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On Implementing Relational Databases 
on DNA Strands 

István Katsányi* 

Abstract 

This work describes the theoretical bases of the implementation of rela-
tional databases in test tubes, using an abstract model of molecular comput-
ing. It specifies the representation of relations and the execution program 
of the relational algebra (RA) operations. We investigate the possibilities of 
practical usage of the proposed model as well as the bounds of it. 
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1 Introduction 
In the last decade molecular biology has become the fastest growing discipline in 
the world. Some of the results are widely known, let us only mention the major 
breakthroughs in the Human Genome Project and nanotechnology. The progress 
made possible the birth of a new branch of science, that is called molecular com-
puting (or DNA computing). Leonard M. Adleman published a paper [1] in 1994, 
which later become the foundation-stone of this new subject. In his article Adleman 
demonstrates how can a classic NP-complete problem: the problem of searching 
for a Hamiltonian path in a directed graph can be solved in polynomial time us-
ing the techniques of molecular biology and DNA strands. He outlines the great 
opportunity laying in the large computing power and the extremely compact data 
storage. In a test tube there can be performed as much as 1016 operations in a 
second. That is much more than current supercomputers can execute. In a litre 
of water DNA strands can encode 108 terabytes, and we can perform associative 
searches on the data in constant time. 

In the past years many papers dealing with the computing power of DNA were 
published. However, only a few article studied the possibility of data storage and 
processing (see e.g. [2], [3]). Recently two papers ([4], [5]) described methods that 
yielded in an operation that closely resembles to the join operation of relational 
algebra. In spite of this no one has extensively studied the potentialities of the 
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usage of molecular computing in the field of RA. By this work we would like to show 
the (at least theoretical) possibility of the use of the results of molecular computing 
in this area. In the Preliminaries section we introduce John Reif's RDNA model of 
biomolecular computing. We define a possible representation of relations using that 
model in the Representation section, and show how to implement the RA operations 
in this model in the Operations section. We close the paper by conclusions and 
references. 

2 Preliminaries 
As common in formal language theory, we denote the free monoid generated by a 
finite set X by X*. We call X as alphabet, elements of X as letters, and elements of 
X* as words. The symbol e means the empty word. The length of a word u £ X* 
will be denoted by |u|. The cardinality of a set S will also be denoted by |S|. 

We describe briefly the RDNA model introduced by J. H. Reif in [4]. For 
motivations, connections to molecular biology and complete definitions please refer 
to the original article. The operations of the model are abstractions of the well 
understood recombinant DNA operations and basic molecular biology operations. 
The structural properties of DNA are represented in a structure called complex. 

We use an alphabet consisting n > 1 pairs of letters that said to be complemen-
tary: E = {o i , 02, . . . an ,a'i ,a2' • • • a 'n}i where a* and a[ form a complementary pair 
for all i £ [l,n]. By a linear string we mean a word from E*, and by a loop string 
we mean any possible circular rotation of a word from E*. The set of circular rota-
tions of word u £ E* is {U2U1 £ E* | U\U2 = «}• A loop string can be represented 
by any particular instance of the rotated words. For a linear string u define G(u) 
as a directed graph of |u| vertices and |tt| — 1 edges, such that the graph consists 
of one (nonrepeating) directed path, where the consecutive edges are labelled by 
the consecutive letters of u, from first to last. For a loop string u define G(u) as 
a directed graph of |u| vertices and |u| edges, such that the graph consists of one 
directed loop, where the consecutive edges are labelled by the consecutive letters 
of u. For a set S of linear or loop strings over E define G(S) as the union of the 
disjoint directed graphs G(u) for each u £ S. Hence G{S) consists of |S| disjoint 
directed paths or loops. 

Define a labelled pairing of the edges of G(S) to be a set n of unordered pairs 
of distinct directed edges of G(S) such that (1) n pairs the starting and ending 
vertices of the edges as well as the edges itself, (2) no edge appears more than once 
in fj,, and (3) each pair of edges in fi have complementary labels and point to the 
opposite direction. We define a complex over S to be the pair (S,/x), where /j. is a 
labelled pairing of G(S). 

