
Acta Cybernetica 16 (2003) 241-258.

Implementing Global Constraints as
Graphs of Elementary Constraints*

Dávid Hanák*

Abstract

Global constraints axe cardinal concepts of CLP (FD), a constraint pro-
gramming language. They axe means to find a set of integers that satisfy
certain relations. The fact that defining globed constraints often requires the
knowledge of a specification language makes sharing constraints between sci-
entists and programmers difficult. Nicolas Beldiceanu presented a theory that
could solve this problem, because it depicts global constraints as graphs: an
abstraction that everyone understands.

The abstract description language defined by the theory may also be in-
terpreted by a computer program. This paper deals with the problematic
issues of putting the theory into practice by implementing such a program.
It introduces a concrete syntax of the language and presents three programs
understanding that syntax. These case studies represent two different ap-
proaches of propagation. One of these offers exhausting pruning with poor
efficiency, the other, yet unfinished attempt provides a better alternative at
the cost of being a lot more complicated.

1 Introduction
Constraint Logic Programming (CLP, also referred to as Constraint Programming,
CP) [4] is a family of logic programming languages, where a problem is defined
in terms of correlations between unknown values, and a solution is a set of values
which satisfy the correlations. In other words, the correlations constrain the set
of acceptable values, hence the name. A member of this family is C L P ^ D) , a
constraint language which operates on variables of integer values. Like CLP(X)
solvers in general, CLP(^ r P) solvers are embedded either into standalone platforms
such as the ILOG OPL Studio [9] or host languages, such as C [3], Java [5], Oz [6]
or Prolog [8, 2].

In CLP(^"P) , FD stands for finite domain, because each variable has a finite set
of integer values which it can take. These variables are connected by the constraints,

"The results reported in this paper were presented at the CS 2 conference held at Szeged, July
1-4 . 2002.

^Budapest University of Technology and Economics, Dept. of Computer Science and Informa-
tion Theory, e-mail: dhanak9cs.bme.hu

241

242 Dávid HanáJc

which propagate the change of the domain of one variable to the domains of others.
A constraint can be thought of as a "daemon" which wakes up when the domain
of one (or more) of its variables has changed, propagates the change and then
falls asleep again. This change can be induced either by an other constraint or by
the distribution or labeling process, which enumerates the solutions by successively
substituting every possible value into the variables. Constraints can be divided into
two groups: simple and global constraints. The former always operate on a fixed
number of arguments (like X = Y), while the latter are more generic and caii work
with a variable number of arguments (e.g., "Xi, X2,.. •, Xn are all different").

Many solvers allow the users to implement user-defined constraints. However,
the specification languages vary. In some cases, a specific syntax is defined for
this purpose, in others, the host language is used. There are several problems
with this. First, GW(J-T>) programmers using different systems could have serious
difficulties sharing such constraints because of the lack of a common description
language. Second, to define constraints, one usually has to know the solver in
greater detail than if merely using the predefined ones. Inspired by these problems,
Nicolas Beldiceanu suggested a new method for defining and describing global finite
domain constraints [1]. After studying his theory, I decided to put it into practice
by implementing a parser of Beldiceanu's abstract description language (ADL), as
an extension to the CLP(TT>) library of SICStus Prolog [7, Section CLPFD], a full
implementation of the CLP (TV) language.

The paper is structured as follows. , Section 2 introduces the theory of
Beldiceanu, explains how constraints may be represented by graphs and describes
the ADL in some detail. Section 3 specifies the concrete syntax of the language
used by the implementation, Section 4 presents the implemented programs capable
of understanding such a description. Section 5 gives some ideas about the possible
directions of future research and development, and finally Section 6 concludes the
paper.

2 The Theory
In [1], Beldiceanu specifies a description language which enables mathematicians,
computer scientists and programmers of different CLP systems to share information
on global constraints in a way that all of them understand. It also helps to classify
global constraints, and as a most important feature, it enables us to write programs
which, given only this abstract description, can automatically generate parsers, type
checkers and propagators (pruners) for specific global constraints.

Beldiceanu has also defined a large number of constraints in the ADL. Most of
them are already known, but the slight modification of existing descriptions has
resulted in several new constraints. The potential of these modifications arose only
with the use of this schema.

