
Acta Cybernetica 16 (2003) 271-278.

Programming by steps

Raluca Oana Scarlatescu*

Abstract

The paper introduces a new method of software analysis, design and pro-
gramming based on a different implementation of a logical flow: the sequence
of steps is memorised in a database table, and each step is linked to a specific
function inserted in a library. A main application manages the steps' infor-
mation and runs the functions, until the steps axe finished. The database
management system stores the data of the each step and its precedence rules,
the functions and their parameters, the static and dynamic values of the
parameters, the errors, etc.

The paper details the principles of the "Programming by steps", explains
the reasons, which originally motivated the development of the method, and
defines the principal requisites to build an application system. Future as-
pects of the implementation, as well as advantages/disadvantages of design,
implementing and maintaining the system are stated.

The paper includes a comparative analysis between the "Programming by
steps" and another two methods of software engineering: the "Rapid Pro-
totyping" and the "Component-based Design". Integrative comments and
conclusive remarks axe provided in the conclusion of the paper.

1 New changes in the evolution of the software
methods for analysis, design and programming

The fast evolution of technologies reflects a boom of software applications' re-
quests. The result is a larger application domain, which is more diversified and/or
specialised, that requires new software methods for analysis, design and program-
ming in order to develop open applications, which may be transparent and easy-
exportable from one domain to another.

Other characteristics of the actual requests are the speed, the on-line and real-
time features, based on the Internet and telephony's services. In these cases, it
is necessary to find out solutions to permit the adaptation and the improvement
of the existing software without interrupting the system. Also, it is recommended
to maintain the operative execution by trying to control and reduce the hardware
costs.

*PhD Student of the Academy of Economic Studies, Bucharest, Romania, e -mail :
oana.rsOtiscal i . i t

293

294 RaJuca Oana Scarlatescu

The growth of the number of the applications1 and the increased complexity of
the information systems may produce problems for the analysts and programmers.
Therefore it is necessary to develop new methods that shall simplify the work for
the programmers.

"Programming by steps" is a method that can be used in order to analyse and
design software in the following cases:

• for systems characterised by many applications belonging to the same family
with common functions, or that may become common after a standardisation
process;

• for real-time systems, where changes or maintenance should not cause the
interruption of the existing services;

• for real-time systems, where it is necessary to test the newer releases without
interrupting or damaging the older ones.
"Programming by steps" offers some advantages:

• standardisation of the problems in the analysis process, reducing time and
resource consuming;

• higher degree of flexibility and greater speed in the programming activities
for the applications in the same domain;

• better visibility that helps the control and error correction activities.

The method is based on the old flow-charts in order to obtain, not only a logical
representation of the problem to be solved, but also the real-time functioning of
the software itself.

2 What is "Programming by steps"?
Supposing one should write several programs that utilise functions belonging to a
defined group and which show some homogeneities.

The traditional solution is based on:

• grouping several functions into a library;

• projecting more specific applications which call for different single functions
with defined parameters, each one to solve some problems.

This solution supposes that a programmer writes the code for these applications:
one defines the new variables, chooses and picks out the necessary functions from
the library, integrates them, and after tests the program's functionality (see Fig.
1)-

*It is very difficult to imagine any activity that could not be usefully touched by the information
technology, even if the effective informational process is not concluded yet.

Programming by steps 295

In such a situation the difference between one application and the other is
represented by the used functions' set and their priority. How could this work
be done without writing a new program code every time? Is there an alternate
solution?

The alternative is offered with the method "Programming by steps": a unique
application accesses the functions' library through its own interface. The applica-
tion consists of an "engine" that follows different logical flows memorised in either
internal or external tables. One flow is used for every problem to be solved.

Function 1

Function 2

Function m

Figure 1: A main application launches many specific applications using the same
functions' library

The analysis process of a new problem may be resumed in building up and
implementing the logical flow in data tables. The execution "engine" pursues this
logical flow and launches the various functions, building up the application by itself
in a stepwise manner during run-time (see Fig. 2). Indeed it is necessary that
the main application find all the functions inserted in the logical flow within the
functions' library.

The design and implement phases supposed for every new application:

• to define the logical flow represented by steps to be done and their relative
functions;

• to identify the values of all functions' parameters and the link/order among
them;

• to put these elements together through their descriptive information inserted
into a specific structure of tables (subsequently described);

• to launch the main application with a reference to the tables specific to certain
applications.

The major advantage is that the main program is independent from the content
of the logical flows. It knows only the modality to pursue such a flow, and to

296 RaJuca Oana Scarlatescu

Function 1

Function 2
•

Function m

Y Main
•1 application

V . X

Logical tav 1

I nglrdtrw?

\

0
U

ILogicaltcwn

Figure 2: A main application is used for many specific logical flows, and it is linked
to the functions' library for this goal

transfer different values from one step to another. Several concepts which are
necessary to comprehensively understand the method "Programming by steps" are
presented below.