The complex (S, fi) has a naturally defined graph G(S, fj,) derived from the graph 
G(S) by merging together the vertices i,i' as well as the vertices j,j' for all labelled 
pairs ( ( i , j ) , ( j ' , i ' ) ) in fi, so the resulting graph has edges in both directions between 
the two merged nodes. Note that three nodes may be merged into one, for example 
j and j' would be merged with j" if the pair ((j, k), (k1, j)) is in /x in addition to 
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the pair ((i,j),(j',i')). 
The complex (S, p) is a linear complex if p. = 0 and 5 is a set of linear strings. 

The complex (S, 0) is a single linear complex if S contains one linear string only, 
so the graph G(S) is a single directed path. 

A complex may be used to model both the information content and also the 
three-dimensional structure of single- or double-stranded DNA, including hy-
bridization and secondary structure. The use of complexes allows modelling the 
effect of various recombinant DNA operations, and thus providing rigorous defini-
tions of recombinant DNA operations. 

Operations of the RDNA model 
We use a slightly different notation for the operations than Reif uses. We also 
extend the list of operations by the operations Prepare, Assign and Amplify. By a 
test tube we mean a multiset of connected complexes, where a complex (S, p.) is said 
to be connected, if its graph G(S,pi) is connected. We call two sets of complexes 
equivalent, if the union of the graphs of the complexes in each set are isomorphic. 
The allowed operations (also called instructions) are the following: 

1. Prepare. The operation T := Prepare(S) prepares the test tube T containing 
the linear complex (5,0) from the set of linear strings S C S * . 

2. Assign. We use the usual := operator for assigning values for test tubes. 

3. Merge. After the operation MergeiTi, T2) the test tube T\ becomes the union 
of multisets T\ and T2. 

4. Copy. T' := Copy(T) produces a copy of the test tube T containing only 
linear complexes. 

5. Amplify. By using Amplify(T,n) each complex of the multiset T is replaced 
by at least n identical copies of it, hence the volume of T is multiplied by at 
least n. 

6. Detect. Detect(T) returns true if T is not the empty multiset, false otherwise. 
7. Select. Operations T' := Select-(T,n) and T" := Select^iT, n) separate the 

contents of T by the size of the complexes. The size of a complex is the 
number of nodes in its graph. T' will contain those complexes of T, whose 
size are equal, (or in case of Select± not equal) to n. 

8." Separate. Operations T' := Separateinci(T,u) and T' := Separateexci(T,u) 
separate the contents of T by the content of the complexes in it, where u is 
a word over E. The operation may only be applied on a test tube of linear 
complexes. T' will contain those complexes (5,0) of T, where there exists (or 
in case of Separateexci does not exist) a word v € S such that u is a subword 
of v. 

9. Cleave. The operations Cleavebefore(T,a) and Cleaveafter(T,a) cuts every 
path of the complexes of T before (resp. after) the edges labelled with a 6 S. 
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If the created complex is not connected, it is replaced by connected complexes 
equivalent to it. 

10. Anneal. The Anneal(T) operation changes the test tube T nondeterminis-
tically. Each complex (S, ¡j) of T is replaced by a complex of form (S,fi'), 
where is a superset of n, and there is no fi" labelled pairing of G(S) such 
that n" 2 M'-

11. Ligate. By the use of the operation Ligate(T) every complex (S, n) in T is 
replaced by a complex (5',/x'), which has the same graph as (S,¡j), except 
that all vertices that are paired to the same node in fj, are merged. That 
means that any two paths in G(S) that have ending and beginning nodes 
that are paired to the same (third) node are concatenated. 

12. Denature. The Denature(T) operation replaces every complex (S,fi) in T by 
the set of connected complexes { ( { a } , 0) | a £ S}. 

3 Representation 
In this section we show a method, by which arbitrary finite relations can be repre-
sented in test tubes using the devices introduced in the previous section. 

Each relation is represented by a unique test tube containing complexes over a 
common alphabet. The tubes contain mainly linear complexes. During performing 
certain operations there may occur other structures as well, but these are eliminated 
by the end of the operation. 