Section 2.1 introduces the essential concepts of Beldiceanu's theory, Section 2.2
presents the most important features of the ADL, finally Section 2.3 illustrates the
usage through the simple example of the widely used element constraint.

Implementing Global Constraints as Graphs of Elementary Constraints. 243

2.1 Representing Constraints as Graphs
In order to create an inter-paradigm platform, Beldiceanu reached for a device that
is abstract enough and capable of depicting relations between members of a set: the
directed graph. Before we can show how graphs can represent global constraints,
three concepts have to be introduced:

1. The initial graph is a regularly structured graph, which is characteristic of
the constraint and the number of arguments1, but is independent from the
specific values of the arguments.

2. The elementary constraint is a very simple constraint with few arguments,
such as X = Y.

3. The graph properties are restrictions on the number of arcs, sources, connected
components, etc.

The description of a constraint specifies how the initial graph should be built. Its
vertices are assigned one or more variables from the constraint, while the arcs con-
necting the vertices are generated according to a regular pattern. Finally the chosen
elementary constraint is assigned to each arc. The variable belonging to the start
point of the arc will become the first argument of the elementary constraint, while
the variable assigned to the endpoint will become the second argument. Note that
in general, the elementary constraint need not be binary, if it has more arguments,
then a hypergraph is built using arcs with the required number of endpoints.

Every distinct instantiation of the constraint arguments results in a separate
instance of the constraint. For every such instance, a different final graph is derived
from the common initial graph by keeping those arcs for which the elementary
constraint holds. If a vertex is left without connecting arcs, the vertex itself is
also removed. The global constraint succeeds if and only if the specified graph
properties hold for this final graph.

The graph of a simplified variant of the element constraint can be seen in
Figure 1. This constraint serves as an example throughout this paper, and it is
explained in detail in Section 2.3. For now, it is enough to know that it succeeds
if its first argument, a single variable (denoted by A in the figure), is equal to a
member of its second argument, a list of values (denoted by B, C, D and E). The
required graph property is that the number of arcs should be exactly one.

2.2 The Abstract Description Language (ADL)
The most important feature of the ADL is the ability to describe how the initial
graph has to be generated, what is the elementary constraint to be assigned to the
arcs, and what graph properties must hold for the final graph.

Beside these, the ADL gives means' to limit the set of values to be accepted in
the constraint arguments, too. We have to specify the type of each argument, and

' A s already mentioned, global constraints may (and usually do) have variable number of ar-
guments.

244 Dávid HanáJc

(a) Initial graph (b) An instance of (a) (c) Final graph

Figure 1: The graph of the simplified element constraint

we may also pose further restrictions on the values. Any concrete application of
the constraint that violates these preconditions will be considered as erroneous.

The syntactic order of these language elements in a concrete definition reflects
the order in which they are interpreted: the type and value restrictions are fol-
lowed by the graph generation parameters, finally the required graph properties
are specified. The following paragraphs discuss the language features in the very
same order.

2.2.1 Argument type restrictions.

According to the schema of Beldiceanu, all arguments of the global constraint must
be typed. There are three simple data types and a compound type, which are
widely used. An argument of type

int is a constant integer;
atom is a character sequence (just like a Prolog atom);
dvar is a domain variable (which could also be a constant as a special case);
c o l l e c t ion (A fctri-Typei, Att^-Type?, . . .) is an ordered list of items, each

item being a set of labeled attributes, where the attribute associated with
the label Attri (if any) has type Typei, for each i. This type specification
does not require the items of such a collection to have all the attributes
specified and also allows them to have additional attributes. It only requires
the values of the given attributes to have the right type. An example
collection and its type specification (taken from [1]) is shown in Figure 2.

There are other compound data types, too, like l i s t or term, which are rarely
used in the numerous existing constraint descriptions.

2.2.2 Argument value restrictions.

In addition to type restrictions it is also possible to specify preconditions on the
values of the arguments. These conditions can be expressed with the following
formulae:

Name Relop Expression means Name must be in relation Relop with Expres-
sion. Here Name is the name of either an argument or an attribute of a col-
lection, in the form Coll.Attr, Coll being the collection. Relop is a relational

Implementing Global Constraints as Graphs of Elementary Constraints. 245

The type RECTANGLES corresponds to a collection of rectangles, each
rectangle being defined in both dimensions by its origin and either
its size or its end. The following is the type definition of RECTANGLES
and a sample instance of it, that contains two rectangles, one given
with its size, the other with its endpoint. (The attributes of each
rectangle are separated by spaces, the two rectangles are separated
by a comma.)

