g. stack size in stack decoding). We also examined whether making 
use of a voicedetect function (which seeks to remove long, silent parts of a voice 
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signal) significantly improves the speed of recognition, thereby reducing the number 
of neuron network calls. 

For this reason we created two test groups. Test set I contained only the basic 
elements of Hungarian numbers from six speakers. Each uttered the 26 elements 
twice, giving a total of 312 occurrences, while test set II contained numbers under 
100 (169 test cases in all). 

5.2 Results 
Two things were important in the comparison. First, we had to see how good the 
method was in scoring correct hits. Second, the number of phoneme-classifying 
ANN calls made in this task. Actually, the key quantity here for evaluating a 
method's performance is the lowest number of ANN calls when its performance is 
maximal. 

As the entire hypothesis space is enormous (> 107 for an average utterance) our 
goal is to drastically reduce it. The methods tested here require different types of 
parameters for optimal performance, hence they have to be listed individually. 

5.3 Results of using the standard algorithms 
The results of each method employed in trials are listed below. 

5.3.1 Stack decoding 

This method performed surprisingly well on the first test set. Extending the best-
scoring of all hypotheses can be regarded as a heuristic, which performs very well 
with a short utterance, but on longer words it proved unsatisfactory. On the second 
set (whose elements were much closer to real-life examples) it yielded the worst 

hits ANN calls hits ANN calls 
(312) on set I (169) on set II 

5000 304 1,124,024 141 27,353,614 
1000 304 1,124,024 139 10,278,189 
500 304 735,135 137 6,798,157 
250 303 661,214 136 4,135,990 
100 295 562,460 136 2,039,124 
50 279 500,748 127 1,148,680 
25 260 354,077 124 670,369 
10 210 225,152 80 281,704 

Table 1: Stack decoding algorithm. The first column indicates the stack size; the 
best result (the one with the required accuracy and minimum ANN calls) is in 
bold. 
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results of all. Overall, this methods works well with short speech utterances but 
not with long ones. The results can be seen in Table 1. 

5.3.2 Multi-stack decoding 

The multi-stack decoding method seems most promising. Although it did not 
perform outstandingly well, it produced fair results and, unlike the other methods 
mentioned here (with the exception of the flexible A* algorithm) there is significant 
room for improvement. The main drawback of this method is the fixed stack size. 
Only in some cases is there a need for a maximum stack size, but here it is applied 
to all stacks. If we could somehow determine the stack size for each case, the 
performance of this method would be greatly improved. There results are shown 
on Table 2. 

hits ANN calls hits ANN calls 
(312) on set I (169) on set II 

100 304 8,808,675 141 7,503,876 
50 304 4,421,691 141 3,719,326 
25 304 2,173,794 140 1,822,171 
20 304 1,732,549 138 1,449,417 
15 299 1,292,938 137 1,080,198 
10 295 842,595 132 707,777 
5 280 416,284 119 348,066 
2 240 190,994 90 155,698 
1 213 119,576 59 95,938 

Table 2: Multi-stack decoding algorithm. Here the parameter shown is the stack 
size. 

5.3.3 Viterbi beam search 

Of all the standard algorithms this method worked the best. On the first test set its 
performance ranked behind that of the stack decoding method, but on the second, 
more important set it performed very well, producing the lowest run times of the 
four standard methods. (See Table 3.) 

5.4 Results of improvements 
Combining standard algorithms 

Among the former algorithms only the Viterbi beam and multi-stack decoding 
methods could be combined (the stack decoding and multi-stack decoding methods 
are basically different, and the A* algorithm is already an improved version of the 
stack decoding method). Combining the first two methods led to a more efficient 
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hits ANN calls hits ANN calls 
(312) on set I (169) on set II 

25.0 304 2,032,830 141 2,806,010 
20.0 304 1,223,316 139 1,394,292 
19.0 304 1,098,123 138 1,211,195 
18.0 303 983,711 138 1,048,396 
17.0 301 884,876 137 912,880 
16.0 300 790,772 135 795,547 
15.0 297 704,808 134 692,303 
10.0 286 380,425 128 341,587 
5.0 264 201,408 98 168,941 
1.0 229 131,175 71 105,807 

Table 3: Viterbi beam search algorithm. Here the parameter shown is the beam 
width. 

algorithm. This idea was included in the other improvements too. Henceforth, 
when we talk about improving the multi-stack decoding method, we will assume 
that a Viterbi beam pruning has also been applied. 

Phoneme-bound detection 

In order to evaluate the probability of a bound we used an ANN, which classified 
a bound to 80% accuracy. In the first version it achieved its goal. Acting on the 
first testing set the results approached those of the stack decoding results, and it 
performed better than the standard algorithms (see Table 4). However, on the 

Stmax 0.50 0.55 0.60 0.65 0.70 0.75 0.80 
25 304 

933,993 
304 

926,151 
304 

918,376 
304 

912,275 
304 

886,313 
299 

788,429 
292 

672,395 
20 304 

882,358 
304 

875,252 
304 

868,634 
304 

862,734 
304 

839,789 
299 

752,371 
292 

645,656 
15 299 

788,599 
299 

782,810 
299 

777,810 
299 

772,591 
299 

750,078 
294 

684,313 
288 

594,605 
10 293 

632,134 
293 

628,904 
293 

626,278 
293 

622,681 
293 

610,825 
288 

566,334 
282 

504,831 

Table 4: Results using the multi-stack decoding method with the first improvement 
on test set I. 

second set a slighter poorer result was obtained. Surprisingly, this method did 
slightly worse than the multi-stack decoding method with Viterbi pruning. 

In the second version the ex smoothing technique, however, worked very well. 
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Set I Set II 
Stack decoding 735,135 2,039,124 
A* heuristic 2,276,965 9,384,119 
Multi-stack decoding 1,732,549 707,777 
Viterbi beam search 1,098,123 692,303 
Multi-stack decoding combined with Viterbi 922,434 474,188 
Multi-stack decoding with stack size reduction I 839,789 462,363 
Multi-stack decoding with stack size reduction II 749,228 427,212 

Table 5: Summary of the best performances of all the methods used 

On the first test set it produced almost as good a result as the stack decoding 
algorithm, and on the second it had the smallest run time. We can say that 
this novel method is definitely better than the standard algorithms. (Overall, the 
formula min(3 4- e45 0 p + 3 2 -3 ,20) produced the best results.) 

The best results of all methods can be seen on Table 5. 

6 Conclusion 

In this paper our goal was to study the search problem of speech recognition tasks, 
compare the standard algorithms and look for ways of improving them. Exam-
ining the test results, it is clear that we can indeed marry standard algorithms 
without loss of accuracy, and with a marked improvement in performance. The 
novel method presented here proved to be more efficient, and matched or outdid 
the performance of the others. 

Hopefully it could be further refined by using automatic parameter determina-
tion or changing the exponential model function to some other. This will be the 
subject of future work. 
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