Suppose that we have m not necessarily different sets Ai,...,Am, by which 
the bases of n relations Ri,..., Rn are defined. Each relation Ri consists of ki 
components: Ri C Afi l x ••• x Aii k. (i = 1 , . . . , n , ki > 1, /¿,j £ [1,m] for all j £ 
[l,fcj]). We will also call components of a relation as columns, and the indexes / ¿ j 
as labels of columns. For technical reasons we only allow relations of different base 
sets: for all i £ [l,n], j, k £ [1, A;,] such that j k the non-equality / ¿ j ^ fi^ must 
hold. We may easily overcome this limitation by introducing new base sets. 

We only deal with finite relations, so each Ai must be a finite set (i = 1 , . . . , m). 
Since they are finite, we can encode them over a common alphabet X (e.g. the set of 
bits). Let these encodings denoted by the injective mappings e* : Ai h4 Xli, where 
li is the letters needed to uniquely encode the elements of Ai in the alphabet X 
(i £ [l ,m]). Please note that the length of e*(r) is always exactly /¿, independently 
of r £ Ai. 

By the use of these mapping, we may define injective mappings from Ri to words 
over X. For each i = 1 , . . . , n define hi: Ri XLi, where Li = YljLi Ifrj > a n d for 
all r — ( r i , . . . , r / t j £ Ri, hi(r) is defined as the concatenation of the mappings of 
the components of r: hi{r) = e/j,i(ri) •• • efi k. ( r^) . 

An element r £ Ri {i £ [l ,n]) is represented by a single linear complex over 
an alphabet £ of length L{\ each letter is a triplet, where the first components are 
letters of X, such that the concatenation of the first components gives the word 
hi(r). The second components contain the index of the base set whose element is 
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partially encoded in the letter, and the last element is the position of the encoded 
letter within the encoding of the referred base set. Hence we define the alphabet 

E = {(x,j,k),(x,j,k)' | x 6 X,j e [1,m], k € [1,^])} 

where each letter has its primed version as complementary pair and vice versa. Since 
the alphabet E is fixed, we have to define all relations occurring in the computation 
in advance. This problem can be eliminated if we use a suitable encoding of E. 
Now let us formally define for every i £ [l ,n] the injective mapping gi : XLi k* E L i 

in the above manner: for every x\... xl{ £ XLi 

gi(xi ...xLi) = (xi, fi,i,l)(x2, fi,i,2) ••• {xlfii, fiA,lfi 

{xi,. ^ , / ¿ , 2 , 1 ) ) ••• (xlf.i+lf. 2,fit 2,lfi2)) • 

(XLi-lfi k. +1, fi,ki, 1) • • • (XLi 1 fi,ki ,lfi,ki)-

Define for every i £ [1,"] the mapping / ; = gi ° hi. Of course this mapping is 
also injective. An element of a relation r € Ri is represented by the single linear 
complex ( { / i ( r ) } , 0 ) , and Ri is represented by the test tube containing the linear 
complex ( { /¿(r) | r € Ri},®) (i e [l,n]). 

Let us look at an example. We have one relation, Ri C Ai x A2, where A\ = 
{i | 0 < i < 99} and A2 = {« | 0 < i < 9}. A possible encoding of the sets A\ 
and A2 is the decimal representation, we need two digits for A\ and one digit for 
A2. We get: X = { 0 , 1 , . . . , 9 } , h = 2, l2.= 1. /ii((a,6)) = a'b' where a' € X2, 
b' e X, a' and b' are the decimal representation of a and b containing leading zeroes 
if necessary. The complex alphabet is the following: 

E = {(x,j,k),(x,j,k)' I X e [o,9], j e [l, 2], ( j = l k e [1,2], 
j = 2=>k = l)}. 

If Ri = {(2,3), (85,0)}, then hi(Ri) = {(02,3), (85,0)}, and 

h(Ri) = {(0,1,1)(2,1,2)(3,2,1), (8,1,1)(5,1,2)(0,2,1)} . 

The test tube of Ri contains two single linear complexes, each containing one single 
string from fi(Ri). 

Although the introduced representation is redundant, not too simple and have 
some limitations, we choose it because it is robust and allows simple implementation 
of the RA operations. 