RECTANGLES: collection(oril-dvar, sizl-dvar, endl-dvar,

ori2-dvar, siz2-dvar, end2-dvar)

RECTANGLES = { oril-5 sizl-20 ori2-5 siz2-10,

oril-25 endl-45 ori2-15 end2-25 >

2nd

ŝt

Figure 2: An example collection

operator, like -fc or >. Expression is an arbitrary expression consisting of con-
stants, other names and mathematical operators.

Name in {List} means Name (same as before) must appear in List, a list of
comma separated constants.

d is t inct (Col l/At tr) means that for any two items in the collection Coll the
values of attribute Attr must be different.

required(CoiJ. Attr) means that all items in collection Coll must have attribute
Attr specified.

There are several other value restricting statements, but those are seldom used.

2.2.3 Graph generation parameters.

The initial graph generation consists of three phases. In the first phase the vertices
are created, in the second phase they are connected by arcs, and in the third phase,
the specified elementary constraint is assigned to each arc.

In the most common case, one has to specify a single input collection to create
the vertices: to each element of this collection a vertex is assigned. The collection
may either be a constraint argument or it can be built for this purpose. The
vertices thus created provide the input of the arc generator, which manages the
second phase. Each generator incorporates a regular pattern, which is reflected in

246 Dávid HanáJc

the created set of arcs. The arity of the arcs is characteristic of the generator, and
it must also match the arity of the specified elementary constraint.

In general, the arc generator may require the vertices to be divided into disjoint
subsets. In that case, not one but several input collections must be specified, each
of these is mapped to a separate subset of vertices. Currently, most existing arc
generators need a single set of vertices (i.e., one collection) as an input, and there
are two of them expecting two.

Figure 3 shows four example arc generators. All of these generators create
binary arcs, which means that they can be used with binary elementary constraints
only. (This is the most common case.) The loop generator connects each vertex
to itself. The path generator exploits that the collections are ordered lists, and
connects the first vertex to the second, the second to the third, and so on. The
c l ique generator connects all vertices to all others by default, but it can have a
relational operator as an argument, in which case it only connects vertices with
indices which sustain the relation. Such a case is shown in the figure. The product
generator gets two sets as an input, and connects all the vertices in the first set to
all the vertices in the second set. This generator can also have a relational operator
as an argument.

The elementary constraint, the third ingredient of the graph generation, is ba-
sically a mathematical relation containing symbolic references to values assigned to
the vertices (i.e., the endpoints of the arcs).

A constraint definition contains three terms to specify the graph to be generated.
We have to determine the input collection(s), select the arc generator by its name,
and define the elementary constraint assigned to the arcs.

2.2.4 Graph property requirements.

These statements also have the form of an equation, with a graph property name
on the left hand side, constants and arguments of the global constraint on the right.
Let us see several graph properties:

nvertex is the number of vertices;2

narc is the number of arcs;
ncc is the number of connected components;
nscc is the number of strongly connected components;

product

Figure 3: Arc generators

2This property is sensible to examine, because unconnected vertices are removed from the
graph, therefore it is not necessarily equal to the size of the input collection.

Implementing Global Constraints as Graphs of Elementary Constraints. 247

nsource is the number of sources (those vertices which do not have arcs leading
into them);

nsink is the number of sinks.

2.3 An Example - The element Constraint
The element constraint is one of the most common global constraints. It receives
a single item and a set of items as arguments and it succeeds iff the item is a
member of the set. In some implementations, both the item and the elements of
the set may be domain variables, but in the following interpretation the elements
of the set must be constants. The formal definition of element according to [1] is
shown in Figure 4, an instance of its graph with specific arguments was presented
in Figure 1. It can be explained as follows.

1. The element constraint has two arguments (line 1).

2. The first, called ITEM is a collection with two attributes, index and value,
both are domain variables (line 2). The second argument, called TABLE is also
a collection with two attributes, also called index and value, but these are
constants (line 3).

