
Acta Cybernetica 16 (2003) 229-240.

Various Robust Search Methods in a Hungarian
Speech Recognition System*

Gábor GosztolyaJ András Kocsorf László TóthJ

and László Felföldi*

Abstract

This work focuses on the search aspect of speech recognition. We describe
some standard algorithms such as stack decoding, multi-stack decoding, the
Viterbi beam search and an A* heuristic, then present improvements on these
search methods. Finally we compare the performance of each algorithm, grad-
ing them according to their performance. We will show that our improvements
can outperform the standard methods.

KeyWords. search methods, stack decoding, multi-stack decoding, Viterbi
beam search.

1 Introduction

In any speech recognition system, the real task is to find the most probable word
(sequence of phonemes) for a given speech signal. However, as the number of
possibilities is extremely high, and most of them will have very low probabilities, we
need efficient algorithms to reduce the enormous search space. There are numerous
standard methods for doing this, and some rarely used heuristics. We implemented
and tested some of them, and adapted these according to our needs. Our aim
was to construct a faster method which recognized the same amount of words.
The methods were tested within the framework of our segment-based recognition
system, the OASIS Speech Laboratory [7, 8].

"This work was supported under the contract IKTA No. 2001/055 from the Hungarian Ministry
of Education.

^Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and University
of Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary,
e-mail: ghostyargai . inf .u-szeged.hu, kocsoriinf .u-szeged.hu, tothl®inf .u-szeged.hu

^Department of Informatics, University of Szeged H-6720 Szeged, Árpád tér 2., Hungary,
e-mail: l f e l f o l d t i n f . u - s z e g e d . h u

229

230 Gabor Gosztolya et a1.

2 A Segment-based Speech Recognition Approach
In the following, the speech signal A will be treated as a chronologically increasing
series of the form a\a2 . . . atm a i , while the set of possible phoneme-sequences will
be denoted by W. Essentially the task here is to find the word w € W defined by

where P{w) is known as the language model.
If we optimize P(io|A) directly, we use a discriminative method, while if we

use Bayes' theorem and omit P{A), our approach is generative. Moreover the
recognition process can be frame-based or segment-based, depending on whether
the model incorporates frame-based or segment-based features. The widely-used
HMM is a frame-based, generative method, but in the following we will describe
the recognition process in a segment-based, discriminative approach (c.f. [8]).

We assume that P(w\A) = P{wi\A) = PJi P{wi\A{), i.e. that the phonemes
are independent, and for a word w = o i . . . 0/ a phoneme Oi is based on Ai =
a j d j + i . . . Oj+ r_i (an r-long segment of A, where A = A\ ... An). With this Ai
segment, a phoneme classifier identifies the phoneme by some method using long-
term features; in our recognition system, the OASIS Speech Laboratory, Artificial
Neural Networks (ANNs) [3] are used, but the way the classifier actually works is
of no concern to us here.

To determine the values of these P(wi\Ai) functions, we need to know the exact
values of the AjS, which are determined by their start and ending times (the above
j and j + r — I values). Alas, this is quite a hard task, and because automated
segmentation cannot be done reliably, the program will make many segmentation
hypotheses, so we must include this segmentation T in our formulae:

P{w\A) = p(w> T\A) = £ PMT, A) • P(T\A) « maxP{w\T, A) • P(T\A)

For a given T, P(w\T, A) can be readily calculated with the phoneme clas-
sifier, and we handle P(T\A) using ANN-s as well. For this two-class training,
the elements of the "phoneme" class were marked by hand, while the others in the
"anti-phoneme" class were constructed from randomly selected parts of two or more
phonemes. This allows us to employ the same set of features in the segmentation
procedure that was used for phoneme recognition.

3 Overview of Robust Search Methods

3.1 Definition of the search space
Before presenting the algorithms, we have to define some basic terms and notations.
An array T„ = [io, h,..., tn] is called a segmentation if 0 = io < ti < • • • < tn <

w = arg max P(w\A) = arg = arg max P(A\w) • P(w),
W

T T

Various Robust Search Methods in a Hungarian Speech Recognition System 231

tmax holds, i.e. they axe in increasing chronological order. We also require that
every phoneme fit into some overlapping interval [ti,tj] (i,j £ {0, . . . n } , 0 < i <
j <n), i.e. the former speech segments are referred by their start and end times.

