
Acta Cybernetica 16 (2003) 2 7 1 - 2 7 8 . 

Two Content Protection Schemes 
for Digital Items 

Paula Steinby* 

Abstract 

Modern techniques make digital articles easy to copy and manipulate. 
Content protection systems aim at protecting the rights of producers and 
distributors. These mostly rely on data encryption, digital watermarking, and 
special-purpose devices. In this paper, we describe two content protection 
schemes, both of which make use of tamper-resistant devices and devicer 
dependent decryption keys. One of the schemes uses a modified El Gamal 
system, in the other one we combine watermaxking with encryption. 

1 Introduction 
Consider a scheme where a digital article is distributed over an insecure channel. 
During the transmission, the data may be subjected to eavesdropping and trans-
formations. The combination of digital data and modern techniques to handle it 
brings along some controversial possibilities. Producing identical or manipulated 
copies of a digitized item is easy, and devices and programs for this purpose are 
commonly available. 

For the parties using the transmission channel, there is a need for privacy and 
content authentication (i.e. capability to detect any data manipulation). Owner 
of an item may require copyright protection and further, a possibility for traitor 
tracing, maybe even for copy and/or use control of the item. 

Content protection systems have been designed to protect media producers and 
distributors. The existing tools are limited: data encryption, digital watermark-
ing, tamper-resistant and special-purpose devices. Encryption contributes to the 
privacy of the parties as well as makes the data useless for those without means to 
decrypt it. Watermarking enables one to recognize the copyright owner, or even 
distinguish between each copy of the data. A unique label in every copy provides for 
traitor tracing. This type of watermarking is usually referred to as fingerprinting. 
Cryptographic protection gives privacy for the transmission, but there lies a fun-
damental weakness in it. Namely, one must remove the encryption at some point 
to reproduce the item, thus leaving the item without any protection whatsoever. 

"Turku Centre for Computer Science, 20014 Turun yliopisto, Finland, email: pauste iutu . f i 

I 

315 



316 Paula Steinby 

Special-purpose devices may offer a solution to this problem. These are devices 
with some special features, designed in view of a certain operating system. In this 
work, we describe two content protection schemes, which both make use ofepecial-
purpose devices, and device-dependent decryption keys. In Chapter 2 we describe 
a scheme with a modified El Gamal system, where the device can recognize if the 
input is supposed to be given in encrypted form, and refuses to process such data 
if given in plaintext form. In Chapter 3 we sketch a scheme to combine encryption, 
watermarking and compression of the data. In both schemes, we assume the device 
to have a secret key which is not known to anybody outside the device. 

Digital watermarking is the so far best technique to protect an item after de-
cryption. As the ultimate goal of content protection (i.e. making producing illegal 
copies impossible) remains unachievable, digital watermarking introduces methods 
to make producing, distributing and using illegal copies of some data unattractive: 
difficult, risky or unprofitable. We use digital watermarking for both schemes dis-
cussed in this paper, in order to bring security even in the case where the security 
provided by encryption and/or the device failed. 

2 A scheme with modified El Gamal system 
In this section, we sketch a method to protect copyrighted digital items using 
techniques based on public-key cryptography and a tamper-resistant device T>. The 
items to be protected can be visual, aural, etc. We assume that a public-key 
interface is used: each V is equipped with a public-key pair (iu, sp). The private 
key sv is unknown even to the owner of V. (It is a common practice that private 
keys are generated within smart cards such that no other unit will ever learn them.) 

Our scheme has the following features: 

• The data is delivered to buyers in encrypted form. The encryption is the same 
for all buyers. This is convenient, because then it is enough for the merchant 
to perform a single encryption on the data, and then make it freely available. 
We denote the (symmetric) encryption/decryption key by K . 

• A tamper-resistant special-purpose device V is needed to reproduce the item. 
The respective device-dependent key is needed for V to be able to compute 
the decryption key K . Hence, this key is different for all buyers. 

• Even if K was revealed, legal unhacked devices could not exploit it. 

Consider giving up the last feature in the list. Then the key delivery could be real-
ized by encrypting the decryption key K with the public device key i®, and sending 
it to T>. But if the decryption key was revealed, then unauthorized device-dependent 
keys could be easily computed, and thus legal devices would be compatible with 
hacked documents. Preventing this seems highly desirable. 

In the following, we present the notation and the cryptographic primitives that 
will be used in our protocol. 