2.1 Logical flows and flow-charts
In order to solve a specific problem it is necessary to understand its prerequisites
and the different situations that could appear or influence it, and to intercept its
possible results. It is seldomly possible to represent the solution through a logical
flow of events or situations.

At the end of the 60's, Edsgar Dijkstra and others proposed three logical con-
structions to represent the logical flow of a program. These are: "sequence, con-
dition and repetition. The sequence implements the procedures' steps, which are
essential for each algorithm. The condition provides the capacity to elaborate se-
lectively, based on determined logical conditions; whereas the repetition consents
to perform cycles. All these constructions are fundamental for structured program-
ming, which is an important technique of projecting the components' level. In
practice, every construction has a predictable logical structure with the entry at
the superior part and the exit at the inferior part, which allows to easily follow the
procedure's flow"2:

"Each programme can be projected, independently for the application area or
technical complexity, by using only three types of structured constructions"2. Its
logical flow provides a precise specification of the elaboration that means the events'
sequence, the iterations, and the decisions' points, using certain data structures.

The flow chart is "a pictorial representation of the steps in a process, useful for
investigating opportunities for improvement by gaining a detailed understanding of

2Unofficial translation from the Italian version of R. S. Pressman, "Principi di ingegneria del
software", 2000, pp.442-443

Programming by steps 297

how the process actually works"3.
"Flow charts have been used for so long that no one individual is specified

as the father of the flow chart"4. "The flow chart is a means of communicating
information. It must be able to communicate the steps in a process clearly and
unambiguously"5.

The New Oxford Dictionary defines the flow-chart (flow diagram) as: "a dia-
gram of sequence of movements or actions of people or things involved in a complex
system or activity; [. . .] a graphical representation of a computer program in rela-
tion to its sequence of functions (as distinct from the data it processes)"6.

As mentioned above, for each initial application from Fig. 1 a set of information
describing the own logical flow is presented: its steps and its functions, which have
to be performed at every step.

2.2 Functions
The second part of the flow chart definition written in the New Oxford Dictionary
introduces another important concept: the function. According to the same dictio-
nary, the function is "a basic task of a computer, especially one that corresponds to
a single instruction from the user"7, or, mathematically, "a relation or expression
involving one or many variables"7. Usually, a function is a "black box" that returns
a value8. The user interacts with the function through the function's parameters9,
and possibly through global variables.

In "Programming by steps" a function is a routine (application, relationship,
or transformation) that accepts a certain number of input parameters, uses them
for its elaboration and returns some results through its output parameters.

Let us consider a function fj, having xj input parameters and j/j output pa-
rameters:

3See ISO 9004-4 "Quality management and quality system Elements - Part 4: Guidelines for
quality improvement", 1993, p. 13. This standard has fixed a symbol set that ensures instant
recognition by everyone in order to allow a unique representation of the fundamental constructions
and logical flows.

4See J. R. Clauson, T. Glenn, J. A. O. Hunter , "Index of quality control tutorials", 1995, p. 2
5See T. Burns, " A Fresh Look at Flow Charting", p. 1
6See "The New Oxford Dictionary of English", Clarendon Press, Oxford, 1998, p. 707
7See "The New Oxford Dictionary of English", 1998, p. 743
8In programming a function may return a value, a vector or structure. The mathematical

definition becomes larger. We know that a function may return a value or a memory's address (a
pointer), that would contain everything. The large concept of functions is covered by functions
and procedures in some programming languages.

9 The parameter may have different values (see note 10): number, string, date, vector, matrix,
pointer, structure, image, etc.

f j - I j - > oh 1 <j<n j,n £ N
1 < h < Xj h, Xj £ N

1 <l<Vj l,Vj e N

, ••;iXJ,01,02, •••, 0/, ..., Oyj)

(1)

Ij = I\Xl2X...xIhX...xIXj

Oj — 0ix02x...x0ix...x0,

f j = fj(h,Í2,

298 RaJuca Oana Scarlatescu

FUNCTIONS
| DJUNCTION I FUNCTION-NAME \ NUMJN | NUM-OUT \

PARAMETERS ''
I ID-FUNCTION | D_PARAM \ PARAM-NAME | PARAM_~FYPE \ DATA-TYPE \ DATA-DIM \

Figure 3: Functions and parameters

where
ih - the input parameter, i/, € //,
oi - the output parameter, oi £ Oi
Xj - the number of input parameters for the function f j
Hj - the number of output parameters for the function f j
Ih, Oi - sets of values having homogeneous types of data (see the last footnotes)
Let us consider a set of functions defined above:

where
n - the number of functions in the library
Each parameter, ih or o/, is characterised by its type and dimension. In "Pro-

gramming by steps" the parameters are like doors, which permit the entrance and
exit of values in the function's body. Let us consider the generic parameter p c

PT - {Input, Output}
DT = {Boolean, short, long, string, pointer, etc.}
Pi = Ih or Oi
Pi = Pi(ti,dti,di(dti))
where
U - the type of parameter pi', input/output
dti - the data type contained by the parameter (Boolean, short, long, string,

pointer, etc.)
di(dU) - the dimension of the parameter (that may be dependent of the data

type), di(dti) e N
PT - the set of parameters' types
DT - the set of data types that depends on the programming language
One function may be a simple function or a macro-function that performs a

certain group of activities. For example, it could only print a value on the output
terminal or play a welcome message on an answering machine.