3. The following restrictions must hold:

• both attributes of both collections must be specified in all items (lines 4 -
5);

• there must be exactly one item in the ITEM collection (line 6);

• the indices in both collections must be between 1 and the size of TABLE
(lines 7-8);

• all indices in TABLE must be distinct (line 9).

4. The arc generator is product (line 11), which requires two collections as its
input, namely ITEM and TABLE (line 10).

5. The elementary constraint assigned to the arcs appears in lines 12-13. It is
to be read like this: the value assigned to the first endpoint of the arc ([1])
is a member of the ITEM collection, and its attributes labeled as index and
value must both be equal to the equivalent attributes of the value assigned
to the second endpoint ([2]) , which is a member of the TABLE collection. The
syntax looks a bit weird and perhaps even confusing. We will further discuss
this question in Section 3.1.

6. The number of arcs must be exactly 1 in the final graph (line 14).

248 Dávid HanáJc

1 Constraint :

2 Arguments:

element(ITEM,TABLE)

ITEM: collection(index-dvar, value-dvax)

TABLE: collection(index-int, value-int)

4 Restrictions: required([ITEM.index,ITEM.value]),

required([TABLE.index,TABLE.value]),

I ITEM| = 1 ,

ITEM.index > 1, ITEM.index < I TABLE I,

TABLE.index > 1, TABLE.index < I TABLE I

distinct(TABLE/index) .

io Arc input :

H Arc generator:

12 Arc constraint :

13

ITEM, TABLE

product

ITEM.index[1] = TABLE.index[2] A

ITEM.value[1] = TABLE.value[2]

i4 Graph property: narc = 1

Figure 4: The element constraint in abstract syntax

N o t e . It might seem strange to define ITEM as a collection when it must have
exactly one element (line 6). However, passing the index and value as two separate
arguments of the constraint would be less symmetric with respect to TABLE. Another
advantage is that ITEM, being a collection, can serve directly as an input for the
product arc generator.

3 The Concrete Syntax

In order to be able to put the theory into practice, we had to define a concrete
syntax of the language. The chosen representation closely resembles the abstract
syntax, but follows the syntax of Prolog, too. This has the advantage that it can
be effortlessly parsed by a Prolog program.

This work has helped to discover some weaknesses of the ADL. First, it turned
out that the semantics of the d i s t i n c t operator is unclear in certain contexts, be-
cause it is under-specified. Second, as it was already noted at the end of the previous
section, the syntax of the elementary constraint specification can be confusing.

Section 3.1 covers the two problematic issues and suggests a solution to both.
Section 3.2 discusses the concrete syntax itself, illustrated by the updated version
of the already familiar element example.

Implementing Global Constraints as Graphs of Elementary Constraints. 249

3.1 Clarifying the Language Specification
3.1.1 The problem of the distinct operator.

Let us consider the following type declaration of a collection of collections:

COLL: collection(c-collection(val-int))

Such a data structure can be used to model different data semantics. Two of these
are the following:

1. The inner collections depict sets, thus each of them must have distinct ele-
ments, but the same element can appear in more than one collection.

2. The inner collections represent partitions, i.e., pairwise disjoint subsets of a
single superset. In this case all elements of all the inner collections must be
pairwise different.

Since the used data structure is the same in both cases, the distinction must be made
using value restrictions, more specifically d i s t i n c t statements. Unfortunately, it
is clear that we cannot express both with the d i s t i n c t (COLL/c/val) statement.
Moreover, it is unclear which of the two semantics the statement expresses. The
inability to precisely determine the value sets d i s t i n c t operates upon leads us to
the definition of two concepts in the following paragraph.

3.1.2 Selectors and designators.

When we refer to attributes of items of collections, sometimes we want to reach sin-
gle values, in other cases we need the list of values of all items within the collection.
The required and d i s t i n c t operators are good examples of the two possibilities,
respectively.

Keeping the notation of [1], which uses the term designator to refer to a sequence
of names selected by slashes, let us introduce two new concepts, defined with BNF
notation as follows:

selector ::= Coll | selector . Attr

designator ::= selector | designator / Attr

Selectors can be used to point out single values. They can be used to state some-
thing about values of items of a collection separately. Designators, on the other
hand, point to a list of values. They can be used to state something about the
values in all the items of a collection together.