Two Content Protection Schemes for Digital Items 317 

• The tamper-resistant devices use an El Gamal type public key encryption 
system. The domain parameters common for all are p and g, where p is a 
large prime (1024 bits), and g is a generator modulo p. The private key of 
V is s-p (0 < sx> < p — 1), and the corresponding public key is t-p = g3TI 

(modp) . 

• M (the Merchant) has an item for sale. We denote the digital representation of 
the item by I. Prior to delivery, I is encrypted using a symmetric encryption 
function E with key K. We denote enc(I) = E(I,K). 

• B (the Buyer) wants to buy the item, and he has the device V with the key 
pair ( sp , ip ) to reproduce it from I. 

• h is a cryptographic hash function with output length equal to the key length 
1*1-

For encryption, M could use some fast stream cipher. If, say, RC4 with key length 
160 was used, then SHA-1 can be chosen for h with a 160 bit output. 

The Protocol 
The protocol proceeds as follows. Step 0, where M encrypts her data, is preliminary. 
Steps 1 and 2 constitute the purchase phase, and in step 3 B's device V decrypts 
and reproduces the data. 

0. M selects a random a G [1 ,p — 1] and computes K = h(ga). Then M 
computes enc(I) = E(I,K), which is the data set for delivery. 

1. B sends M a request for I together with his device public key ip. 

2. M computes r = t% (mod p) and sends B the pair /3 = (x,y), where x = 
ga • ip (mod p) and y = gr (mod p), together with enc(I). 

3. B inputs (x,y) and enc(I) to his device T>. V computes K' = x • ( y s ) _ 1 

(mod p), r' = K's (mod p). Then it checks whether y = gT (mod p). If 
this is the case, then V computes K = h(K') and I = D(enc(I),K) and 
reproduces I. 

The protocol is a modification of El Gamal system. The difference is that instead of 
picking a random r we choose r = f£>, thus tying the value to the device V through 
its public key t-p- If the protocol is properly performed, then V obtains the correct 
key K in step 3. This is verified by observing that 

K'=X- ( y T 1 = (ga • trv) • 9~rs = ga • 9rs9~rs = ga ( m o d p), 

and hence K = h(K'). It follows that 

r' = K" = gas =t% = r, 



318 Paula Steinby 

and hence the check in step 3 is always successful if r is of the right form. 
Let us weigh a legal buyers chances to determine K after the purchase (without 

hacking V). B knows the public key £p, and a pair (x , y) where x = ga (mod p) 
and y — gr (mod p). Clearly, finding K is equivalent to finding ga. Thus the task 
would be to compute = grs, given i-p = g" and y = gT. This is the famous 
Diffie-Hellman problem (DHP), for which no efficient algorithm is known. DHP is 
believed to be equivalent to the discrete logarithm problem (the equivalence has a 
partial proof, see [1]). The fact that r is of special form, r — gas, does not seem to 
help, but one could as well select r = hash(gas) to be on the safe side. Then also 
the check in step 3 changes to y — <?hash(r ) (mod p). 

To be able to produce any device-dependent keys needed to decrypt and repro-
duce enc(J), one must be able to compute r for a given t. For this purpose, one 
must know either a, or the respective s, since r = ta = (x(ys)~l)s. Note that the 
problem does not become any easier even if a hacker has discovered the encryption 
key K = ga\ there is still the discrete logarithm problem to be solved for a. As we 
assumed that the knowledge of s is not available outside V, we conclude that it is 
M alone who can make enc(I) compatible with V. 

Drawbacks and improvements 
In most cases, it would be useful if it was possible to display some unencrypted items 
with V as well. However, we want to be able to distinguish between a document, 
which was originally delivered in plaintext form, and another document which was 
purchased in encrypted form and later decrypted. In particular, the decryption 
D(enc(I),K) of enc(I) should be distinguishable from any originally unprotected 
piece of data. Then, even if a hacker was able to decrypt enc(I) (i.e. the key K 
was somehow revealed), this decrypted version would not be too useful because it 
would be rejected by the device T>. 

One solution is to embed an 'information bit' b into I before encryption, thus 
labeling I as a protected document. For instance, if b = 1, then any V would refuse 
to process the data when input in the plaintext form. The bit b can be embedded in 
j using some robust watermarking scheme, so that b cannot be removed or its value 
changed without also destroying the document (see f.ex. [2], [3], [6]). The device 
V then checks the value of the watermark in I, and decides whether to reproduce 
I or not on the grounds of the value of b. 