The functions are integrated in a library and called by a main application (see
section 2.4). The information that is related to the functions' definition is repre-
sented in a database system in this modality:

The first table, FUNCTIONS, stores information about the functions:

F = {fi) l < j < n j,n e N (2)

Pi : PT * DT * N- > Pi 1 <i <Xj +yj i, xj, yj £ N (3)

Programming by steps 299

• the function's identifier;

• the function's name;

• the number of input/output parameters (Xj , yj).

The second one, PARAMETERS, contains information about the parameters
of every function: the function's identifier, the parameter's identifier, its name10

and type (input/output), the accepted types11 and the maximum size of respective
types12.

2.3 Steps
Returning to the structured programming, the body of a program (between start
and stop) is composed by a sequence of steps.

"Programming by steps" considers a step as the smallest logical part of a pro-
gram, which can be associated with a function to be executed. The decomposition's
level of a logical flow in its steps is inversely proportional to the standardisation's
degree of the functions: the more abstract the functions, the fewer are the steps.

Consider S the set of steps from a logical flow:

S = {sí} 1 < i < m i,meN (4)

where
Si - the step
m - the number of steps to be done

Each step s, is described by the following information:

SÍ = s i (t i , { (c ik ,s n k) } i<k< n ¡ , f i) 1 < i , n k < m (5)
Si e S, ti€T, fi€F, Cik&C, s„k € S i,k,m,rik,ni e N

where
ti - the type of step s¿
fi - the function associated with the step Si

1 0 A generic name is used in order to identify the parameter.
u T h e types and dimensions depend on the used programming language and/or database man-

agement system. In this example SQL Server 2000 and C are considered. The information is only
descriptive, and it should be used düring the data input process or the program's execution. We
note that using a varchar data type, it is possible to memorise different data in the database, and
after to utilise them independently of their types, because of the implicit conversions done by the
SQL Server 2000.

1 2 It is recommended to use a type compliant with a major number of possible received values
and to perform internal conversions either at the function calling level (main application) or at
the function execution level (library).

300 RaJuca Oana Scarlatescu

(Cik, Snfc) _ one of the couples (condition, successive step) which determines
the behaviour of the logic flow: if the condition d k is fulfilled, the step Si will be
followed by the step s„k , and 1 < k < ni, 1 < nk < m13.

ni - the number of conditions (situations) that may appear
S - the set of steps
F - the set of functions
Ci,T - the sets of conditions and types defined below
The "Programming by steps" proposes the set of the steps' types below:

T = {I = Iteration, D = Decision, S = Jump, L = Loop} (6)

Let's see the meaning of each type in relation with the fundamental construc-
tions proposed by the structured programming: sequence, condition and repetition
(see section 2.1).

The I type (iteration) corresponds to sequence construction. If we consider the
actual step Sj, the step Sj+i will succeed it. There is no condition to be evaluated,
and the step number will increase with a fixed iteration, equal to 1 (see Fig. 4a).

The D type (decision) corresponds to decision construction. The number of
conditions to be evaluated is unlimited (like in a multiple selection) and the next
step will be calculated based on the condition's evaluation. Let us consider Ci the
set of conditions, which are supposed to cover all possibilities, which can arise in
the decisional step Si:

Ci = {cik} l<i<m, \<k<ni i,k,m,ni£N (7)

where:
Cik ~ the condition associated with the step S{
ni - the number of possible conditions for the step Si
m - the number of steps in the flow
If the condition en is true, then the step Si+i will follow the step s,- If the

condition Ci2 is true, then the step s<+2 will follow the step Si, and so on, until the
last condition (if the condition a n i is true, then Si will be succeeded by Si + n i) 1 4 .
All these branches will meet in the next step S i + „ i + i . The conditions are discrete
and finite (see Fig. 4b)15.

13For simplifying, we will consider the relation between the step's index n^ and the condition's
index k in the couple (condition, successive step) as linear: nk = i + k. Note that "Programming
by steps" is not limited to this linearity.

14Remember that when running an application one condition will only be true at a certain
moment of time. The flow will pass trough a unique branch.

1 5The problem is to transform a set of continual conditions in a set of discrete conditions. For
example, if the condition is: "if x>0 then true else false", then a function will be used in order
to translate it like here: f(x) = (unknown char) if x>0 return 1, else return Oy. The condition
becomes: "if f (x)= l then true, if f(x)=0 then false". We have obtained a discrete condition from
a continuous one.