By starting a designator with a selector, we express that we want to divide the
list of all the values into sublists and state something about these sublists separately.
The division points are determined by the selector part of the designator. To clarify
this, Figure 5 shows a somewhat degenerated collection as a tree, along with two
designators and the corresponding sublists marked with ovals.

250 Dávid HanáJc

C: collection(a-collection(b-collection(c-int)))

C

O C.a.b/c

C D C.a/b/c

Figure 5: The meaning of designators

In certain contexts only selectors are accepted. Among others, such places are
where the dot notation was already used, such as the argument of required, or
TABLE. index > 1 in Figure 4. In the latter we want to express that all values
labeled as index must be greater than or equal to 1, separately.

Elsewhere designators are required. The argument of d i s t i n c t is such a place.
One would also use a designator to count those items of a collection which possess
a certain attribute. Then one needs to write iCOLL/attrl, because COLL/attr
brings all the items with a t t r attribute together into a list, and I . . . I returns the
length of this.

Now let us return to the problem of d i s t i n c t . In the example presented there,
the statement d i s t i n c t (COLL. c / v a l) means that for all c collections separately,
the val values must be distinct, but the same value can appear in more than one
collection (case 1). d i s t i n c t (COLL/c/val), on the other hand, means that the list
of all values in all collections must be distinct (case 2).

3.1.3 The elementary constraint notation.

As we have seen in Figure 4, ITEM. value [1] means the value of the value attribute
of the first argument which is the ITEM collection. Thus we can say that the general
form is something like Coll. Attr [Arglndex]. This is rather confusing and does not
resemble any of the notations we are used to:

• the specification of ITEM is redundant, because it is well known from the
graph structure that the first argument of the elementary constraint must be
an item of that collection;

• the position of the index 1 between the brackets is misleading because this
notation suggests some kind of array indexing, which is not the case.

Implementing Global Constraints as Graphs of Elementary Constraints. 251

We would be better off with a notation like Args [1] .value (where Args would be
an array of all arguments of the elementary constraint) or Argl .value. As we will
see, the concrete syntax uses a very similar notation.

3.2 The Prolog-like Concrete Syntax
As stated in the introduction of Section 3, the chosen representation, while closely
resembling the abstract syntax, follows the syntax of Prolog. Hence, each global
constraint is described by a Prolog clause with seven arguments, as shown in Fig-
ure 6 for the element constraint. These arguments axe the following:

1. the name and arguments of the global constraint (as a Prolog term);

2. the list of type restrictions of the form Arg-Type where Arg is the name of
the argument and Type is the type specification;

3. the list of value restrictions in a form very similar to the abstract syntax, with
the exception of I COLL I which should be written as size (COLL), and all the
relational operators must be written in Prolog notation;

4. the arc generator input (a list of collections);

5. the name of the arc generator;

6. the elementary constraint in the form Args => Body, where Args is a collec-
tion of the arguments of the elementary constraint and Body is the constraint
itself (#= and #/\ are operators of the host language, basically they mean =
and A, respectively);

7. the list of graph properties.

Inline collections have a somewhat different syntax than the one in Figure 2. They
can be written as follows (note the difference in the use of commas and semicolons):

• a collection has the form { Itemx ; Item2 ; ... };

• each Itemi above has the form Attri -Vah , Attr2-Vak , . . . where Attri
is an attribute name and Vak is a value.

The lines of Figure 6 correspond respectively to the lines of Figure 4, and the
definition as a whole should be self-explanatory. However, two things are worth
mentioning.

One is that we have chosen to represent the arguments of the elementary con-
straint as items of a collection. In the body, we need to refer to these items and
their attributes. The collection can be broken up into separate items simply by
writing a pattern. But to access the attributes of these items, we must call for a
trick: by wrapping A in braces, we create a collection with a single item, therefore
{A} . index will expand to the index of this single element.

252 Dávid HanáJc

i graphfd:global(element(Item, Table),

2 [Item-collection(index-dvar, value-dvar),

3 Table-collection(index-int, value-int)],

4 [required(Item.index), required(Item.value),

5 required(Table.index), required(Table.value),

e size(Item) =:= 1,

7 Item.index >= 1, Item.index =< size(Table),

s Table.index >= 1, Table.index =< size(Table),

9 distinct(Table/index)],

10 [Item, Table].,

n product,

12 {A;B} => {A}.index #= {B>.index #/\

13 -[A}-.value #= {B}.value,

14 narc = 1) .