We must require that any key K is authorized by some trusted third party 
T. Otherwise, if a hacker H can access I which is decrypted but unreproducable 
with any legal device because of the watermark, he can easily sidestep the hindrance 
caused by b. Namely, re-encrypting I will do the trick: H can choose the encryption 
key, take the position of M and thus compute any device-dependent key /3. 

To prevent this possibility, M includes T's signature for the encryption key K 
to the device-dependent key /3 in Step 2 of the protocol. In other words, 0 becomes 
a triple (x , y , z ) , where x and y are as before, and 2 = sigT(K). When V gets 0 



Two Content Protection Schemes for Digital Items 319 

as input, it checks the validity of 2 before using K . Naturally, it must be assumed 
that hackers cannot obtain T's signatures for their own keys. 

There is still another major weakness in the system. Suppose that hacker H 
has got hold of a key K used for some / , and that some user B has acquired the 
same I. Thus, B has received the respective decryption key /3 = (x , y , z ) . Now H 
and B can collude: any time the hacker is able to hack some item J, then he can 
re-encrypt it with K. Consequently, B can use the same ¡3 to decrypt J, without 
having to purchase a legal copy. 

The obvious solution is to bind each key K to a specific item I. We propose a 
few methods. The simplest one is to set z = s igT (K || I). The drawback is that 
then V has to read all of I before it can determine whether z is valid. A more 
practical solution would be to divide I into blocks Iq, /1, . . . ,In, and encrypt each 
with a different key Ko, K\, . . . ,Kn. KQ is the original key K, and each Ki is a 
function of K^i and a hash of /¿-1. In this case we have z = sigT(Ko || Iq), and 
V can decide z's validity right after reading 7o-

A variant would be to set 2 = sigT (K || w), where w is a watermark embedded in 
I prior to encryption, w could contain any kind of information on I, the purchase 
etc. The information bit b could be included in w as well. Depending on the 
placement of w in I, again V must have read at least some of I before it can verify 

The primary aim of the proposed content protection system is to prevent hackers 
from getting hold of unencrypted data items, and - if failing in this - secondary to 
minimize the usability of illegally decrypted data. The scheme does not have traitor 
tracing feature. This means that should we come short of both the goals, and illegal 
copies of I were made and distributed, there would be no way to find who is to 
blame. 

A way to add traceability would be to make all the legal copies look different, i.e. 
uniquely fingerprint them. The devices V could be equipped with an additional 
watermarking module and each I would be labeled before putting it out. Each 
device would have an unique watermarking pattern, and hence each copy of I 
would be different and distinguishable. The obvious weakness of this solution is 
that it relays quite heavily on the tamper-resistance of the device. One could argue, 
that if somebody can hack V to obtain K and I, he would probably be able to pass 
by the watermarking module as well. 

3 Encryption with Watermarking 
In this chapter, we will describe a purchase protocol combining encryption with 
watermarking. Data encryption adds to the privacy of the parties, watermarking 
enables copyright protection and traitor tracing. We choose to use a watermarking 
scheme which is compatible with the compression procedure, since it is customary 
to compress any data prior to sending it over a transmission channel. Next we will 
discuss watermarking and combining it with compression, after which the scheme 



320 Paula Steinby 

with encryption and watermarking is presented. We assume that the subject of the 
purchase I is an image. A watermark, a bit sequence of length N, is denoted by w. 

Combining watermarking with compression 

In general terms, watermarking an image I means encoding the bits of a watermark 
w into I in some imperceptible way. A usual practice is to divide I in blocks of 
8 x 8 pixels, and (pseudorandomly) choose the blocks in which the watermark will 
be embedded. Values of certain coefficients of I will be manipulated, and their 
absolute or relative values will then indicate the values of encoded bits of w. 

Images are usually expressed by giving the gray-scale value(s) of each pixel. 
However, to achieve greater robustness and minimization of the computation time, 
watermarking is often performed in some transform domain instead of the spatial 
one. Namely, it is easier to predict the effects of compression (or some other ma-
nipulation) on the watermark if we work in the same domain as the manipulating 
algorithm. 

