
Acta Cybernetica 16 (2003) 259-270.

On Implementing Relational Databases
on DNA Strands

István Katsányi*

Abstract

This work describes the theoretical bases of the implementation of rela-
tional databases in test tubes, using an abstract model of molecular comput-
ing. It specifies the representation of relations and the execution program
of the relational algebra (RA) operations. We investigate the possibilities of
practical usage of the proposed model as well as the bounds of it.

K e y words: Molecular computing, theory of computing, relational database.

1 Introduction
In the last decade molecular biology has become the fastest growing discipline in
the world. Some of the results are widely known, let us only mention the major
breakthroughs in the Human Genome Project and nanotechnology. The progress
made possible the birth of a new branch of science, that is called molecular com-
puting (or DNA computing). Leonard M. Adleman published a paper [1] in 1994,
which later become the foundation-stone of this new subject. In his article Adleman
demonstrates how can a classic NP-complete problem: the problem of searching
for a Hamiltonian path in a directed graph can be solved in polynomial time us-
ing the techniques of molecular biology and DNA strands. He outlines the great
opportunity laying in the large computing power and the extremely compact data
storage. In a test tube there can be performed as much as 1016 operations in a
second. That is much more than current supercomputers can execute. In a litre
of water DNA strands can encode 108 terabytes, and we can perform associative
searches on the data in constant time.

In the past years many papers dealing with the computing power of DNA were
published. However, only a few article studied the possibility of data storage and
processing (see e.g. [2], [3]). Recently two papers ([4], [5]) described methods that
yielded in an operation that closely resembles to the join operation of relational
algebra. In spite of this no one has extensively studied the potentialities of the

*Eötvös Loránd University, Department of General Computer Science, 1117 Budapest,
Pázmány Péter sétány 1 /C , e-mail: kacsaSludens.elte.hu

259

260 István Katsányi

usage of molecular computing in the field of RA. By this work we would like to show
the (at least theoretical) possibility of the use of the results of molecular computing
in this area. In the Preliminaries section we introduce John Reif's RDNA model of
biomolecular computing. We define a possible representation of relations using that
model in the Representation section, and show how to implement the RA operations
in this model in the Operations section. We close the paper by conclusions and
references.

2 Preliminaries
As common in formal language theory, we denote the free monoid generated by a
finite set X by X*. We call X as alphabet, elements of X as letters, and elements of
X* as words. The symbol e means the empty word. The length of a word u £ X*
will be denoted by |u|. The cardinality of a set S will also be denoted by |S|.

We describe briefly the RDNA model introduced by J. H. Reif in [4]. For
motivations, connections to molecular biology and complete definitions please refer
to the original article. The operations of the model are abstractions of the well
understood recombinant DNA operations and basic molecular biology operations.
The structural properties of DNA are represented in a structure called complex.

We use an alphabet consisting n > 1 pairs of letters that said to be complemen-
tary: E = {o i , 02, . . . an ,a'i ,a2' • • • a 'n}i where a* and a[form a complementary pair
for all i £ [l,n]. By a linear string we mean a word from E*, and by a loop string
we mean any possible circular rotation of a word from E*. The set of circular rota-
tions of word u £ E* is {U2U1 £ E* | U\U2 = «}• A loop string can be represented
by any particular instance of the rotated words. For a linear string u define G(u)
as a directed graph of |u| vertices and |tt| — 1 edges, such that the graph consists
of one (nonrepeating) directed path, where the consecutive edges are labelled by
the consecutive letters of u, from first to last. For a loop string u define G(u) as
a directed graph of |u| vertices and |u| edges, such that the graph consists of one
directed loop, where the consecutive edges are labelled by the consecutive letters
of u. For a set S of linear or loop strings over E define G(S) as the union of the
disjoint directed graphs G(u) for each u £ S. Hence G{S) consists of |S| disjoint
directed paths or loops.

Define a labelled pairing of the edges of G(S) to be a set n of unordered pairs
of distinct directed edges of G(S) such that (1) n pairs the starting and ending
vertices of the edges as well as the edges itself, (2) no edge appears more than once
in fj,, and (3) each pair of edges in fi have complementary labels and point to the
opposite direction. We define a complex over S to be the pair (S,/x), where /j. is a
labelled pairing of G(S).