Programming by steps 301

The S type (jump) behaves in this manner: the step Si will be followed by a
sequential step s,+k. If k is negative, the logical flow will come back to a precedent
step (see Fig. 4c and d). This type doesn't correspond to a fundamental construc-
tion (it is similar to the "go to" instruction). It offers a lot of flexibility, but it
should be used carefully. The number k differs to 1 (otherwise the step's type will
be an iteration I);

The repetition construction has no correspondence to the steps' types, because
it can be simulated by a number of iterations, decisions and negative jumps, until
the exit condition is fulfilled. This shall be managed carefully, for avoiding infinite
repetitions when the application runs with real data. When we use an application
for drawing the flow chart, the same information will generate at least the number
of cycles foreseen for the real-time situation. Sometimes the exit condition will
never happen, because the drawing software simulates the real execution without
having the real data. Therefore the number of cycles might be infinite. The L type
(loop) was introduced in order to solve this issue. It is associated with the last step
of a repetition in order to mark its end (see Fig. 4e and f). The type behaves as
a negative jump16 and the real application will treat it identically. The drawing
application will represent only the first cycle of the repetition.

Based on the description above, the link between the step's type and its be-
haviour for the step Sj (1 < i < m, i € N) shall be schematised:

- 1 type - iteration: Si ->Sj+i
- D type — decision: Si -> - if en is true then -> Sj+i

- if Ci2 is true then -> Si+2
" > S t + n i + l

- if Cini is true then -> Si+n.
where 1 < i + ni < m, rij 6 N

- L type - loop17: Si ->s»+fc, k < 0 k € N
- S type - jump: sj ->Si+k, k <> 1 k e N
The Fig. 4 depicts the types' definitions according with the presented method.

In this figure the step in discussion is Sj and its type is properly represented. The
types of the other steps are irrelevant.

"Programming by steps" considers that each step is a virtual decision. A se-
quence is a decision with a unique branch, which is always true. A repetition is
a decision with two branches: the first branch will return the flow to a precedent
step, and the condition will then be re-evaluated, until something changes; the sec-
ond branch will be followed when the cycle finishes. Only the decision has many
conditions to be evaluated.

The information related to the sequence of steps (the logical flow) may be pre-
sented as in Fig. 5. The table THESE-STEPS contains the information about
the current steps: the step's identifier, the step's type, the number18 of successive
steps/conditions and the function's identifier that will be executed at this step.

1 6The iteration and the loop are particular cases of the jump.
17Used for repetition only.
18It is greater than 1 for a D step, otherwise it is equal to 1.

302 RaJuca Oana Scarlatescu

Sj
3 :

s M , l/D/S/L

T

C[7 • Co
1 1

Sw. 1 1 | SM , S

a) Iteration

rsi,7.i, l/D/S/L

b) Decision (ni = 7)

d) Loop (k<0)

Legend: Alteration, D=Oecision, S=Jump, L=Loop

c) Jump (k<0)

f) Example of loop - simulates a
repetition construction

Figure 4: Example of steps' types defined in the "Programming by steps" method

The table NEXT-STEPS is related to the couples (condition, successive step)
that force the execution: the current step's identifier, the condition's identifier, the
value for which the condition is true and the corresponding next step to be executed
(when that condition is realised). For the types which differ from decision, the con-
dition can not be estimated (ID_CC)ND=0, VAL-COND=<AT[/LL>). DEF.STEPS
contains the set of types, with their description. The main application has imple-
mented a special mechanism in order to automatically treat the different types of
steps (see section 3 of this paper).

We can observe that not all the information of the logical flow is memorised,
because there is no exchange of data between the functions from one step to another,
thus we haven't obtained a functional system yet.

The possible parameters' values have the following characteristics:

• they may be fixed or variable, deterministic or non-deterministic;

• they may be dependent or independent of the step in that axe executed, as
well as the precedent steps;

• they have a certain type of data and a specific dimension.

To solve the data transfer, "Programming by steps" introduces a new concept:
a field associated with one or many parameters, which is a part of a specific table:

Programming by steps 303

THESE_STEPS

|THS_STEP |STEP_TYPE I NUM_STEPS |ID_FUNCTION I

1

DEFJSTE?
| STEP_TY1

r

PE [DESCRIPTION I

|TH1S_STEP I ID_COND VAL.COND | NEXTSTEP |

Figure 5: The general structure of the tables with information for the flow building

TRANSFER-VALUES. Transferring data from one step to another means associ-
ating the same field with two parameters: one output parameter appertaining to
the first function and one input parameter belonging to the successive function
(indicated by the specific logical flow). The first parameter will scatter the output
value in the field mentioned above, and the second one will gather it to use in its
function19.

For example, we can choose to associate the on output parameter of the / ,
function with the <FIELD_1> field at the Sj step. After we may associate the
ijk input parameter of the f j function with the same field in order to receive the
contained data at the Sj step.

The link between the parameters and their fields will be done according to
the step where the function is called (see FIELDS-THIS-STEP table). This table
contains the step's identifier, the parameter's identifier and the field's identifier
(associated with the field's description in FIELDS table).