Compression algorithms make use of different transformations to separate the 
data into parts of different importance with respect to visual quality. Discrete 
Cosine Transformation (DCT) is an orthogonal transformation exploited by e.g. 
JPEG and MPEG algorithms. Its different basis vectors capture different features 
present in the input data. The effect is that the role of low frequency coefficients is 
emphasized, whereas most of the high frequency coefficients are small, and will be 
rounded off to zero during the compression. Therefore, placing the watermark in the 
low frequency DCT coefficients greatly adds to its robustness against compression. 
(For a throughout introduction on current watermarking schemes, see Chapter 6 in 
[3], or Chapter 8 in [2] on robust watermarking in general. A detailed description 
of the baseline JPEG can be found in [5].) 

As changes in low frequency components easily become perceptual, various per-
ceptual models, i.e. models imitating human visual system, are exploited in wa-
termarking. One can use these models to compute so-called masking constraints, 
upper boundaries for the amounts a certain coefficient can be changed without 
causing visual effects. For more on the subject, see Chapter 7 in [2]. 

Many of the masking functions give the boundaries in the spatial domain instead 
of the frequency one. Often the problem has been solved by first embedding the 
watermark in the frequency domain and then cutting the visible changes in the 
spatial domain. The watermark remains imperceptible, but suffers in robustness. 
The framework by Pereira & al. in [4], however, enables strong watermarking in 
the frequency domain without violating the constraints in the spatial domain. 

3.1 Combining watermarking with encryption 

Whichever watermark embedding system or masking function is used, we can 
assume the outline of the procedure to be as follows: 



Two Content Protection Schemes for Digital Items 321 

User Key KJJ 
Position 
Sequence 
Generator Image data I 

Watermark W 

Watermark 
Embedding 
System 

Watermarked 
image / ' 

The Position Sequence Generator is used to pseudorandomly select the pixel blocks 
of the image in which the watermark is placed. Hereafter, we use the word "image" 
as referring to a single 8 x 8 block, and "embedding a watermark" means encoding 
a single bit of the watermark in the block. This is natural, since embedding a 
longer watermark in a bigger image means just repeating this procedure for many 
enough blocks. The following notation is adopted: 

I — the DCT-coefs of an image block 
I' = the DCT-coefs of the image after watermarking 
w = the watermark 
E — encryption coefficients 
D — decryption coefficients. 

For simplicity, we assume that all the variants above are real valued vectors 
of length 64, although most of the entries are zero for w, E and D. By + we 
denote component-wise addition of two vectors. 

Whichever the actual watermarking embedding system, watermarking means 
making imperceptible changes in some low frequency DCT coefficients of the image: 
/' = I + w. We note that encryption is realizable in the fashion of watermarking, 
by making perceptible changes in the coefficients: enc(I) = I + E. Here E's non-
zero entries are placed in the low frequency DCT coefficients, and they are large in 
magnitude compared with w. 

Naturally, decryption reverses the effects of encryption in a straightforward 
way: I = enc(I) + D where D = —E. However, the idea of the following protocol 
is to combine watermarking and encryption through 'imperfect decryption', that 
is by setting D = w — E. Then 

enc(I) +D = enc(I) + (w - E) 
= I+E-E+w 
= I + w 
= / ' . 



322 Paula Steinby 

Clearly, decryption strips off most but not all of encryption, leaving I watermarked. 
Further, if w is unique, then so is I'. 

Let again Merchant M and Buyer B be the parties of a purchase protocol. 
M has image I for sale, which he encrypts prior to setting it for distribution. B 
has a device V to display the data. During the protocol, M delivers B a unique 
decryption vector D. As comparison between two decryption vectors D and D' 
gives away a lot of information on the respective watermarks w and w', any two 
buyers of the same item could collude and easily destroy the watermarks, unless 
the decryption vectors were somehow protected. We solve the problem by adding 
a device mask as follows. 

Connected to every device, there is a unique device key Kdev which determines 
a mask Dev. Dev is an integer vector, which the device will automatically subtract 
from the DCT-coefficients of any data prior to reproducing it. Therefore M adds 
the respective Dev to each decryption vector D\ 

enc(I) + D = I + E+(w + Dev- E) = I' + Dev. 

It is important that the explicit value of Kdev remains unknown to everybody except 
for M, because the presence of a secret Dev in D makes comparisons between 
different decryption keys useless. However we assume that B has an index number 
k, with which B can enable M to find out the actual Kdev 

The main features of the protocol are as follows: 

• Purchase: B sends the index k to M for computing Kdev• M returns B a 
unique decryption key KD,B• Applying KD,B to enc(I) using the device V, 
B receives a copy of I with a unique watermark WB-

• Tracing: Suppose B illegally redistributes his copy of I. He can be traced on 
the basis of the watermark wb, which can be extracted only from the copies 
originating from his version of I. 