Given a set of words W, Prefk(W) will denote the k-long prefixes of all the
words in W with at least k phonemes. Then we may construct the search tree in
a recursive manner: ho — (0, [fo]) will be the root of the tree, and Prefi(W) x T^
will contain the first-level vertices. Then, for a (0102 . . . Oj, [¿¿0,... ,i» .]) leaf we link
all (0102 . . . ojOj+1, [t i 0 , . . . , tij, tij+1]) € Prefj+1{W) x Tl+1 nodes.

When one or more hypothesis is discarded due to its high cost, we say that it
was pruned.

For the algorithms, certain notations are employed. means that a variable
is assigned a value; "4=" means pushing a hypothesis into a stack. A H(t,c,w)
hypothesis is a triplet of time, cost and a phoneme-sequence. Extending a hypoth-
esis H(t,c,w) with a phoneme v and an ending time U results in a hypothesis
H'(t', c', w'), where t' = U, w' = wv, and c' = c + Cj, Cj being the cost of v in an
interval [i, ti). This is equivalent to p' = p • pi, where p', p and pi are the proba-
bilities of H', H, and v in an interval [t,ti), respectively, and ct — —In pi. We are
looking for the hypothesis with the lowest cost.

3.2 Stack decoding
The stack decoding algorithm [2] is time-asynchronous, i.e. it compares hypotheses
with different ending times.

In the first step of the process we place the initial hypothesis into the stack.
Then we pop the hypothesis in order to examine and extend it. Next, we put all
the new hypotheses into the stack and pop the most probable of them. We repeat
the process until the popped hypothesis reaches the end of the utterance.

The above algorithm works because it extends hypotheses, and their cost in-
creases since we add these costs (non-negative real numbers) together. Thus, when
we reach the end of the utterance, all unexamined hypotheses will have higher costs
than our actual solution.

In practice it is common to use a finite stack. However, for large vocabularies
and/or sentences (those with a huge search space) there is a danger that it will
eliminate the best scoring hypotheses with a greater end time. Another problem
with this method is that, by increasing the length of an utterance, the run time of
the stack decoding algorithm will increase exponentially.

3.3 An A* heuristic
The A* search [4] algorithm is also a common method for finding a near-optimal
solution. Here, besides the g{H) value for a hypothesis H (the cost so far), there is
a h(H) value for estimating the cost of the remaining path. We put the hypotheses
into a stack and sort them using f(H) = g{H) + h(H). Basically, this is just a
variation of the stack decoding method.

232 Gabor Gosztolya et a1.

Algorithm 1 Stack decoding algorithm
Stack <= Ho(to, 0,0)
while Stack is not empty do

H(U,p,w) top(Siacfc)
if U = tmax then

return H
end if
for ti = ti+1 . . . tmax do

for all {t> | wv e Prefi+iength of w} do
H'(ti,p',w') extend H with v on [£»,£/]
Stack H'

end for
end for

end while

Jelinek offers a method for constructing a heuristic based on examples. The
exact formulae can be found in [6]. The idea behind it is simple enough. An
evaluation is made on segmented, tagged data in order to calculate the average
(or the minimum) cost per unit time. It should then give a good estimate of
the cost for the remaining time. As regards the optimality criterion, the estimate
must be not greater than the actual cost. It is quite hard to meet this criterion
using the average-value based approach, but fairly straightforward to satisfy with
the latter. However, when we calculate the minimum cost per unit time using the
latter version, there is a certain loss of efficiency although it is still somewhat better
than the simple stack decoding method. The solution might be to use some hybrid
combination of the two.

Algorithm 2 Universal A* algorithm
Stack <= #o(io,O,0)
while Stack is not empty do

H(ti,p,h,w) top (Stack)
if ti = tmax then

return H
end if
for ti = t i+ i . . . tmax do

for all {D | wv G Prefi+iength 0f w} do
H'(ti,p',h',w') extend H with v on [£¿,<¿1
Stack <= H'

end for
end for

end while

Various Robust Search Methods in a Hungarian Speech Recognition System 233

3.4 Multi-stack decoding
This method is a time-synchronous modification of stack decoding. Instead of using
just one stack (where the elements cannot truly be compared because most of them
have different end times), we assign one stack for each time instance. Advancing in
time, we can pop each hypothesis one at a time from the given stack, extend them,
and put the new hypotheses into the right stack (which depends on their new end
time) [1].