The TRANSFER-VALUES table is composed of fields having names, types,
and initial values as described in FIELDS table. If many applications use the
same flow, many rows will be inserted in the table TRANSFER-VALUES, and
each application will identify its row by a number (record number). The value
memorised into ID-FIELD field (see tables FIELDS, FIELDS-THIS-STEP and
FIELDS-NEXT-STEP) indicates the position of the corresponding field in the
TRANSFER-VALUES table's structure. Please observe that we may associate now
the field <FIELD_1> with other inputs parameter for reusing the value memorised
there, or with other output parameters for loading it with a new value.

Let's consider another situation. Supposing the same function is used in the
same flow twice, with different values each time. There are two solutions:

• to associate new fields with the respective parameters, memorising their initial

1 9 Do you remember the interpretation of the parameters? Let's imagine now the field like a
room between two doors (the parameters): the value goes out from the first function and enters
in this room using one door. When it is necessary, the other door is open and the value leaves the
room, entering in the successive function.

304 Raluca Oana Scarlatescu

THESE3TEPS
I THIS_STCP I STEP TYPE | NUM_STEPS | ID_FUNCTION |

DEF_STEPS
I STEP-TYPE I DESCRIPTION |

NEXTR STEPS
I THIS_STEP I ID_CQND

FIELLS_THIS_STEP
I THIS_STEP I ID_PARAM

FIEL4S_NEXT_STEP
I THIS_STEP I ID-.COND"

TRANSFER-VALUES
I RECORD-NO I <FIELD_1>

VAI COND I NEXT_STEP I

ID_FIELD

ID_PARAM I ID_F1ELD I FIELD_VALUE I

FIELDS
ID-FIELD I FIELD-NAME | FIELD-TYPE |FIELD_VALUE|

<FIELD_2> F

Figure 6: A logical flow implementation in a database management system

values into the FIELD .VALUE fields (see FIELDS table);

to use the same associated fields and to reset the values.

In the second alternative another data set will be used, that specifies the initial-
isations to be made for a successive step in a known situation, given by the couple
(condition, successive step): FIELDS-NEXT .STEP. The parameters, the fields and
the associated values are memorised here, and will be set for a certain condition
that is realised during the application's execution. The table contains the step's
identifier, the condition's identifier (in order to know the branch), the parameter's
identifier, the field's identifier and its initial value.

The "field" concept offers a great flexibility in the functions' management. As
described above, the fields can be initialised with static values at the beginning
or at a certain moment during the run-time. They also permit the data transfer
between steps and functions.

Our database schema may be completed like in Fig. 6.
Resuming, we can consider the logical flow as an oriented graph. In each node a

certain function is realised and the next step is decided. Parameters' values may be
transferred from one node to another, using FIELDS-THIS-STEP table, and some
parameters may sometimes be re-initialised, using FIELDS -NEXT-STEP table.

The information related to the step execution may be represented as:

Si = Si(ti, { (C t i , S t + l) , • • • , (cifc, Sj+fc) , • . - , (c ¿ n ¡ , S « + n ;) } ,

fi(Vii,Vi2, . . .,vih, . . .,Vixi,Wii, . . .,Wu, . . . ,wiyi))
(8)

Programming by steps 305

si es, ti€ T, fi e F, cik e c, si+k e S
1 <i,i + k<m, \<k<rii i,k,m,rii£N

1 < h < X i , l < l < V i h,l,Xi,yi€N

where
Si - the step Si
U - the type of step Sj
fi - the function specific to the step Si
Vih - the value Sj of the input parameter i/, specific to the step Si
wu - the value of the output parameter Of specific to the step Si
(Cik, Si+k) - one of the couples (condition, successive step), for step Si, where

1 < k <rii, 1 < i + k <m

2.4 The Main Application
The main application will be built in order to roll over the logical flow memorised
in the tables, following the procedure presented in Fig. 7.

In this representation, an iterative alternative was chosen to operate the whole
logical flow. The idea to build such a program comes from the backtracking engine
used in the nonprocedural language Prolog, that can be stopped only with a specific
instruction (in our case: the value of the next step is equal to O)20.
In the case of "Programming by steps" method, the application that follows the
flow's evolution consists in a "do-while" cycle that operates until it receives a specific
exit instruction. A flow step is performed at any iteration, so that a specific function
is launched, then the next step is identified. The zero value for the step represents
the exit from the logical flow (and also from the program).

In this way the logical flows can be built physically, the main program has an
role of execution, but is transparent for the content of execution. If the functions
have been analysed and projected to be usable in many and different situations and
programs, then the programmers work is reduced only to organise the functions in
the necessary order and to fill in some linking information in the database tables.

From the Fig. 7 we may deduce the mechanism on which the method "Pro-
gramming by steps" is based and from where its name comes from: it loads one
step by one and executes each associated function. The sequence of steps is linked
to the specific characteristics for the. problem and for the domain.