The complex (S, fi) has a naturally defined graph G(S, fj,) derived from the graph
G(S) by merging together the vertices i,i' as well as the vertices j,j' for all labelled
pairs ((i , j) , (j ' , i ')) in fi, so the resulting graph has edges in both directions between
the two merged nodes. Note that three nodes may be merged into one, for example
j and j' would be merged with j" if the pair ((j, k), (k1, j)) is in /x in addition to

On Implementing Relational Databases on DNA Strands 261

the pair ((i,j),(j',i')).
The complex (S, p) is a linear complex if p. = 0 and 5 is a set of linear strings.

The complex (S, 0) is a single linear complex if S contains one linear string only,
so the graph G(S) is a single directed path.

A complex may be used to model both the information content and also the
three-dimensional structure of single- or double-stranded DNA, including hy-
bridization and secondary structure. The use of complexes allows modelling the
effect of various recombinant DNA operations, and thus providing rigorous defini-
tions of recombinant DNA operations.

Operations of the RDNA model
We use a slightly different notation for the operations than Reif uses. We also
extend the list of operations by the operations Prepare, Assign and Amplify. By a
test tube we mean a multiset of connected complexes, where a complex (S, p.) is said
to be connected, if its graph G(S,pi) is connected. We call two sets of complexes
equivalent, if the union of the graphs of the complexes in each set are isomorphic.
The allowed operations (also called instructions) are the following:

1. Prepare. The operation T := Prepare(S) prepares the test tube T containing
the linear complex (5,0) from the set of linear strings S C S * .

2. Assign. We use the usual := operator for assigning values for test tubes.

3. Merge. After the operation MergeiTi, T2) the test tube T\ becomes the union
of multisets T\ and T2.

4. Copy. T' := Copy(T) produces a copy of the test tube T containing only
linear complexes.

5. Amplify. By using Amplify(T,n) each complex of the multiset T is replaced
by at least n identical copies of it, hence the volume of T is multiplied by at
least n.

6. Detect. Detect(T) returns true if T is not the empty multiset, false otherwise.
7. Select. Operations T' := Select-(T,n) and T" := Select^iT, n) separate the

contents of T by the size of the complexes. The size of a complex is the
number of nodes in its graph. T' will contain those complexes of T, whose
size are equal, (or in case of Select± not equal) to n.

8." Separate. Operations T' := Separateinci(T,u) and T' := Separateexci(T,u)
separate the contents of T by the content of the complexes in it, where u is
a word over E. The operation may only be applied on a test tube of linear
complexes. T' will contain those complexes (5,0) of T, where there exists (or
in case of Separateexci does not exist) a word v € S such that u is a subword
of v.

9. Cleave. The operations Cleavebefore(T,a) and Cleaveafter(T,a) cuts every
path of the complexes of T before (resp. after) the edges labelled with a 6 S.

262 István Katsányi

If the created complex is not connected, it is replaced by connected complexes
equivalent to it.

10. Anneal. The Anneal(T) operation changes the test tube T nondeterminis-
tically. Each complex (S, ¡j) of T is replaced by a complex of form (S,fi'),
where is a superset of n, and there is no fi" labelled pairing of G(S) such
that n" 2 M'-

11. Ligate. By the use of the operation Ligate(T) every complex (S, n) in T is
replaced by a complex (5',/x'), which has the same graph as (S,¡j), except
that all vertices that are paired to the same node in fj, are merged. That
means that any two paths in G(S) that have ending and beginning nodes
that are paired to the same (third) node are concatenated.

12. Denature. The Denature(T) operation replaces every complex (S,fi) in T by
the set of connected complexes { ({ a } , 0) | a £ S}.

3 Representation
In this section we show a method, by which arbitrary finite relations can be repre-
sented in test tubes using the devices introduced in the previous section.

Each relation is represented by a unique test tube containing complexes over a
common alphabet. The tubes contain mainly linear complexes. During performing
certain operations there may occur other structures as well, but these are eliminated
by the end of the operation.

Suppose that we have m not necessarily different sets Ai,...,Am, by which
the bases of n relations Ri,..., Rn are defined. Each relation Ri consists of ki
components: Ri C Afi l x ••• x Aii k. (i = 1 , . . . , n , ki > 1, /¿,j £ [1,m] for all j £
[l,fcj]). We will also call components of a relation as columns, and the indexes / ¿ j
as labels of columns. For technical reasons we only allow relations of different base
sets: for all i £ [l,n], j, k £ [1, A;,] such that j k the non-equality / ¿ j ^ fi^ must
hold. We may easily overcome this limitation by introducing new base sets.