Figure 6: The element constraint in concrete syntax

The other point to note that the relational operator #= comes from the SICS-
tus CLP (TV) library, therefore, after expanding the selectors, the statement will
become a valid CHP(J-V) expression. The advantages of this will be discussed in
Section 4.2.

4 The Implementation
The schema created by Beldiceanu allows us to test whether the relation expressed
by a global constraint holds for a given set of concrete arguments. However, it does
not deal with the more important case where only the domains of the arguments
are specified, but their specific values are unknown. In such a case we need an
algorithm to prune the domains of the arguments by deleting those values that
would certainly result in a final graph not satisfying the properties. This question
is fundamental in' practical applications, therefore it is addressed by this section.

Development was launched with two goals in mind. The first task was to imple-
ment a relation checker, a realization of the testing feature offered by the schema,
and a dumb propagator built on this checker. By and large, this task is finished,
the results are presented by Section 4.1.

The second task was to implement a direct propagator capable of pruning vari-
able domains based on an analysis of the current state of the graph, with the

Implementing Global Constraints as Graphs of Elementary Constraints. 253

required properties in view. This task is much bigger, the development is still in
an early stage. Its current state and features are introduced by Section 4.2.

Both tasks are implemented in SICStus Prolog [7], extending its CLP {TV) li-
brary by utilizing the interface for defining global constraints. This allows thorough
testing of both the program and the theory itself in a trusted environment.

4.1 The Complex Relation Checker and the Generate-and-
Test Propagator

The first stage was to implement the complex relation checker, a program that
checks whether the relation defined by the global constraint holds for a given set
of values, but does no pruning at all. It includes the following features:

• complete type checking (dvar is interpreted as int) ;

• full support of selectors and designators introduced in Section 3.1;

• support for value restriction with the most frequent statements:

— distinct and required; plus

— arbitrary Prolog calls which must succeed for the restriction to hold;

— s i z e (. . .) is replaced by the length of a collection or list.

• full set of built-in arc generators;

• extensive set of supported graph properties.

When called, the relation checker is given a constraint with fully specified argu-
ments, and reports the result of the type check, the restriction check, and whether
the graph properties hold for the final graph. The output of two example runs can
be seen in Figure 7. In the first case, the first argument appears in the collection
passed in the second argument, while in the second case it does not.

The checker was used to test the formal description of several constraints,
whether they really conform to their expected meaning, and some errors in their
specification have already been discovered (these will not be discussed here).

The second stage was to amend the relation checker with a generate-and-test prop-
agator. The idea is that whenever the domain of a variable changes, all possible
value combinations of the affected constraint's arguments are tested with the rela-
tion checker, and only the values that passed the test are preserved. This classical
but extremely inefficient method for finding solutions gives us full and exhaustive
pruning.

The usage and output of the generate-and-test propagator is the same as that
of the direct propagator, which is introduced in the next section (see Figure 8).

254 Dávid HanáJc

Testing element({index-2,value-3}, {index-1.value-1 ; index-2,value-3}).

Type checking passed.

Type restrictions held.

Graph properties held.

Relation is sustained.

Testing element({index-2,value-l}, {index-1,value-1 ; index-2,value-3}).

Type checking passed.

Type restrictions held.

Graph properties failed.

Relation is not sustained.

Figure 7: Output of the complex relation checker

4.2 The Direct Propagator
Generate-and-test propagation is naturally out of the question in any practical
applications. The direct propagator is the first step towards an efficient, applicable
pruner. Here the line of thought is reversed: we assume that the constraint holds,
and from the required graph properties we try to deduce conclusions regarding the
domains of its variables.

4.2.1 Propagation in theory.

The question that naturally arises is the following: how the changes of domains can
be propagated given a graph representation of the constraint. As mentioned in the
Introduction, constraints behave like daemons which wake up when the domain of
the affected variables change. The propagator - using the programming interface
of CLP (TV) - can be set up so that it is notified whenever a constraint wakes up.
On these occasions it must check the graph corresponding to the constraint and
classify its arcs into three groups:

1. arcs with the assigned elementary constraint being known to hold - i.e., they
will appear in the final graph;

2. arcs with the assigned elementary constraint being known to fail - i.e., they
will be left out of the final graph;

3. arcs with the assigned elementary constraint being yet uncertain.