3 How to apply "Programming by steps"?
"Programming by steps" method requires the next stages (see Fig. 8):

1. Domain Analysis

2. Main application development
2 0It may be used a recursive method that will be more suggestive- when the logical flow is

interpreted like an oriented graph.

306 RaJuca Oana Scarlatescu

Load general
variables

V
th is_step:= l

Yes

r
Load

information for
this_step

Execute
this_step

i r
Find

next_step

this_step:=next_step

Figure 7: The behaviour of the main application that executes the logical flow

3. Functions development

4. Functions integration in the Common Library

5. Specific problem analysis; if there are new functions to be developed go to 4,
else go to 6

6. Flow chart design and implementation for the problem solution

7. Application testing and homologation

For all these stages a short description will be presented21.

1) Domain analysis

2 1 Note: More homogeneous functionality has the analysed domain, more simply is to apply the
method. If the analysis is correct and the functions present a high degree of standardisation, the
steps 1,2,3, and 4 aire rarely used.

Programming by steps 307

Figure 8: The process model for the method "Programming by steps"

The general description of the domain analysis can be taken over from the
oriented objects design method, with the following definition: "the domain
analysis for the software consists of the location, analysis and specification
of the common requirements in a specific application sector in order to reuse
some parts of them in many projects from that sector"22.

In the "Programming by steps" method, the domain analysis looks for identi-
fication of general characteristics of the sector, the location of already existing
applications, the identification of future and present requirements, the identi-
fication of main requested functions, and the setting up of reusing projecting
standards.

2) Main application development

This phase permits to build the main application with its interface towards
the function library (internally or externally implemented).
The main software reads the information of each step, gathers the input
values of the corresponding function and interprets them, runs the function
and scatters the output results in associated fields, manages the checking of
all the steps, and ensures the execution of the entire system well (see Fig. 7).
The main application's characteristics are defined in the way of interacting
with the functions on one side, and with the, data on the other side. The
modality to execute the steps (recursive or iterative) is chosen, and the engine
that follows the logical flow is projected.

In this stage the database structure is implemented, which stores the data of
the steps and its priorities, functions and its parameters, static and dynamic
values of the parameters, errors etc. The structures that implement these
functions are projected.

22Unofficial translation from the Italian version of R. S. Pressman in "Principi di ingegneria del
software", 2000, pp.598, that refers D. G. Firesmith with "Object Oriented Requirements Analysis
and Logical Design", 1993

106 RaJuca Oana Scarlatescu

Functions development

The analysis starts from the functions identified at the first stage. The input
and output parameters are defined in order to be possible to use a function
in as many situations as possible.
The name, the data type and its dimension are established for each in-
put/output parameter. In order to raise the usage of a function it is rec-
ommended that each parameter accept many data types. Some conversion
mechanisms will be applied inside each function.
The data structures defined in second stage and represented in Fig. 3 are
loaded. The functions can be written in a high level language, or in the
language incorporated in the chosen database management system.

Functions integration in the Common Library

The role of this stage is to integrate the functions, which were projected at the
third stage, into a library. A friendly interface between the main application
and the library shall be created in order to reuse the functions if necessary.
However, the application will interpret the information memorised at the
second stage to access and run the functions.

Specific problem analysis

In this phase the problem must be identified within the area. It is necessary
to find similar problems and their possible solutions. If there is more than
one solution, one must be chosen and its corresponding functions must be
defined. When all of these functions are defined, we can go directly to the
sixth stage.
If the analysis reflects the necessity of new functions, we will return to the
third stage - Functions development, until all the new functions are integrated
into the Common Library.

Flow chart design and implementation for the problem solution

The projecting and implementation of the logical flow represent the effective
programming process. This stage's goal is the structure loading with the
specific values for the problem's solution.
It is based on the chosen solution at the fifth point, where the necessary
functions were identified and defined, and it continues with the establishing
of functions' succession. The logical flow is built up asking questions like:
"What really happens next in the process?", "Does a decision need to be made
before the next step?", or "What approvals are required before moving on to
the next step?". The data structures from Fig. 6 are loaded. The initial
values are established for each step.

Application testing and homologation

After putting all the pieces together, the logical flow execution must be tested
by the main application. With the flow chart already built, we need to make

Programming by steps 309

a test plan that covers all the different paths and to execute it, correcting the
eventual differences from the thought-established solution.

4 Comparative analysis between the "Program-
ming by steps", the "Rapid Prototyping" and
the "Component-based Design"

This section contains a short presentation of two other design method (Rapid Pro-
totyping and the Component-based Design) and some comparative characteristics
between these methods and the "Programming by steps" method.

The "Rapid Prototyping" method

"The prototyping paradigm may be <closed> or <open>"23. In the first case the
prototype is considered a "quick and dirty" affair, used like a communications aid
between users and developers. Once the sought information has been obtained, it is
discarded and conventional software design ensues (see Fig. 9). In the second case,
the prototype becomes the central focus of the process model, called "evolutive
prototyping". The prototype is scoped, scheduled, resources are allocated and
refined as depicted in Fig. 1024.