We only deal with finite relations, so each Ai must be a finite set (i = 1 , . . . , m).
Since they are finite, we can encode them over a common alphabet X (e.g. the set of
bits). Let these encodings denoted by the injective mappings e* : Ai h4 Xli, where
li is the letters needed to uniquely encode the elements of Ai in the alphabet X
(i £ [l ,m]). Please note that the length of e*(r) is always exactly /¿, independently
of r £ Ai.

By the use of these mapping, we may define injective mappings from Ri to words
over X. For each i = 1 , . . . , n define hi: Ri XLi, where Li = YljLi Ifrj > a n d for
all r — (r i , . . . , r / t j £ Ri, hi(r) is defined as the concatenation of the mappings of
the components of r: hi{r) = e/j,i(ri) •• • efi k. (r^) .

An element r £ Ri {i £ [l ,n]) is represented by a single linear complex over
an alphabet £ of length L{\ each letter is a triplet, where the first components are
letters of X, such that the concatenation of the first components gives the word
hi(r). The second components contain the index of the base set whose element is

On Implementing Relational Databases on DNA Strands 263

partially encoded in the letter, and the last element is the position of the encoded
letter within the encoding of the referred base set. Hence we define the alphabet

E = {(x,j,k),(x,j,k)' | x 6 X,j e [1,m], k € [1,^])}

where each letter has its primed version as complementary pair and vice versa. Since
the alphabet E is fixed, we have to define all relations occurring in the computation
in advance. This problem can be eliminated if we use a suitable encoding of E.
Now let us formally define for every i £ [l ,n] the injective mapping gi : XLi k* E L i

in the above manner: for every x\... xl{ £ XLi

gi(xi ...xLi) = (xi, fi,i,l)(x2, fi,i,2) ••• {xlfii, fiA,lfi

{xi,. ^ , / ¿ , 2 , 1)) ••• (xlf.i+lf. 2,fit 2,lfi2)) •

(XLi-lfi k. +1, fi,ki, 1) • • • (XLi 1 fi,ki ,lfi,ki)-

Define for every i £ [1,"] the mapping / ; = gi ° hi. Of course this mapping is
also injective. An element of a relation r € Ri is represented by the single linear
complex ({ / i (r) } , 0) , and Ri is represented by the test tube containing the linear
complex ({ /¿(r) | r € Ri},®) (i e [l,n]).

Let us look at an example. We have one relation, Ri C Ai x A2, where A\ =
{i | 0 < i < 99} and A2 = {« | 0 < i < 9}. A possible encoding of the sets A\
and A2 is the decimal representation, we need two digits for A\ and one digit for
A2. We get: X = { 0 , 1 , . . . , 9 } , h = 2, l2.= 1. /ii((a,6)) = a'b' where a' € X2,
b' e X, a' and b' are the decimal representation of a and b containing leading zeroes
if necessary. The complex alphabet is the following:

E = {(x,j,k),(x,j,k)' I X e [o,9], j e [l, 2], (j = l k e [1,2],
j = 2=>k = l)}.

If Ri = {(2,3), (85,0)}, then hi(Ri) = {(02,3), (85,0)}, and

h(Ri) = {(0,1,1)(2,1,2)(3,2,1), (8,1,1)(5,1,2)(0,2,1)} .

The test tube of Ri contains two single linear complexes, each containing one single
string from fi(Ri).

Although the introduced representation is redundant, not too simple and have
some limitations, we choose it because it is robust and allows simple implementation
of the RA operations.

4 Operations
In this section we give methods for creating test tubes containing given relations
as well as creating tubes from existing ones as a result of a RA operation. We

264 István Katsányi

give a molecular program for Union, Selection, Cartesian product, Projection and
Difference. The other RA operations can be expressed by these ones. In all our
examples the test tube Tj will denote the tube that contains the representation of
relation Ri (i G [1, n]). We will use auxiliary tubes, too. These will be denoted by
indexed S symbols.

Set up
After we fixed the originating relations and all computation by which we want to
define new relations from the existing ones, we fix the alphabet E and the mappings
defined in the previous section. The test tubes that represent the original relations
can be set up by subsequent uses of the Prepare operation. The realization of
this process in laboratory can be very expensive and time consuming for relations
of many elements. An alternative method for creating large databases of DNA
strands can be found in [3]. A third way can be starting from a naturally existent
set of DNA strands and transform them to the form required in our model using
biomolecular operations only.

