
Acta Cybernetica 16 (2003) 271-278.

A Graphical User Interface
for Evolutionary Algorithms*

Zoltán Tóth f

Abstract

The purpose of Generic Evolutionary Algorithms Programming Library
(GEA1) system is to provide researchers with an easy-to-use, widely applica-
ble and extendable programming library which solves real-world optimization
problems by means of evolutionary algorithms. It contains algorithms for
various evolutionary methods, implemented genetic operators for the most
common representation forms for individuals, various selection methods, and
examples on how to use and expand the library. All these functions assure that
GEA can be effectively applied on many problems. GraphGEA is a graphical
user interface to GEA written with the GTK API. The numerous parameters
of the evolutionary algorithm can be set in appropriate dialog boxes. The
program also checks the correctness of the parameters and saving/restoring
of parameter sets is also possible. The selected evolutionary algorithm can
be executed interactively on the specified optimization problem through the
graphical user interface of GraphGEA, and the results and behavior of the
EA can be observed on several selected graphs and drawings. While the main
purpose of GEA is solving optimization problems, that of GraphGEA is ed-
ucation and analysis. It can be of great help for students understanding the
characteristics of evolutionary algorithms and researchers of the area can use
it to analyze an EA's behavior on particular problems.

1 Introduction
Evolutionary algorithms (EAs for short) are general purpose function optimization
methods that search for optima by making potential solutions (individuals) compete
for survival in a population. The better a potential solution is, the better chance
it has to survive. The individuals are represented by means of a predefined data
structure {genotype), and the evaluation considers the performance of the individual
in its current environment (phenotype). The search space is explored by modifying

"This work was supported by the grants of the German Academic Exchange Service (DAAD)
^Institute of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary. Now

visiting Department of Computer Science 2: Programming Systems, Priedrich-Alexander Univer-
sity of Erlangen-Nuremberg, Martensstr. 3, D-91058 Erlangen, Germany,
e-mail: zntothiinf .u-szeged.hu

'The project's home page can be found at h t t p : / / g e a . z t o t h . n e t

337

http://gea.ztoth.net

338 Zoltán Tóth

the genotypes by genetic operators observed in nature: generally mutation and
recombination [15, 22, 32].
Evolutionary algorithms have (among others) the following two advantages over
other optimization methods: first, in most cases they converge to global optima,
and second, the usage of the black-box principle (which only requires knowledge
of a function's input and output to perform optimization on it) makes them easily
applicable to functions whose behavior is too complex to handle with other methods.
The huge amount of practical applications presented on numerous conferences show
that EAs represent a relatively new and important group of function optimization
methods. Nevertheless, being stochastic processes, it is hard to understand the
functioning of a particular algorithm and build a suitable model of it. An even
more difficult problem is to choose the optimal algorithm and determine the values
of its parameters for a given problem or problem class.
Visualizing the interiors of an algorithm can be a great help in the understanding
of its inner processes and behavior. For example, it is very easy to see the effects of
a parameter or a selection method on the diversity of the population in the different
phases of the evolution process.
The visualization of evolutionary algorithms is useful in education, too. Not just
because it is much easier to fascinate students with a nice and handy graphical user
interface, but also because they can become acquainted with the most important
features of evolutionary computation. They can experience with different parameter
settings and see that the changes in the behavior of the process are really those
which they have heard of or read in the literature.
The purpose of this paper is to present a tool for visualizing evolutionary algo-
rithms: the GraphGEA program. GraphGEA is a graphical user interface (GUI)
to the Generic Evolutionary Algorithms Programming Library (GEA) [36]. GEA is
an easily applicable and extendible evolutionary programming tool written in the
C + + programming language. By interacting with the evolution process running
in the background as its child process, the GUI shows the course and the status
of the optimization in various configurable visualization windows. GraphGEA can
be easily extended with new methods showing the interiors of the optimization, for
these methods are realized as plug-ins of the system. The communication is imple-
mented by means of the so-called pipe mechanism and UNIX IPC (inter-process
communication).
Last but not least, an evolution process can have a great many parameters, the
values of which are usually strongly interconnected or dependent. The GraphGEA
program can just be used to manage optimization projects, for it assures that all
necessary parameters of the selected algorithm and representation of individuals
are correctly set.
In the following, Section 2 offers a short overview of evolutionary algorithms. The
presented systems use a special data structure to hold the parameters of the evo-
lution process, this data structure is presented briefly in Section 3. Section 4 deals
with the GEA system: the class hierarchy, the functioning of the various evolu-
tionary algorithms, the selection methods and the genetic operators are described.
Section 5 presents the GraphGEA program with a detailed description of the user

A Graphical User Interface for Evolutionary Algorithms 339

interface and the visualization tools. In Section 6, some references to and compar-
isons with the related work can be found. Finally in Section 7 a summary of the
work is given.