• One encryption of I can be distributed to all buyers, but each decryption key 
is bound to a certain buyer with a certain device. The unique watermarking 
is forced to be done along the decryption. 

The Protocol 
We will adopt the following notation: 

Dev = the mask removed from any input data by V on the basis of 
the key Kdev 

wb = a unique watermark embedded in B's copy of I. 
KE = the encryption key, on basis of which the encryption vector E 

is computed. 
KD,B — the decryption key, from which the decryption vector DG for 

buyer B is achieved. 



Two Content Protection Schemes for Digital Items 323 

The protocol consists of a preliminary step (step 0), the purchase phase 
(steps 1 to 3), and step 4 where B's device decrypts and reproduces the data. 

0. M encrypts image I with a secret, symmetric key KB- Encrypted image 
enc(I) is set for distribution. 

1. B gives M the index k for computing the key Kdev 

2. M computes Kdev on the basis of given k, chooses a watermark wb for B, 
and computes a unique decryption key KD,B s.t. D = Dev + w — E. 

3. M returns KD,B to B. 

4. B applies KD,B together with the device key KDEV to enc(K). 

In the last step, 

enc(I) enc(I) +D = I + E-E + Dev + W 
= I' + Dev, 

and further 
/' + Dev I' + Dev - Dev = I'. 

Hence the result of V's computations is the watermarked image I'. 
We have not specified the correspondences KE ~ E, KD ~ D, or K^ev ~ Dev. 

Use of the keys is necessary, since the actual vectors D and Dev are too long and 
too many to be transmitted as such (even though they mostly consist of zeros). 
A mapping to pack the information is needed. Possible solutions are many, as an 
example we give one. 

We have thought of D and Dev as 64-dimensional integer vectors. Let us present 
a vector as a concatenation of the binary presentations of its entries, and let N be 
an integer such that for every entry i in D or Dev, |i| < |JV.|. The length of the 
binary presentation is then 64 • log2(2iV). For N = 215 this equals 1024. We can 
establish a one-to-one correspondence between 1024-long binary vectors and the 
elements of the group Z*, where \p\ = 1024. Therefore, each vector D or Dev can 
be presented as an element of Z*. 

Note that most of the entries of the vectors are zeros, as it is enough to 
mask/encrypt about five to twenty most significant of them. Thus, we can cut 
the extra zeros by setting for example D,Dev G [—N, N]20. Then, for N = 215, 
20 • log2(2iV) = 320 and thus the vectors can be expressed as elements of Z*, where 
p = |320| only. 

In the previous scheme we assumed there is a mapping k —> Kdev, which re-
mained unknown to B but could be found out by M. In this case, it could be f.ex. 
a permutation on Z*. In the following chapter, we will re-examine the concepts of 
and relations between k, Kdev and Dev. 



324 Paula Steinby 

3.2 On the device key Kdev 

Consider the following scheme: buyers B and B' with devices V and V resp., both 
purchase an encrypted item enc(I) = I + E from the merchant M. The following 
communication takes place: 

M -)• B : KD,B ~ DB = -E + Devv + WB 
M B' : Kd,b' ~ Db' = -E + Devv+wb' 

Here is a chance for B and B' to collude. Subtracting one decryption vector 
from the other, they learn S = Dev-p — Devv + wb — vjb'- Here wb — wb' is 
small, thus S « Dev-p — Dew• Now, if B buys another image enc(J) = J + Ej, 
then B' can use the corresponding decryption vector Dg = —Ej + Devp + w'B by 
computing 

DJB,=DJB-S = -Ej + Dew + e, 

where e = w'B + wB' — vjb is a small error. Decryption of enc(J) with the new 
vector Dg, using the device V yields J' J + Dev-D + e - » J + e. Thus, B' can 
use his own device to reproduce B's copy of J with only small distraction. 

The above scheme suggests that the device mask Dev should not be fixed, but 
different for each I. In our model, Dev is deterministically computed from a device 
key Kdev (see the end of the previous chapter). Thus, what we need is a method 
to generate keys Kdev As the computation Kdev -> Dev is reversible, Kdev must 
remain unknown to B. 