Union
The execution program for creating the union Rk of two relations R, and Rj is very
simple (i,j, k G [l,n]):

For Rk := Ri U Rj do:

51 := Copy(Ti)
52 := CopyiTj)
Merge(S1,S2)
Tk := Si

We simply make copies of the tubes representing Ri and Rj, merge them to-
gether to form Tk •

Selection
We give different programs for the selection operation a depending on the selection
condition. First, suppose that the condition is that a given column equals to a
constant value or formally: in the relation Ri the column labelled j is equal to
u 6 Aj, where i G [l,n], j G [l,m]. Let the letters x\,... ,xij G X be determined
by the equation ei(u) = xi - • • x^.

For Rk : = <rCj-uRi do:

Si := Copy(Ti)
Tk :=Separateinci(S1,(xi,j,l)...(xlj,j,lj))

The program is based on a single Separate instruction that selects from a copy of
the original tube those strings, that contain the (possible long) encoding of word u

On Implementing Relational Databases on DNA Strands 265

over alphabet £ as subword. However, if for technical reasons we allow separations
of short sequences only, we may take advantage of our redundant representation
and perform the separation step by step, letter by letter, getting Tk after lj Separate
instructions:

For Rk ••= (TCj=uRi do:

51 := Copy{Ti)
52 •= Separateinci(Si, (xi, j, 1))
53 := Separateinci(S2, {x2, j,2))

Sij—SeparateindiSij-i^xij-iJJj-l))
Tk := SeparateindiSi^txi^jJj))

Next, we show how to deal with selections where the condition is that two
columns are equal. Select those elements of Ri whose columns labelled with a and
b are equal. Let us suppose, that the two columns have a representation over X of
equal length, that is suppose la — /&.

For Rk : = crCa=CbRi do:

Si := Copy(Ti)
For j = 1 ,2 , . . J a do

S2 := 0
For each i £ l d o

53 := Separateinci(Si,(x,a,j))
54 := Separateinci(S3, (x,b, j))
Merge(S2,Si)

end do
Si := S2

end do
Tk := Si

The inner loop separates those complexes of S, whose jth letter are equal both
in column a and column b in the representation over X, since it is the union of
such words, where the jth letter equal to an x G X in both columns for all x € l .
Having done this separation for all letters of the columns we get Tk, using a total
of 2Za |X| Separate, la Merge, 2la Assign and one Copy instructions.

If the condition contains instead of = , we have to modify slightly the former
algorithms to give the union of those complexes that differ in at least one position
from the given constant value, or the value of the other column. If the condition
contains the logical operator and, then we model it by sucessive selection. We model
or by merging the resulting tubes of the constituent selections. The operation not
can always be avoided using the former operators.

It is also possible to model selection operations that contain,simple arithmetic
expressions in their conditions. There are several methods, by which we can perform
calculations on DNA molecules, see e.g. [6], [7] and [8]. However, dealing with

266 István Katsányi

comparative relations < and > is not settled yet, to handle them is an open problem
as of today.

Cartesian product
For creating the Cartesian product of two test tubes Tj and Tj we „stick" the proper
ends of the strings in the tubes (i,j 6 [1, n]). Because the result can have much more
element, than the original relations, the test tubes must be amplified by a factor n,
which is no smaller than the number of complexes in any of the two test tubes. An
upper bound for n is of course max{|i?i|, |iij|} as well as m a x d X p , Please
note that in our representation all column labels of a relation must be unique, so
before executing the program creating the product of two tubes, we must relabel
one of each pair of the columns that would have equal label in the product. This
is especially important, if we take the Cartesian product of a relation with itself.
The definition of relabelling and the molecular program for it is shown in the end
of this section.

For Rk : = Ri X Rj do:

51 := Copy(Ti)
52 := Copy(Tj)
Amplify (Si, n)
Amplify{S2,n)
5 3 := Prepare{{(x,fj>uiy{y,fiM, //.,.)' | x,y G X })
Merge{Si,S2)
M e r g e d , S3)
Anneal(Si)
Ligate(Si)
Denature(Si)
Si := Select={SuLi + Lj)
Tk := Si

We prepare a tube S3 containing complexes of size two: the complements of any
possible first symbol of Rj represented over the alphabet £ followed by complements
of any possible last symbol of Ri represented over the alphabet After merging
this tube with the amplified copies of Tj and Tj, these complexes can anneal to
the last letters of Ri and to the first letters of Rj. If both edges are annealed,
the annealed complexes of Ri and Rj axe ligated: they are stuck together, and
remain stuck even when after Denature, the complex of S3 breaks off. After these
operations complexes of size Li + Lj form the elements of Tk representing the
relation Rk = Ri x R j •