Obviously stack size is very important in this method as it can affect accuracy.
Overly large stacks result in a large search space (and unnecessarily long run time),
while very small stacks can prune those hypotheses whose extensions might be
better at a later time. Note that, for a given stack size, the run time of the
algorithm depends only on the length of the utterance (or, to be more precise, on
the number of possible segments).

Algorithm 3 Multi-stack decoding algorithm
Stack[i0] -<= H o (i o ,O,0)
for time = to ... tmax do

while not empty(Stack[£ime]) do
H(t,p,w) top(Stack[iwne])
if time = tmax then

return H
end if
for ti = time + 1... tmax do

for all {v | wv G Prefi+tength of w} do
H'(ti,p',w') extend H with v on [ti, ti]
Stack[iz] <i= H'

end for
end for

end while
end for

3.5 Viterbi beam search
The standard Viterbi search algorithm is just the standard time-synchronous ex-
haustive search method but, as it stands, it is practically unusable. However, with
a small modification it can be made rather effective. We employ a variable T called
beam width; for each time instance t we calculate Dmin, i.e. the lowest cost of the
hypotheses with the end time t, and prune all those hypotheses whose cost D falls
outside Dm in + T [5]. The value of the beam width is found by trial and error.

Several versions of this method exist. When choosing one we might use dif-
ferent beam widths for different end times (using greater values at the beginning
of words). Or we could calculate the beam width dynamically (i.e. keeping the
best N hypotheses - which is identical to the multi-stack decoding algorithm - , or

234 Gabor Gosztolya et a1.

reducing the beam width when the probabilities start to decrease). In trials so far
we have tested this method only with a constant beam width.

Algorithm 4 Viterbi beam search algorithm
Stack[i0] <= iio(to, 0,0)
for time = to .. . f max do

while not empty(Stack[iime]) do
H(t,p,w) •<— top(Stack[iime])
if time = tmax then

return H
end if
for ti = time + 1 . . . tmax do

f o r al l {l> | WV € Prefi+iength of w } d o
H'(t[,p',iu') extend H with v on [time,t{\
Stack[ij] <= H'
Prune Stack[t;] with beam width T

end for
end for

end while
end for

4 Refinement of the Multi-stack decoding algo-
rithm

When calculating the optimal stack size for multi-stack decoding, it is readily seen
that this optimum will be the one with the smallest value where no best-scoring
hypothesis is discarded. But this approach obviously has one major drawback.
Most of the time bad scoring hypotheses will have to be evaluated owing to the
constant stack size. If we could only find a way of estimating the required stack size
at each time instance, the performance of the method would markedly improve.

One possibility might be to combine multi-stack decoding with a Viterbi beam
search. At each time point we keep the n best-scoring hypotheses, and discard those
which are not close to the peak (thus the cost will be higher than the best cost plus
the beam width). Here the beam width can also be determined empirically.

One surprising thing is that when we determine the optimal parameters (stack
size and beam width) for the two methods (multi-stack and Viterbi beam), both
parameters can be used together, thus making the combined search method work
faster than either of them separately. We found that this worked for both test sets.

Yet another approach for improving the multi-stack method is that we can
predict, at a given time instance, what stack size should be sufficient. We devised
two improved methods based on this.

We trained an ANN to predict whether, at a given time instance, a bound
between phonemes exists or not. Then, at each time instance, this ANN returns a

Various Robust Search Methods in a Hungarian Speech Recognition System 235

Figure 1: Bound probability - stack size diagram with the best fitting curve

probability p for this. In the first improvement we compare this p to a parameter
I: if p < I, we use a smaller-sized stack (c m j „) , and a bigger (cmax) one otherwise.

We could also improve the model by fine-tuning it. To find a function that ap-
proximates the necessary stack size based on the output p of the ANN, we conducted
an experiment. We recognized a set of test words using a standard multi-stack de-
coding algorithm with a large stack size. Then we examined the path which led
to the winning hypothesis (or the first n hypotheses), and noted the required stack
size and the phoneme-bound probability p at each time instance. The points of
Figure 1 show the necessary stack sizes as a function of p.

For a phoneme-bound probability p (supplied by the ANN), we found that a
min(co + eCl P+C2 , C3) size stack was satisfactory. Obviously, the value for c% comes
from the test of multi-stack decoding, and the value for cq from an examination of
the.previous improvement (as Cmi„). After, for a given c\, C2 can be determined by
trial and error. The best fitting curve was plotted in Figure 1.