2 Evolutionary Algorithms
In this section an overview of evolutionary algorithms is given, focusing on details
that are important for the GEA and GraphGEA systems.
Evolutionary algorithms (EAs) are general purpose function optimization methods
which use the 'survival-of-the-fittest'-model known from nature [8]. In this model,
individuals compete for resources in an environment, and selection assures that
individuals which are better suited for the given environment will produce more
offspring. Thus the preservation of good attributes is guaranteed.
Unlike most optimization methods, EAs consider several potential solutions at a
time. These potential solutions, called individuals from now on, form a population.
The individuals interact with each other, thus they create new individuals to form
a new generation.
An individual of the population is represented with a sort of data structure. The
most common representation forms for individuals are bit-string and real vector.
Each element of the vector is called a gene. The chain of genes is also called
a chromosome. The values in it are the individual's genotype. The appearance
of an individual - which can be e.g. a permutation of certain numbers - is called
phenotype. Evolutionary algorithms work on the level of the genotype, which means
that they modify the encoded form of individuals. When evaluating an individual in
its current environment, its phenotype is considered. The result of the evaluation is
the fitness value, a specified extremum of which has to be found by the evolutionary
algorithm. This fitness value is considered when performing selection.
The creation of new individuals is implemented by applying certain genetic opera-
tors on the selected parents. The most common genetic operators are reproduction,
mutation and recombination. Reproduction and mutation are unary operators. Re-
production simply copies the individual into the new generation, while mutation
modifies its argument by randomly changing each gene of it with a certain prob-
ability. Recombination takes two or more individuals and creates new ones by
exchanging parts of their gene-chains. Each genetic operator is applied with a cer-
tain probability. However, sometimes one operator is more efficient than the others
and it is not easy (or at least it requires experiment) to set the probabilities cor-
rectly at the start of an evolution process. Davis offers a solution to this problem:
let's change the probabilities dynamically during the evolution process by observing
the effectiveness of the operators. He calls this method the adaptation of operator
probability [9].
Generally, the procedure of an evolutionary algorithm is the following: the struc-
tures in the initial population can be generated randomly or, if an initiative solution
is known, then that one can be used with random modifications. Then the individ-
uals are evaluated and new generations are created until a termination condition

340 Zoltán Tóth

is satisfied, which, in the simplest cases, is reaching a certain generation number
or the stagnation of the best individual's fitness value. The generation of the new
population is absolutely algorithm-dependent, so these methods will be discussed
at the specification of the algorithms.
Several kinds of evolutionary algorithms are known, the most important ones of
which are genetic algorithms (GAs) [10, 15] and evolution strategies (ESs) [31].
They were developed independently in the 1970s: GAs were introduced by John
Holland and analyzed by his students (e.g. Kenneth De Jong) in the USA, and at
the same time, evolution strategies were invented in Germany by Ingo Rechenberg.
The main differences between these two kinds of EAs are the method of creating
the new generation and the typical representation form for individuals: it is bit-
string for GAs and real vector for ESs. The two kinds of EAs also differ in the way
genetic operators are applied.
There is a special kind of genetic algorithms, namely genetic programming (GP),
introduced by John R. Koza [22]. The main invention of GPs is that branching
structures can be evolved. Most of the methods are the same as in GAs, but there
are special genetic operators designed for branching structures: e.g. recombination
replaces subtrees of the selected individuals.
In the following, the characteristics of genetic algorithms, genetic programming and
evolution strategies are presented in brief. At the end of the section, the possibilities
of the visualization are discussed.