"One solution for the "Rapid Prototyping" consists of the prototype assembling
(instead of building it), using the existing software components. An existing soft-
ware product can be used like a prototype for a new product. In a same sense, this
is a reuse form applied on the prototyping"25.

In the case of the "Programming by steps" method, one or many existing ap-
plications may constitute a prototype model for a new one. In this way a new
problem will be quickly understood and resolved with predictable results. The old
functions are all homologated and their use will be secure and free of errors. In case
of detected errors, the corrections automatically touch the old applications (logical
flows) which therefore makes the maintenance process easier. But the model for
a new application is neither a closed prototype, nor an opened one, because it is
more, it is a functional model, with correct results and acceptance by the client.

The "Component-based Design" method

"Component based development offers a vision of plug and play software devel-
opment"26. "The Component-Based Software Engineering process is drastically dif-
ferent from the conventional software development process: it's integration-centric

•^Unofficial translation from the Italian version of R. S. Pressman, "Principi di ingegneria del
software", 2000, p. 301

24See R. L. Vienneau, R. Senn - " A state of the ART Report: software design methods", 1995,
p . 12

25Unofficial translation from the Italian version of R. S. Pressman, "Principi di ingegneria del
software", 2000, p. 302

2 6See M. Collins-Cope, D. Deveaux, P. Frison, H. Matthews, G. Pour, "Component Based
Development: Software Architecture, Component Models and Teaching", p. 1

310 RaJuca Oana Scarlatescu

Bui ld ing/analys is of
the mode l

Model's testing
by the client

Source: Unofficial translation from the Italian version of R. S. Pressman,
"Principi di ingegneria del software", 2000, p. 33

Figure 9: The prototype paradigm

Prototyping
paradigm

List of
rarisbns

Re/ise
prototype

User
exercises
prototype

System
D a ermine
scope and Prototype

statement of
work

Plan schedule
and resources

Autotype
de/ebpment

plan

Bidd
protDtvpe ^

Prototype
Refine and Defr/ered

requirements objectvesof
prototype

Prototype
statement of

work
torde/ebping
the prototype

Autotype
de/ebpment

plan Oäver ii to
user

Prototype e/oi/e *
prototype

system

Conventional
paradigm

Analyze user
require™ ens

Source: W.W. Agresti, "What are the New Paradigms?"

Figure 10: The Prototyping Paradigm and its Relationship to the Conventional
Software Development.

as opposed to development-centric. This is a real challenge for developers, but also
for teachers. New skills should be emphasised:

• connections between analysis, design and programming,

• documentation use and its construction,

Programming by steps 311

• testing and validation technologies,

• reliability and trustability,

• software project management"27.

"When building procedural code, common behaviour is extracted into some
kind of function or subroutine that can be reused in some way, either by having all
users call the same function implementation, or by copying the function into code
at compile time.

Source: Unofficial translation from the Italian version of R. S. Pressman,
"Principi di ingegneria del software", 2000, p. 45

Figure 11: Component-based Development

When designing a component-based solution, it is possible to extract a common
behaviour so that multiple consumers can use it"28.

The "Programming by steps" method may be situated between these two ap-
proaches: the common behaviour is extracted into functions like in a procedural
method. But, the way in which they are used is nearer to the component-based
method, because the main application calls them like external components. The
logical flow is composed piece by piece for every solution, reusing the functions.
The functions may be used to solve several problems of a specific domain, as well
as in a different application domain, if they have the requested functionality and a
recognisable interface29.

27See M. Collins-Cope, D. Deveaux, P. Frison, H. Matthews, G. Pour, "Component Based
Development: Software Architecture, Component Models and Teaching", p. 1

2 8See K. Mclnnis, "Component-based Design and Reuse", 1999, p. 2
2 9 The problem of CPU's usage shall be solved using a multiprocessor computer.

312 RaJuca Oana Scarlatescu

Table 1: Comparative requirements to apply the design methods: Rapid Prototyp-
ing, Component Based Development (CBD) and "Programming by steps"

Requirements Closed Open CBD Programming
Prototyping Prototyping by steps

Application domain well * * * *

known
Problems may be mod- * * * *

elled
Accurate and stable re- -

* * *

quirements
Ambiguous and contra- *

- - - -

dictory requirements
Possibility of reuse -

* * *

Source: adapted from, R. S. Pressman, "Principi di ingegneria del software",
2000, p. 302

"The component based development model represented in Fig. 11 incorporates
several characteristics of the spiral model. It presents an evolutive nature30 and
requires a software development iterative approach. However this development
model creates applications starting from software components ready to be used
(the classes)"31.

We see that also the "Programming by steps" method has an evolutive nature.
One could remark on the similarity between the process of component individuation
and design on one hand, and the process of function identification and design, on
the other hand. One function is like a component, with its functionality and its
interface implemented into the database tables (see Fig. 3).