5 Experimental results

5.1 The testing sets
In trials we tested the above methods and their variations using varying parameters,
namely different dictionary sizes, words, and other parameters which are method
dependent (e.g. stack size in stack decoding). We also examined whether making
use of a voicedetect function (which seeks to remove long, silent parts of a voice

236 Gabor Gosztolya et a1.

signal) significantly improves the speed of recognition, thereby reducing the number
of neuron network calls.

For this reason we created two test groups. Test set I contained only the basic
elements of Hungarian numbers from six speakers. Each uttered the 26 elements
twice, giving a total of 312 occurrences, while test set II contained numbers under
100 (169 test cases in all).

5.2 Results
Two things were important in the comparison. First, we had to see how good the
method was in scoring correct hits. Second, the number of phoneme-classifying
ANN calls made in this task. Actually, the key quantity here for evaluating a
method's performance is the lowest number of ANN calls when its performance is
maximal.

As the entire hypothesis space is enormous (> 107 for an average utterance) our
goal is to drastically reduce it. The methods tested here require different types of
parameters for optimal performance, hence they have to be listed individually.

5.3 Results of using the standard algorithms
The results of each method employed in trials are listed below.

5.3.1 Stack decoding

This method performed surprisingly well on the first test set. Extending the best-
scoring of all hypotheses can be regarded as a heuristic, which performs very well
with a short utterance, but on longer words it proved unsatisfactory. On the second
set (whose elements were much closer to real-life examples) it yielded the worst

hits ANN calls hits ANN calls
(312) on set I (169) on set II

5000 304 1,124,024 141 27,353,614
1000 304 1,124,024 139 10,278,189
500 304 735,135 137 6,798,157
250 303 661,214 136 4,135,990
100 295 562,460 136 2,039,124
50 279 500,748 127 1,148,680
25 260 354,077 124 670,369
10 210 225,152 80 281,704

Table 1: Stack decoding algorithm. The first column indicates the stack size; the
best result (the one with the required accuracy and minimum ANN calls) is in
bold.

Various Robust Search Methods in a Hungarian Speech Recognition System 237

results of all. Overall, this methods works well with short speech utterances but
not with long ones. The results can be seen in Table 1.

5.3.2 Multi-stack decoding

The multi-stack decoding method seems most promising. Although it did not
perform outstandingly well, it produced fair results and, unlike the other methods
mentioned here (with the exception of the flexible A* algorithm) there is significant
room for improvement. The main drawback of this method is the fixed stack size.
Only in some cases is there a need for a maximum stack size, but here it is applied
to all stacks. If we could somehow determine the stack size for each case, the
performance of this method would be greatly improved. There results are shown
on Table 2.

hits ANN calls hits ANN calls
(312) on set I (169) on set II

100 304 8,808,675 141 7,503,876
50 304 4,421,691 141 3,719,326
25 304 2,173,794 140 1,822,171
20 304 1,732,549 138 1,449,417
15 299 1,292,938 137 1,080,198
10 295 842,595 132 707,777
5 280 416,284 119 348,066
2 240 190,994 90 155,698
1 213 119,576 59 95,938

Table 2: Multi-stack decoding algorithm. Here the parameter shown is the stack
size.

5.3.3 Viterbi beam search

Of all the standard algorithms this method worked the best. On the first test set its
performance ranked behind that of the stack decoding method, but on the second,
more important set it performed very well, producing the lowest run times of the
four standard methods. (See Table 3.)

5.4 Results of improvements
Combining standard algorithms

Among the former algorithms only the Viterbi beam and multi-stack decoding
methods could be combined (the stack decoding and multi-stack decoding methods
are basically different, and the A* algorithm is already an improved version of the
stack decoding method). Combining the first two methods led to a more efficient

238 Gabor Gosztolya et a1.

hits ANN calls hits ANN calls
(312) on set I (169) on set II

25.0 304 2,032,830 141 2,806,010
20.0 304 1,223,316 139 1,394,292
19.0 304 1,098,123 138 1,211,195
18.0 303 983,711 138 1,048,396
17.0 301 884,876 137 912,880
16.0 300 790,772 135 795,547
15.0 297 704,808 134 692,303
10.0 286 380,425 128 341,587
5.0 264 201,408 98 168,941
1.0 229 131,175 71 105,807

Table 3: Viterbi beam search algorithm. Here the parameter shown is the beam
width.

algorithm. This idea was included in the other improvements too. Henceforth,
when we talk about improving the multi-stack decoding method, we will assume
that a Viterbi beam pruning has also been applied.