2.1 Genetic Algorithms
Genetic algorithms are the most popular sort of evolutionary algorithms, where the
individuals are usually represented by a series of bits. The genetic operators are
implemented in accordance with this representation form. Genetic algorithms have
proven to be successful at searching multidimensional spaces in order to solve, or
solve approximately, a wide variety of problems [13, 25]. Here follows the description
of the two most important genetic operators for GAs: mutation and crossover.
Mutation randomly changes each bit of an individual with a certain probability.
The change can be done by either flipping a bit or replacing its value with a newly
generated random value. In both cases it is important that it is considered for each
bit independently whether to change it or not.
In the case of GAs, the recombination operator always takes two parents and
creates two descendants, thus it is usually called crossover. The main kinds of
crossover are point-based crossover and parametrized uniform crossover. For point-
based crossover, the crossover points (whose number is given) are chosen at random.
The case when there is only one crossover point is called single-point crossover. Af-
ter choosing the crossover points, the parts of the individuals between these points
are exchanged. Parametrized uniform crossover exchanges each bit of the parent
individuals with a given probability to create the descendants.
The process of creating the new generation for a GA is quite simple: first, a new
empty population is created. Then, to ensure the monotonity of the process, a
number of best individuals in the previous generation is copied into the new pop-

A Graphical User Interface for Evolutionary Algorithms 341

ulation as determined by the elitism rate parameter. After that, the remaining
places are filled out in the population by selecting two parent individuals from the
old population, performing mutation and crossover on them, and inserting either
one or both of the descendant individuals into the. new population as necessary.
These operations (from the selection to the insertion) are repeated in a loop until
the new population has enough individuals.

The selection method is a very important part of genetic algorithms, since selection
assures that the fitness values of the individuals are constantly increasing during
the evolution process. Since there are a wide range of functions that can be opti-
mized with genetic algorithms and these functions behave very differently, various
selection methods have been developed to deal with them [27]. For example, if a
function has many local optima and some of these optima are very close to the
global optimum, then selection pressure should be kept low in order to explore
the whole search space rather than founding one local optimum and get stuck at
it. For easier functions, which are smooth and have no local optima, the selection
pressure can be set high in order to achieve faster convergence. Selection pressure
means a function of fitness value that determines the relationship between fitness
values and the probability of an individual with that fitness value to get selected.
The selection probability of an individual is usually proportional to its fitness value
or rank in the population. Other constructs use only a subset of the population
when selecting or apply more complicated transformation functions to the fitness
values. Interactive selection is usually used when it is impossible to formalize an
effective fitness function (e.g. in some design and shape recognition applications
[2, 5, 14, 24, 34, 40]); here, the individuals are presented to the user and he/she
can decide which of them are the most suitable solutions.

2.2 Genetic Programming

It is difficult and restrictive to represent hierarchies of dynamically varying size
and shape with fixed length vectors. Genetic programming (GP) uses the same
algorithms for creating the new generation and selecting individuals as genetic
algorithms. The difference between GAs and GP is that GP uses a tree-like rep-
resentation form for individuals, thus it provides a way to find a function or a
computer program of unspecified size and shape to solve a problem [22].

Genetic programming has been successfully applied to problems such as classifica-
tion [1] and pattern recognition [23, 33], generation of maximal entropy sequences
of random numbers [21], Boolean function learning [11, 26], simultaneous architec-
tural design [28] and training of neural networks [29].
GP's genetic operators work with sub-trees of the individuals. Mutation chooses a
node of the tree and replaces the corresponding sub-tree with a new, randomly gen-
erated one, while crossover creates the offspring by exchanging randomly selected
sub-trees of the parent individuals.