Projection
First let us show how can we project a relation Ri into a single column labelled j
{i € [l,n],j G [l,m]):

On Implementing Relational Databases on DNA Strands 267

For Rk := nC j Ri do:

:= Copy{Ti)
for each x G X do

Cleavebefore(Si,(x,j,l))
Cleaveafter(Su(x,j,lfij))

end do
for each x 6 X do

Si := Separateinci(Si, (x,j, 1))
end do
Tk := Si

We cleave (cut) the complexes before any possible first letter of the ith column
represented in the alphabet S, and then cleave after any possible last letter. By
that we cleave each complex into three parts: the parts (complexes) that contain
any (let say, first) letter of the ith column will constitute the tube containing the
projection.

When we want to project into more than one column, then in addition to cutting
the unnecessary ends of the strings as in the previous case, we have to erase some
inner „gaps" as well: substrings that do not belong to columns in the projection
list, but laying between them. We will show a molecular program by which we
can erase one gap. For modelling the general case of the projection we must call
this procedure for all inner gaps, and than must cut the needless ends using a
procedure very similar to the former one. Let us now look at the program that
erases the gap between the ath and 6th column in the tube representing the relation
Ri (i € [l,n],a,b £ [1,fc»],a < b):

For So : = EraseGap(Ti,i,a,b) do:

51 :=Prepare({(x, fiA,l)'(y, fiM,l}i_kiy \x,y£ X })
5 2 := Prepare({(x, fi,b,l)'(y, frajf^)' \x,y <EX})
So := Copy(Ti)
Merge(S0,Si)
Anneal(So)
for each x S X

Cleavageafter(So, (x, fi,a,lfi<a))
Cleavagebefore(So,(x,fi,b,l))

end do
So := Select=(S0, Ej=i */«., + EjU + 2)
Merge{S0,S2)
Anneal(So)
Ligate(So)
Denature(So)
So := S e / e c i = (S 0 , E ; = i E*= 6 */<.,)

We create the tube Si, whose complexes can anneal to the first and last letter
of any complex in T{. Using this tube we can achive that the strings of T; form

268 István Katsányi

loops, so that we can cut them with the possibility not to confuse the separated
beginnings and endings. After creating the rings we cut the unneeded columns and
stick the broken parts together with the help of the tube S2, whose complexes can
anneal to the first letter of the 6th column and to the last letter of the ath column.
We may now select the result.

Difference
The last RA operation we examine is the set difference. For creating the test tube
Tfc that represents the difference of the relations represented in the tubes Tj and
Tj we may use the following molecular program, which has a precondition that
relations Ri and Rj has the same base sets (i,j,k G [1,n]):

For Rk •.— Ri\ Rj do:

51 := Copy(Ti)
52 := CopyiTj)
53 := Prepare({(x, a, b)' \ x G X,a G [l,ra], 6 G [Mo] })
Amplify(S3,\Rj\)
Merge(S2,S3)
Anneal(S2)
Ligate(S2)
Denature(S2)
54 := Select=(S2,Lj)
55 := 0
For each i £ l d o

S6 := Separateincl(S2,{x, fi,i,l)')
Merge(S5,S6)

end do
Merge{SuSh)
Anneal (Si)
57 Select = (Si ,Lj)
58 :=0
For each x G X do

S9 := Separateinci(S7, (x, /», 1,1))
Merge(S8,S9)

end do
Tk '•= S9

After creating copies of Tj and Tj we create a tube S3, that contains complexes
of size one: any possible primed letter of E. Note that this tube does not depend on
Tj or Tj, it can be used for calculating other differences as well. After merging the
suitably amplified tube of S3 with the copy of Tj, the short complexes are permitted
to anneal to the complexes of S2, hence after the Anneal and Ligate operations
each complex of S2 will be annealed (or paired) to an equally long complementary
complex. After Denature these pairs of complexes break apart, and after some

On Implementing Relational Databases on DNA Strands 269

selection and separation we get the tube S5 , that contain strings that are exactly
the complements of the strings in Tj. When we merge this tube with Si, those
complexes that appear both in Ti and Tj will form pairs after annealing, and those
complexes that appear only in one of the tubes Ti, or Tj remain in their linear
structure. >From the result we only have to separate the linear complexes of Tj.