4 Operations 
In this section we give methods for creating test tubes containing given relations 
as well as creating tubes from existing ones as a result of a RA operation. We 
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give a molecular program for Union, Selection, Cartesian product, Projection and 
Difference. The other RA operations can be expressed by these ones. In all our 
examples the test tube Tj will denote the tube that contains the representation of 
relation Ri (i G [1, n]). We will use auxiliary tubes, too. These will be denoted by 
indexed S symbols. 

Set up 
After we fixed the originating relations and all computation by which we want to 
define new relations from the existing ones, we fix the alphabet E and the mappings 
defined in the previous section. The test tubes that represent the original relations 
can be set up by subsequent uses of the Prepare operation. The realization of 
this process in laboratory can be very expensive and time consuming for relations 
of many elements. An alternative method for creating large databases of DNA 
strands can be found in [3]. A third way can be starting from a naturally existent 
set of DNA strands and transform them to the form required in our model using 
biomolecular operations only. 

Union 
The execution program for creating the union Rk of two relations R, and Rj is very 
simple (i,j, k G [l,n]): 

For Rk := Ri U Rj do: 

51 := Copy(Ti) 
52 := CopyiTj) 
Merge(S1,S2) 
Tk := Si 

We simply make copies of the tubes representing Ri and Rj, merge them to-
gether to form Tk • 

Selection 
We give different programs for the selection operation a depending on the selection 
condition. First, suppose that the condition is that a given column equals to a 
constant value or formally: in the relation Ri the column labelled j is equal to 
u 6 Aj, where i G [l,n], j G [l,m]. Let the letters x\,... ,xij G X be determined 
by the equation ei(u) = xi - • • x^. 

For Rk : = <rCj-uRi do: 

Si := Copy(Ti) 
Tk :=Separateinci(S1,(xi,j,l)...(xlj,j,lj)) 

The program is based on a single Separate instruction that selects from a copy of 
the original tube those strings, that contain the (possible long) encoding of word u 
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over alphabet £ as subword. However, if for technical reasons we allow separations 
of short sequences only, we may take advantage of our redundant representation 
and perform the separation step by step, letter by letter, getting Tk after lj Separate 
instructions: 

For Rk ••= (TCj=uRi do: 

51 := Copy{Ti) 
52 •= Separateinci(Si, (xi, j, 1)) 
53 := Separateinci(S2, {x2, j,2)) 

Sij—SeparateindiSij-i^xij-iJJj-l)) 
Tk := SeparateindiSi^txi^jJj)) 

Next, we show how to deal with selections where the condition is that two 
columns are equal. Select those elements of Ri whose columns labelled with a and 
b are equal. Let us suppose, that the two columns have a representation over X of 
equal length, that is suppose la — /&. 

For Rk : = crCa=CbRi do: 

Si := Copy(Ti) 
For j = 1 ,2 , . . J a do 

S2 := 0 
For each i £ l d o 

53 := Separateinci(Si,(x,a,j)) 
54 := Separateinci(S3, (x,b, j)) 
Merge(S2,Si) 

end do 
Si := S2 

end do 
Tk := Si 

The inner loop separates those complexes of S, whose jth letter are equal both 
in column a and column b in the representation over X, since it is the union of 
such words, where the jth letter equal to an x G X in both columns for all x € l . 
Having done this separation for all letters of the columns we get Tk, using a total 
of 2Za |X| Separate, la Merge, 2la Assign and one Copy instructions. 

If the condition contains instead of = , we have to modify slightly the former 
algorithms to give the union of those complexes that differ in at least one position 
from the given constant value, or the value of the other column. If the condition 
contains the logical operator and, then we model it by sucessive selection. We model 
or by merging the resulting tubes of the constituent selections. The operation not 
can always be avoided using the former operators. 

It is also possible to model selection operations that contain,simple arithmetic 
expressions in their conditions. There are several methods, by which we can perform 
calculations on DNA molecules, see e.g. [6], [7] and [8]. However, dealing with 
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comparative relations < and > is not settled yet, to handle them is an open problem 
as of today. 