342 Zoltán Tóth

2.3 Evolution Strategies
Evolution strategies (ESs) are less popular than genetic algorithms, although they
stand closer to the natural evolution since competition with their descendants is
enabled for the parent individuals.
There are two kinds of evolution strategies, the so-called comma and plus strate-
gies: (n/p, A)-ES and (fi/p + A)-ES. Here p,, p and A denote the population size,
the number of parents used in recombination and the size of the selection pool,
respectively. The selection pool is a temporary storage for individuals: offspring of
the selected parents are put into it and the new generation is formed from the best
H individuals of the selection pool. The difference between the comma and plus
strategies is that the plus strategy puts the old population (the parents) into the
selection pool after generating A individuals. Obviously, p, < A must hold if the
comma strategy is applied. There are special cases for ES, e.g. when p is set to 0
or 1 (or omitted) then recombination doesn't take place, only mutation is applied.
Other special cases are (1 + 1)-ES (hill climbing) and (1,1)-ES (random search).
For ESs, the common representation form of individuals is a fixed length real vector.
The genetic operators are developed in accordance with this specific representation
form.
The mutation operator of evolution strategies is very similar to that of genetic
algorithms: it changes each element of the real vector (i.e. each gene) with a
certain probability. The difference originates from that the genes are real numbers,
so they can be either multiplied or increased by a random value (the distribution
of the value added to the gene is usually normal). The extent of this random value
is controled by the mutation rate parameter.
ES recombination takes p individuals as parents and produces one descendant of
them. (Recall that GA's crossover takes two parent individuals and creates two
descendants.) ES recombination methods can be classified by two aspects: there
exist discrete/intermediate and local/global recombination methods; their detailed
description with examples can be found in Section 5.3 of [16].
The algorithm for creating the new generation for an ES is the following: First A
individuals are created in the empty selection pool. To create a new individual, p
parent individuals are selected randomly from the old population. Then recombi-
nation is performed on these individuals to get a descendant. After mutating the
descendant, it is put into the selection pool. In the case of the plus strategy, the
individuals from the old population are also put into the selection pool. Note that
the random selection does not assure the convergence of the process, it is assured
by forming the new generation from the best p, individuals of the selection pool.
In nature, it can be observed that populations of the same species are sometimes
evolving separarately, and after some generations they meet. In the field of evo-
lution strategies, this phenomenon is realized by means of the so-called meta-ES
method ([16], Subsection 5.4.5). In meta-ES, several populations of the same type
are evolved separately for some generations, and these populations are modified by
genetic operators. I.e. the populations are regarded as individuals (vectors of indi-
viduals), thus genetic operators can be applied on them. Mutation can be carried

A Graphical User Interface for Evolutionary Algorithms 343

out by randomly replacing some individuals in the population, and recombination
can work as crossover works in GAs. The similar approach in genetic algorithms is
called island model.

2.4 Possibilities of the Visualization
Visualizing an evolutionary algorithm is useful for controlling its run and under-
standing its behavior. Controlling includes the configuration and the interactive
execution of the evolution process. The behavior can be analyzed by observing the
operation of the selection and the genetic operators, the quality of the solutions
found, the individuals' genotypes and phenotypes etc.
To show the internals of the process, basically the following three techniques can be
applied:

Plots are suitable for displaying a smaller amount of numerical data like the values
of a feature as a function of one or two other parameters. Depending on
the number of the function parameters, two-dimensional or three-dimensional
plots can be created.

Color coding is an efficient method to display larger amounts of numerical data
in a tabular and still easily readable form. Here a two-dimensional table is
created, the rows and columns being indexed by the discrete values of the two
parameters and the cells representing the respective value by a color. A color
is assigned to both the lowest and highest values in the table and intermediary
values are represented by tones between these two colors.

Drawings can be used to display graphical objects such as the phenotypes of the
evolved individuals. This way the changes and differences on the genotype
level can be easily recognized as corresponding changes in the individuals'
behavior in their evaluating environment.

When talking about visualization possibilities, one has to distinguish between the
so-called course and status visualization methods, that is, between the ones that
provide information about the progress and the current state of the process.
In the case of evolutionary algorithms, course visualization includes plots of partic-
ular fitness values, consumed system resources and the diversity of the population
(e.g. standard deviation of the fitness values). The plots are usually drawn against
generation number or, in the case of a steady-state GA, the number of evaluated
individuals, but the used CPU time is a very good base for benchmarks, too.
The most useful color-coding progress visualization methods are those which show
the best individuals' genotypes and the fitness values of all individuals of each
generation. Though the first method is applicable only for fixed-length numerical
chromosomes, together with the fitness graphs, it helps identifying the roles and
importance of the single genes or gene groups. The latter view of the population
shows somewhat more information about the fitness distribution than the deviation
graphs.

344 Zoltán Tóth

In most cases, displaying information about the current status of an evolution
process means showing some characteristics of the complete current generation.
This information can be, for example, the genotypes or phenotypes of all individuals
or just the occurring lowest and highest gene values.
Showing the phenotypes of individuals can be very productive when one needs to
understand the connection between the genotypes and the phenotypes. However,
being a completely problem-dependent visualization technique, it requires more
implementation work from the user than just providing a fitness function.
A very important aspect of graphical data portrayal is the correct determination
of the amount of the displayed information: the views should be enough for the
user to be able to find the sought relations. On the other hand, they say that one
figure is worth a thousand words; but the user should not be overwhelmed by an
undigestable pack of knowledge.