In the next table we may see some requirements that could be used to choose
one of the methods:

Different advantages and disadvantages of the three methods are listed in the
Table 2.

/

5 Conclusions
The use of a high level language with a good database management system adds
some advantages to the "Programming by steps" method:

• the velocity and accuracy of computing offered by the programming language;

30See R. S. Pressman in "Principi di ingegneria del software", 2000, p. 44, that refers the article
of Nierstrasz, O., Gibbs, S., Tsichritzis, D., "Component-Oriented Software Development", 1992,
pp. 160-165

3lUnofficial translation from the Italian version of R. S. Pressman, "Principi di ingegneria del
software", 2000, p. 44

Programming by steps 313

Table 2: Comparative advantages and disadvantages

Advantages and disadvantages

Rapid understanding of the requirements
Rapid application building
Reuse possibilities
Reducing of the development cycle
Reducing of the project costs
Increasing of the productivity
Possibility to use wizards
Possibility to use non-expert personnel32

Prototype may be shallow and narrow
Components too complicated
Integration issues between main application
and database implementation

Rapid CBD Programming
Prototyping by steps

* I I * *
* * *

* *

* * *

* *

* * *
*

*

*

*

• faster and secure data access and manipulation, without concurrency prob-
lems offered by the database management system;

• larger volume of data that could be stored inside of the same database man-
agement system.

The idea of the functions' incorporation inside the database management sys-
tem, and the ability to be updated for different problems without touching the
source in the high-level language, raises the flexibility of the program and offers
new development's perspectives.

"Programming by steps" is a new method that designs and implements a mech-
anism that executes specific steps corresponding to a logical flow and permits to
build new applications only configuring some tables with the steps and the functions
necessary in that case. A new program may be designed building the succession of
steps with the necessary functions for the respective situation. In other words, the
software engineer would fill in some fields in the tables with some values in order
to complete the logical flow and then to run the program.

In a future release a non-specialist user could also be the "writer" of the software.
One possible solution is to implement a system, with an adapted graphical interface
(for example, an icon for each function). The user will have to choose the icons
and to connect them together in a logical flow. Another solution is to use a flow-
charting software for drawing the logical flow and then automatically to convert it
in the requested information in order to fill in the specific tables.

The "Programming by steps" method is based on the reusable functions that
may be designed without changing the main application. That offers flexibility and
manageability in obtaining new software releases.

3 2This feature refers to the situation when the library has already been implemented.

314 RaJuca Oana Scarlatescu

References
[1] Agresti, W. W. "What are the New Paradigms?" In Agresti, W.W. (ed.) "New

Paradigms for Software Development", Washington, DC: IEEE Computer So-
ciety, 1986

[2] Burns, T. "A Fresh Look at Flow Charting",
http://www.q-skills.com/flowchrt.html

[3] Chichernea, V., Botezatu, C., Iacob, I., Fabian, C., Mihalcea, R., Goron, S.
"Proiectarea sistemelor informatice", Sylvi, Bucharest, 2001

[4] Clauson, J. R., Glenn, T., Hunter, J. A. H. "Index of quality control tutori-
als", Clemson CQI Server Copyright (c) 1995 by Clemson University Portions
Copyright (c), 1995
http://deming.eng.clemson.edu/pub/tutorials/qctools/flowm.htm

[5] Collins-Cope, M., Deveaux, D., Prison, P., Matthews, H., Pour, G. "Com-
ponent Based Development: Software Architecture, Component Models and
Teaching", CBD-TOOL, 2000

[6] Firesmith, D.G. "Object Oriented Requirements Analysis and Logical Design",
Wiley, 1993

[7] Mclnnis, K. "Component-based Design and Reuse", Castek, 1999

[8] Mihalca, R., Tataru, A. "Realizarea produselor program. Metode si tehnici de
analiza si proiectare structurata", Scripta, Bucharest, 1994

[9] Nierstrasz, 0 . , Gibbs, S., Tsichritzis, D. "Component-Oriented Software De-
velopment", CACM, vol. 35, no. 9, September 1992, pp. 160-165

[10] Pressman, R. S. "Principi di ingegneria del software", third edition, McGraw
Hill, Milan, 2000

[11] Vienneau, R. L., Senn, R. "A state of the ART Report: software design meth-
ods", ITT System Corporation, Griffiss Bussiness and Technology Park, Rome,
1995 - http://www.dacs.dtic.mil/techs/design/Design.toc.html

[12] *** "The New Oxford Dictionary of English", Clarendon Press, Oxford, 1998

[13] *** ISO 9004-4 "Quality management and quality system elements, Part 4:
Guidelines for quality improvement", Geneva, first edition, 1993

http://www.q-skills.com/flowchrt.html
http://deming.eng.clemson.edu/pub/tutorials/qctools/flowm.htm
http://www.dacs.dtic.mil/techs/design/Design.toc.html