Relabelling
We say that the relation Rj C AfjA x • • • x Af. k is a relabelling of Ri C Af. 1 x
••• x Afik. if hi = kj, Ri = Rj and for each k 6 [1,fe»] either /¿^ - f j k , or
fi,k fj,k, but Afi k = Afj k and e/ i f c = e/jk. Hence the relabelled relation has
the same base sets as the original relation, it has the same value, too, but some of
its components may have a different label, but it does not affect the representation
of that component over the alphabet X . Of course the representation of the two
relations over the alphabet E will be different.

For our purposes it is enough show that relabelling where all of the columns are
relabelled can be done in our model. An easy way of doing this is based on the fact
that such relabelling can be expressed by relational operations:

Rj = n/J-.l--/JM.i0'/i,l=/i.lA...A/;,l!i.=/i,fcii?t x AfjA x---xAfjk..

The tube representing AjjA x • • • x Afj k. can effectively be prepared, in spite of
the fact that this tube contains an exponential number of strings. After preparing
the tube we may perform the marked operations as stated before. Another way for
relabelling is to form a ring of each string (similarly to the EraseGap operation),
cut each loop before and after the letter we want to replace, then bind the broken
loops again inserting the substituting letter. After doing this for all letters of the
columns to relabel, we are ready.

5 Conclusions
In this work we showed that building a relational database in test tubes using DNA
strands is possible. The proof is based on the assertion that the RDNA model of
biomolecular computing is indeed a sound model of biomolecular operations. It
seems to be a correct model, because it is based on the basic structure of DNA
strands and on the well understood operations on test tubes. However, by the
time of writing no real laboratory experiments justified neither the model nor any
application based on the model. During laboratory realization it may turn out,
that alternate versions of the mentioned operations proves to be more efficient or
reliable, it depends on the used laboratory techniques.

It is not unlikely in the not too far future, that we can make complex queries
on artificially created or naturally existent DNA databases. Utilizing the enormous
storage capacity of DNA and the possibility of associative searches on the strands
it may be possible to efficiently work with databases of size much greater than that
is manageable on conventional computer architectures.

270 István Katsányi

References
[1] Leonard M. Adleman. Molecular computation of solutions to combinatorial

problems. Science, 266:1021-1024, November 11, 1994.

[2] Eric B. Baum. Building an associative memory vastly larger than the brain.
Science, 268:583-585, April 28, 1995.

[3] John H. Reif, T. H. LaBean, M. Pirrug, V. S. Rana, B. Guo, C. Kingsford,
and G. S. Wickham. Experimental construction of a very large scale DNA
database with assoriatice search capability. In DNA Computing, 7th inter-
national Workshop on DNA-Based Computers, DNA 2001, Tampa, U.S.A.,
10-13 June 2001, pages 241-250. University of South Florida, 2001.

[4] John H. Reif. Parallel molecular computation: Models and simulations. Algo-
rithmica, 1998. Special issue on Computational Biology. See also [9].

[5] Masanori Arita, Masami Hagiya, and Akira Suyama. Joining and rotating data
with molecules. In IEEE International Conference on Evolutionary Compu-
tation, pages 243-248, Indiana University, Purdue University, Indianapolis,
Illinois, April 13-16, 1997.

[6] Pierluigi Frisco. Parallel arithmetic with splicing. Romanian Journal of Infor-
mation Science and Technology (ROMJIST), 3(2):113-128, 2000.

[7] Eric B. Baum and Dan Boneh. Running dynamic programming algorithms
on a DNA computer. In Proceedings of the. Second Annual Meeting on DNA
Based Computers, held at Princeton University, June 10-12, 1996. [10].

[8] Leonard M. Adleman, Paul W. K. Rothemund, Sam Roweis, and Erik Win-
free. On applying molecular computation to the data encryption standard. In
Proceedings of the Second Annual Meeting on DNA Based Computers, held at
Princeton University, June 10-12, 1996. [10].

[9] John H. Reif. Parallel molecular computation: Models and simulations. In
Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA95), Santa Barbara, June 1995, pages 213-223. As-
sociation for Computing Machinery, June 1995. See also [4].

[10] American Mathematical Society. Proceedings of the Second Annual Meeting
on DNA Based Computers, held at Princeton University, June 10-12, 1996.,
DIM ACS: Series in Discrete Mathematics and Theoretical Computer Science.,
1996.