This classification can be completed gradually because the CLP (TV) system is
monotonic, which means that values can only be removed from a domain. As a
result, a value is removed only if it is definitely not a solution, because it cannot
be re-added later.

Implementing Global Constraints as Graphs of Elementary Constraints. 255

To propagate the constraint, we have to look at this semi-determined graph
and the required graph property together, and try to tell something about the still
uncertain arcs. This process is called the tightening of the graph. In order to
ensure that the graph properties hold, some of the uncertain arcs must be removed
from the final graph, others must be made part of it. This causes the corresponding
elementary constraints to be forced into success or failure, thus pruning the domains
of the variables. The global constraint finally becomes entailed when there are no
uncertain arcs left.

Because of the character of this propagation algorithm, elementary constraints
are chosen to be reifiable CLP (TV) constraints, as shown in Figure 6. Reifiable
constraints are connected with a Boole variable, and succeed if and only if the
Boole variable has a value of 1. This use of reifiable constraints has several ad-
vantages. For one, a wide range of predefined constraints is available, already at
this early stage of development. For another, the algorithm must be able to de-
termine whether an elementary constraint holds or fails, or force it into success or
failure, and the Boole variable linked to the reifiable constraints serves exactly that
purpose.

To figure out how to tighten the graph at each step, that is, to find the rules
of pruning, we need to study each graph property separately. There are simpler
properties, such as prescribing the number of arcs, for which finding these rules
is not very problematic (see below). A few of these are already handled by the
propagator. The are more complex properties, like constraining the difference in
the vertex number of the biggest and smallest strongly connected components, the
pruning rules for these are a lot more complicated.

4.2.2 Propagation of the narc = N property.

Let us assume that the required graph property is narc = N, where N is a positive
integer. Let S be the set of arcs which are known to be part of the final graph, and
let U denote the set of the still uncertain arcs. Then we have to take the following
action:

• if |5| > N, fail, because there are already to many arcs;

• if |S| = N, force every arc in U to failure;

• if |S| + |t/| < N, fail, because N cannot be reached any more;

• if |S| + |£/| = TV, force every arc in U to success;

• otherwise do nothing.

4.2.3 Example run.

Running the direct propagator on the element constraint is possible because it uses
exactly this graph property. An example run can be seen in Figure 8. The first call
determines that the A-B element must appear in the list, arid we get that A must
be between 1 and 3, while B must be either 2, 6 or 9. The second call we also ask

256 Dávid HanáJc

the CLP (TV) environment to enumerate ail solutions by labeling the variable A,
and, as we could expect, we get the three correct solutions.

I ?- graph_global(element({index-A,value-B},

{index-1,value-6 ; index-2,value-2 ; index-3,value-2})).

A in 1..3, B in{2}\/{6} ? ;

no

I ?- graph_global(element({index-A,value-B},

{index-1,value-6 ; index-2,value-2 ; index-3,value-2})),

label ing ([], [A]).

A = 1, B = 6 ? ;

A = 2, B = 2 ? ;

A = 3, B = 2 ? ;

no

Figure 8: Running the direct propagator

The current implementation can handle four graph properties, these are narc,
nvertex, nsource and nsink. Fortunately, a large number of descriptions re-
lies only on the first two, thus many different constraints can already be propa-
gated. Without going into details, such constraints are among, d i s j o i n t , common,
sliding_sum, change, smooth, inverse, and variants of these.

Current work is concentrated on the perfection of the propagation of these prop-
erties, and on the study of the nscc (number of strongly connected components)
and related properties, which are also heavily used in the existing descriptions. The
rest of the properties are only required by a minority of the constraints.

This propagator, although still not efficient enough to be useful in. practical
applications, may serve as a prototype for more effective implementations. A few
thoughts on this issue are shared in the next section.

5 Future Work
Pruning rules for more of the graph properties are to be worked out. The existing
rules also need to be improved in certain cases. This will be the objective of an
international project hopefully starting in Autumn 2003.