Cartesian product 
For creating the Cartesian product of two test tubes Tj and Tj we „stick" the proper 
ends of the strings in the tubes (i,j 6 [1, n]). Because the result can have much more 
element, than the original relations, the test tubes must be amplified by a factor n, 
which is no smaller than the number of complexes in any of the two test tubes. An 
upper bound for n is of course max{|i?i|, |iij|} as well as m a x d X p , Please 
note that in our representation all column labels of a relation must be unique, so 
before executing the program creating the product of two tubes, we must relabel 
one of each pair of the columns that would have equal label in the product. This 
is especially important, if we take the Cartesian product of a relation with itself. 
The definition of relabelling and the molecular program for it is shown in the end 
of this section. 

For Rk : = Ri X Rj do: 

51 := Copy(Ti) 
52 := Copy(Tj) 
Amplify (Si, n) 
Amplify{S2,n) 
5 3 := Prepare{{(x,fj>uiy{y,fiM, //.,.)' | x,y G X } ) 
Merge{Si,S2) 
M e r g e d , S3 ) 
Anneal(Si) 
Ligate(Si) 
Denature(Si) 
Si := Select={SuLi + Lj) 
Tk := Si 

We prepare a tube S3 containing complexes of size two: the complements of any 
possible first symbol of Rj represented over the alphabet £ followed by complements 
of any possible last symbol of Ri represented over the alphabet After merging 
this tube with the amplified copies of Tj and Tj, these complexes can anneal to 
the last letters of Ri and to the first letters of Rj. If both edges are annealed, 
the annealed complexes of Ri and Rj axe ligated: they are stuck together, and 
remain stuck even when after Denature, the complex of S3 breaks off. After these 
operations complexes of size Li + Lj form the elements of Tk representing the 
relation Rk = Ri x R j • 

Projection 
First let us show how can we project a relation Ri into a single column labelled j 
{i € [l,n],j G [l,m]): 
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For Rk := nC j Ri do: 

:= Copy{Ti) 
for each x G X do 

Cleavebefore(Si,(x,j,l)) 
Cleaveafter(Su(x,j,lfij)) 

end do 
for each x 6 X do 

Si := Separateinci(Si, (x,j, 1)) 
end do 
Tk := Si 

We cleave (cut) the complexes before any possible first letter of the ith column 
represented in the alphabet S, and then cleave after any possible last letter. By 
that we cleave each complex into three parts: the parts (complexes) that contain 
any (let say, first) letter of the ith column will constitute the tube containing the 
projection. 

When we want to project into more than one column, then in addition to cutting 
the unnecessary ends of the strings as in the previous case, we have to erase some 
inner „gaps" as well: substrings that do not belong to columns in the projection 
list, but laying between them. We will show a molecular program by which we 
can erase one gap. For modelling the general case of the projection we must call 
this procedure for all inner gaps, and than must cut the needless ends using a 
procedure very similar to the former one. Let us now look at the program that 
erases the gap between the ath and 6th column in the tube representing the relation 
Ri (i € [l,n],a,b £ [1,fc»],a < b): 

For So : = EraseGap(Ti,i,a,b) do: 

51 :=Prepare({(x, fiA,l)'(y, fiM,l}i_kiy \x,y£ X } ) 
5 2 := Prepare({(x, fi,b,l)'(y, frajf^)' \x,y <EX}) 
So := Copy(Ti) 
Merge(S0,Si) 
Anneal(So) 
for each x S X 

Cleavageafter(So, (x, fi,a,lfi<a)) 
Cleavagebefore(So,(x,fi,b,l)) 

end do 
So := Select=(S0, Ej=i */«., + EjU + 2) 
Merge{S0,S2) 
Anneal(So) 
Ligate(So) 
Denature(So) 
So := S e / e c i = ( S 0 , E ; = i E*= 6 */<.,) 

We create the tube Si, whose complexes can anneal to the first and last letter 
of any complex in T{. Using this tube we can achive that the strings of T; form 
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loops, so that we can cut them with the possibility not to confuse the separated 
beginnings and endings. After creating the rings we cut the unneeded columns and 
stick the broken parts together with the help of the tube S2, whose complexes can 
anneal to the first letter of the 6th column and to the last letter of the ath column. 
We may now select the result. 