Relying on the tamper-resistance of V., the keys could be generated within the 
device by some function fn(k) = K%ev, for n — 1 ,2 , . . . etc. The merchant would 
be able to compute Dev if he was given the pair (k, n) instead of the index k only. 
However, the system with indices and secret generating functions seems somewhat 
impractical, because duplex communication between B and T> is needed, as well 
as an active third party with the knowledge of k ~ Kdev correspondences and the 
functions / . 

To avoid these difficulties we take a new starting point: allowing M to take 
part in the generation of Kdev If M is able to compute Kdev on his own, then the 
role of index k shrinks into tying Kdev toV. If M can actually decide the value of 
the key (and thereby of the mask) used in decryption, then M can as well give the 
value of the decryption key and the mask together. In other words, M can provide 
B with a key K, which corresponds with the vector Db - Dev, instead of giving 
Kd'-'b a n d Kdev separately. 

Let us discuss options of carrying out the above scenario. Let M provide V with 
a seed d to generate Kdev, as a function of both I and k, for example. M generates 
d from I, and computes f{k,d) = Kdev ~ Dev. If M sends dtoB together with 
the decryption key (step 3), then V can compute Kdev too. The problem is that 
so can B, unless the function / is kept secret from B (but it has to be available to 
V, which in turn again would complicate the system). 

Function / is not needed, if M decides the value of Kdev and sends it to B as 
such. However, if Kdev has the value of an element in Z*, then the correspondence 



Two Content Protection Schemes for Digital Items 325 

Z* ~ {0,1} 'P ' between the key and the mask must remain unknown to B (but 
accessible to V). If V possessed a public key pair (sp, ip), then M could protect 
Kdev from B by encrypting it with tv before handing it out. V would still be able 
to find out Kdev, since it has access to sp. 

The scheme with V possessing a public key pair (sj5,io) where sp is accessible 
to V only (c.f. the scheme in Chapter 2) seems useful. We can use the Diffie-
Hellman protocol to generate the key Kdev as follows. M creates an ephemeral key 
pair (SMJ^M), and performs the D-H protocol to obtain Kdev = t'o • Then he can 
further compute Dev, and compute the decryption vector DB = —E + Dev + WB-
Now M sends B both KD,B and Given these, V can decrypt enc(I), since 
enc(I) + DB = (E + I) + (-E + Dev + wB) = I + Dev + wB = I' + Dev, where 
Dev — tS]fi • On the other hand, on basis of the given information, B cannot learn 
and remove Dev, as he does not know so which is needed to compute Kdev 

Assume Kdev is generated as above. M wants to give B a key K such that 
K ~ DB — Dev = —E + WB (we assume that he can easily compute the target 
value K once he knows DB — Dev). To give DB — Dev with a single key, we can 
proceed as follows. 

1. M computes the value of K ~ Dev + DB-

2. M generates a random public-key pair (SM,tMJ, and computes Kdev = tSQ . 

3. M computes the difference A = K — Kdev and sends t^ and A to B. 

4. V computes Kdev = ts^, and further K = A — Kdev 

As B knows only that A is the difference between K and Kdev, he cannot find out 
either of these values because he does not know sp. The key K is computed in 
each end of the transmission channel, but not transmitted at all. 

The above method can be applied even if Kdev was generated in some other 
manner, as long as M can find out the target value K ~ DB — Dev on his own. 
Then the difference between a random key t3^ and the target is computed, and to 
and the corrective key (A above) are given to B. 

References 
[1] B. den Boer, Diffie-Hellman is as Strong as Discrete Log for Certain Primes, 

Proceedings of CRYPTO'88, LNCS 403, Springer-Verlag, 1988, pp. 530-539. 

[2] I. Cox, M. Miller and J. Bloom, Digital Watermarking, Academic Press, San 
Francisco 2002. 

[3] S. Katzenbeisser and F. Petitcolas (ed.), Information Hiding Techniques for 
Steganography and Digital Watermarking, Artech House, London 2000. 

[4] S. Pereira and T. Pun, Optimal Transform Domain Watermark Embedding 
Via Linear Programming. Signal Processing 81, No. 6 2001, pp. 1251-1260. 



326 Paula Steinby 

[5] K. Wallace, The JPEG still picture compression standard. Communications of 
the ACM 34, No. 4 1991, pp. 30-40. 

[6] J. Zhao and E. Koch, Embedding Robust Labels Into Images For Copyright 
Protection. Proceedings of the International Congress on Intellectual Property 
Rights for Specialized Information, Knowledge and New Technologies, Vienna 
1995. 