Using reifiable constraints as elementary constraints poses a problem: they do
not necessarily provide a pruning as strong as expectable. Such a case can be seen
on Figure 9. What we see here, is that 1 is not excluded from the domain of A,
although it could be. The problem is that forcing the and-ed elementary constraint
of element (Figure 6, lines 12-13) into failure is not enough to do that. We would
get better pruning if we could write something like:

Implementing Global Constraints as Graphs of Elementary Constraints. 257

arc exists <i=>- indices are equal
arc exists => values are equal

But implication does not conform with the concept of elementary constraints. This
problem requires further study.

I ?- graph_global(element({index-A,value-B},

{index-1,value-6 ; index-2,value-2 ; index-3,value-2})),

B #= 2.

B = 2,

A in 1..3 ?

Figure 9: Weak propagation of reifiable constraints

Efficiency matters need to be considered more carefully when implementing
further propagators. One way to increase efficiency, as suggested by Beldiceanu,
could be to abandon the thought of a common propagator, that is able to parse such
descriptions and prune in run time, and implement a pruner algorithm generator
instead. This generator would take the description and convert it into a piece of
code that does the pruning. This would shift the execution of complicated graph
algorithms into compile time, where efficiency is a smaller issue. How this can be
done must be worked out yet.

6 Conclusions
The paper began with the introduction of a theory first described in [1] that en-
ables us to represent global constraints as regular graphs of the same elementary
constraint. It was shown how the definition of a global constraint looks like, what
restrictions and requirements may appear in it, and how the representative graph
is built by it.

Then the concrete syntax of the language developed for the implementation was
presented. First, attention was drawn to two problems with the ADL specification,
and solutions to them were suggested, too. Second, the concrete syntax itself was
illustrated.

The last part of the paper described the results on constraint checking and
propagation. The first of these was the complex relation checker capable of testing
whether a constraint holds for a given set of values. The second, based on this, was
the generate-and-test propagator, which implements exhaustive propagation for a
large number of graph properties, but with very low efficiency. The result of the
third, more interesting approach was the direct propagator, which was considered
as a step towards efficient algorithms of constraint pruning. This deals with semi-
determined constraint graphs and the enforcement of uncertain arcs in order to
satisfy the required graph properties.

258 Dávid HanáJc

Acknowledgements
I would like to thank Nicolas Beldiceanu for his theory and his ideas on the propaga-
tion of graph properties. Péter Szeredi, my supervisor always directed my attempts
at research and writing with patience yet with great tenacity. Thanks are also due
to the anonymous reviewer whose remarks led to major improvements in the paper.

References
[1] Nicolas Beldiceanu. Global constraints as graph properties on a structured

network of elementary constraints of the same type. In Principles and, Practice
of Constraint Programming, pages 52-66, 2000.

[2] Daniel Diaz and Philippe Codognet. A minimal extension of the WAM for
clp(FD). In David S. Warren, editor, Proceedings of the Tenth International
Conference on Logic Programming, pages 774-790, Budapest, Hungary, 1993.
The MIT Press.

[3] ILOG. ILOG Solver 5.1 User's Manual. ILOG s.a. http : / /www.i log .com,
2001.

[4] Joxan Jaffar and Spiro Michaylov. Methodology and implementation of a CLP
system. In Jean-Louis Lassez, editor, Logic Programming: Proceedings of the
4th International Conference, pages 196-218, Melbourne, May 1987. MIT Press.
Revised version of Monash University technical report number 86/75, November
1986.

[5] Vincenzo Loia and Michel Quaggetto. Embed finite domain constraint pro-
gramming into Java and some Web-based applications. Software— Practice
and Experience, 29(4):311-339, April 1999.

[6] Gert Smolka. Constraints in OZ. ACM Computing Surveys, 28(4es):75, Decem-
ber 1996.

[7] Swedish Institute of Computer Science, Uppsala, Sweden. SICStus Prolog User's
Manual, 2003. http://www.sics.se/isl/sicstuswww/site/documentation.html.

[8] Pascal van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, Massachusetts, 1989.

[9] Pascal van Hentenryck, Laurent Michela, Laurent Perron, and Jean-Charles Ré-
gin. Constraint programming in OPL. In Gopalan Nadathur, editor, Proceed-
ings of the International Conference on Principles and Practice of Declarative
Programming (PPDP'99), volume 1702 of Lecture Notes in Computer Science,
pages 98-116, September 29 - October 1 1999.

http://www.ilog.com
http://www.sics.se/isl/sicstuswww/site/documentation.html