Difference 
The last RA operation we examine is the set difference. For creating the test tube 
Tfc that represents the difference of the relations represented in the tubes Tj and 
Tj we may use the following molecular program, which has a precondition that 
relations Ri and Rj has the same base sets (i,j,k G [1,n]): 

For Rk •.— Ri\ Rj do: 

51 := Copy(Ti) 
52 := CopyiTj) 
53 := Prepare({(x, a, b)' \ x G X,a G [l,ra], 6 G [Mo] } ) 
Amplify(S3,\Rj\) 
Merge(S2,S3) 
Anneal(S2) 
Ligate(S2) 
Denature(S2) 
54 := Select=(S2,Lj) 
55 := 0 
For each i £ l d o 

S6 := Separateincl(S2,{x, fi,i,l)') 
Merge(S5,S6) 

end do 
Merge{SuSh) 
Anneal (Si) 
57 Select = (Si ,Lj ) 
58 :=0 
For each x G X do 

S9 := Separateinci(S7, (x, /», 1,1)) 
Merge(S8,S9) 

end do 
Tk '•= S9 

After creating copies of Tj and Tj we create a tube S3, that contains complexes 
of size one: any possible primed letter of E. Note that this tube does not depend on 
Tj or Tj, it can be used for calculating other differences as well. After merging the 
suitably amplified tube of S3 with the copy of Tj, the short complexes are permitted 
to anneal to the complexes of S2, hence after the Anneal and Ligate operations 
each complex of S2 will be annealed (or paired) to an equally long complementary 
complex. After Denature these pairs of complexes break apart, and after some 



On Implementing Relational Databases on DNA Strands 269 

selection and separation we get the tube S5 , that contain strings that are exactly 
the complements of the strings in Tj. When we merge this tube with Si, those 
complexes that appear both in Ti and Tj will form pairs after annealing, and those 
complexes that appear only in one of the tubes Ti, or Tj remain in their linear 
structure. >From the result we only have to separate the linear complexes of Tj. 

Relabelling 
We say that the relation Rj C AfjA x • • • x Af. k is a relabelling of Ri C Af. 1 x 
••• x Afik. if hi = kj, Ri = Rj and for each k 6 [1,fe»] either /¿^ - f j k , or 
fi,k fj,k, but Afi k = Afj k and e/ i f c = e/jk. Hence the relabelled relation has 
the same base sets as the original relation, it has the same value, too, but some of 
its components may have a different label, but it does not affect the representation 
of that component over the alphabet X . Of course the representation of the two 
relations over the alphabet E will be different. 

For our purposes it is enough show that relabelling where all of the columns are 
relabelled can be done in our model. An easy way of doing this is based on the fact 
that such relabelling can be expressed by relational operations: 

Rj = n/J-.l--/JM.i0'/i,l=/i.lA...A/;,l!i.=/i,fcii?t x AfjA x---xAfjk.. 

The tube representing AjjA x • • • x Afj k. can effectively be prepared, in spite of 
the fact that this tube contains an exponential number of strings. After preparing 
the tube we may perform the marked operations as stated before. Another way for 
relabelling is to form a ring of each string (similarly to the EraseGap operation), 
cut each loop before and after the letter we want to replace, then bind the broken 
loops again inserting the substituting letter. After doing this for all letters of the 
columns to relabel, we are ready. 

5 Conclusions 
In this work we showed that building a relational database in test tubes using DNA 
strands is possible. The proof is based on the assertion that the RDNA model of 
biomolecular computing is indeed a sound model of biomolecular operations. It 
seems to be a correct model, because it is based on the basic structure of DNA 
strands and on the well understood operations on test tubes. However, by the 
time of writing no real laboratory experiments justified neither the model nor any 
application based on the model. During laboratory realization it may turn out, 
that alternate versions of the mentioned operations proves to be more efficient or 
reliable, it depends on the used laboratory techniques. 

It is not unlikely in the not too far future, that we can make complex queries 
on artificially created or naturally existent DNA databases. Utilizing the enormous 
storage capacity of DNA and the possibility of associative searches on the strands 
it may be possible to efficiently work with databases of size much greater than that 
is manageable on conventional computer architectures. 
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