Phoneme-bound detection

In order to evaluate the probability of a bound we used an ANN, which classified
a bound to 80% accuracy. In the first version it achieved its goal. Acting on the
first testing set the results approached those of the stack decoding results, and it
performed better than the standard algorithms (see Table 4). However, on the

Stmax 0.50 0.55 0.60 0.65 0.70 0.75 0.80
25 304

933,993
304

926,151
304

918,376
304

912,275
304

886,313
299

788,429
292

672,395
20 304

882,358
304

875,252
304

868,634
304

862,734
304

839,789
299

752,371
292

645,656
15 299

788,599
299

782,810
299

777,810
299

772,591
299

750,078
294

684,313
288

594,605
10 293

632,134
293

628,904
293

626,278
293

622,681
293

610,825
288

566,334
282

504,831

Table 4: Results using the multi-stack decoding method with the first improvement
on test set I.

second set a slighter poorer result was obtained. Surprisingly, this method did
slightly worse than the multi-stack decoding method with Viterbi pruning.

In the second version the ex smoothing technique, however, worked very well.

Various Robust Search Methods in a Hungarian Speech Recognition System 239

Set I Set II
Stack decoding 735,135 2,039,124
A* heuristic 2,276,965 9,384,119
Multi-stack decoding 1,732,549 707,777
Viterbi beam search 1,098,123 692,303
Multi-stack decoding combined with Viterbi 922,434 474,188
Multi-stack decoding with stack size reduction I 839,789 462,363
Multi-stack decoding with stack size reduction II 749,228 427,212

Table 5: Summary of the best performances of all the methods used

On the first test set it produced almost as good a result as the stack decoding
algorithm, and on the second it had the smallest run time. We can say that
this novel method is definitely better than the standard algorithms. (Overall, the
formula min(3 4- e45 0 p + 3 2 -3 ,20) produced the best results.)

The best results of all methods can be seen on Table 5.

6 Conclusion

In this paper our goal was to study the search problem of speech recognition tasks,
compare the standard algorithms and look for ways of improving them. Exam-
ining the test results, it is clear that we can indeed marry standard algorithms
without loss of accuracy, and with a marked improvement in performance. The
novel method presented here proved to be more efficient, and matched or outdid
the performance of the others.

Hopefully it could be further refined by using automatic parameter determina-
tion or changing the exponential model function to some other. This will be the
subject of future work.

References

[1] L .R . BAHL, P .S . GOPALAKRISHNAN, R.L. MERCER, Search issues in large
vocabulary speech recognition, Proceedings of the 1993 IEEE Workshop on Au-
tomatic Speech Recognition, Snowbird, UT, 1993.

[2] L .R . BAHL, F. JELINEK AND R. MERCER, A Maximum Likelihood Approach
to Continuous Speech Recognition, IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 179-190, 1983(2)

[3] C .M. BISHOP, Neural Networks for Pattern Recognition, Clarendon Press,
Oxford, 1995.

240 Gabor Gosztolya et a1.

[4] P . E . HART, N.J . NILSSON AND B. RAPHAEL, A Formal Basis for the Heuristic
Determination of Minimum Cost Paths, IEEE Transactions on Systems Science
and Cybernetics, pp. 100-107, 1968, 4(2)

[5] P . E . HART, N.J . NILSSON AND B. RAPHAEL, Correction to "A Formal Basis
for the Heuristic Determination of Minimum Cost Paths", SIGART Newsletter,
No. 37, pp. 28-29, 1972.

[6] F. JELINEK, Statistical Methods for Speech Recognition, The MIT Press, 1997.

[7] A . KOCSOR, L. TOTH AND A . KUBA JR., An Overview of the Oasis Speech
Recognition Project, Proceedings of ICAI '99, pp. 95-102, Eger-Noszvaj, Hungary,
1999.

[8] L. TOTH, A . KOCSOR AND K. KOVACS, A Discriminative Segmental Speech
Model and its Application to Hungarian Number Recognition, P. Sojka, I
kopecek, K. Pala (eds.): TSD'2000, LNAI1902, pp. 307-313, 2000.