3 The e_params Data Structure
This section gives a short description of a data structure that was designed to hold
parameters of arbitrary objects such as various processes, data elements etc. Its
main features are that relationships can be defined between the parameters and
conditions and restrictions for the parameter values.
The data structure is designed in a way that the input and output of the functions
are stored in easily readable text files, thus they can be modified with a plain text
editor or script files.
e.params is implemented in ANSI C language for portability and simplicity reasons.
It uses some elements of the GLib2 library which is distributed under the Free
Software LGPL and is available on UNIX, Win32 and OS/2 platforms. The current
version of e_params is 0.14.
An extension has been implemented which enables the setting of the parameter
values on a graphical user interface (GUI). This extension is written in ANSI C as
well and it uses the GIMP ToolKit (GTK2), which is available on several platforms
including Linux and Win32 systems. Of course the e_params data structure can be
used without the graphical extension.
The first application of the e.params data structure is related to evolutionary algo-
rithms. The ordinary data types, possible conditions, restrictions and relationships
are defined in a way that suits this purpose.
The domain of evolutionary algorithms requests that a list of main parameters (the
values of which have to be given in every case) should be defined, and some ordinary
types can have dependent parameters which have to be set iff the value of another
parameter satisfies a condition. Moreover, conditions can be defined for some data
types and certain parameters can restrict the possible values of other parameters.
The possible data types of the parameters include strings, file names, integer and
real numbers and boolean values. A type called OptionList has been introduced
for parameters which can have their values from a predefined finite set (Dptions).

2http://www.gtk.org

http://www.gtk.org

A Graphical User Interface for Evolutionary Algorithms 345

Each of the predefined values can have dependent parameters (which must be set
only if the parameter is set to this option) and the options can also restrict the
possible values of other OptionList parameters. Special types can also be defined
for more sophisticated functionality.
Conditions can be assigned to numerical parameters by setting lower and/or upper
boundaries for them. The value of the numerical parameter is valid iff it meets all
the conditions assigned.
Restrictions are a kind of relationship between an Option and a parameter of the
type OptionList: when an Option is assigned to a parameter as its value, the
possible values of other OptionList parameters can be limited. For example, if the
representation of the individuals in an evolution strategy is BitString, it doesn't
make sense to compute the average of the bits, so the intermediate recombination
cannot be selected as the recombination type. A function is provided for the data
structure that checks whether the value of a given parameter satisfies its conditions
and restrictions or not.
All parameters of a given object can have default values which are defined along
with the parameters.
The definition of a parameters data structure is stored in a plain text file with
the suffix " . ep" the format of which is given formally by a grammar in Extended
Backus-Naur Form (EBNF, [41]) and context-sensitive restrictions. The files that
store parameter values for an e.params parameter structure usually have the suf-
fix " . epv". In such a file, the parameter values are stored in lines of the form
"parameter -name = parameter -value". Special forms may be defined for special-
type parameters such as arrays. Lines beginning with a hash mark are regarded as
comments.
A graphical extension was implemented in order to provide an easy-to-use interface
for setting the parameter values. It is realized using the GIMP ToolKif because it
is available in different platforms (e.g. Linux and Win32). From version 0.12, GTK
version 1.1.4 is required. An important feature of the extension is that it checks
the parameter values whether they satisfy the defined conditions and restrictions.
The dependent parameters can be set up easily as well.
The form of the parameter setting dialog box can be seen in Figure 1. Each row
shown in the table corresponds to one parameter. The second column o f the table
shows the parameter's "display name" (which can be different from the name used
for the internal representation), and the value itself can be set using the widget
placed into the third column. The type of this widget is determined according to
the type of the parameter (for example, the value of a parameter of type OptionList
can be set with a combo box).
If dependent parameters can be set to a parameter, then the Parameters button
is enabled in the last column. When it is pressed, a new window appears offering
modifications to the dependent parameters.
The first column of each row contains a hash mark which indicates the correctness
of the parameter in that row. When the hash mark is yellow, then the parameter
value had been changed since the last check and the new value has not been checked
yet. A green hash mark indicates a correct value of the parameter and a red one

346 Zoltán Tóth

a n I ~

Ef t F l ies/Funct ions

1

UM - ^ _ — _ — —

Indiv idual representat ion | Bitstring / | Parameters]
3

Optimizat ion type ¡Minimization j f / j Parameters!

Algori thm type |Genet ic algorithm j f / | Parameters

8 Dependen t p a r a m e t e r s o f "SuhPopulat ior is" i l
w
' * Fitness va lue of a subpopulat ion jva lue o f t he best indiv idual l F / | .PaFametersj.'

5

Mutat ion method for subpopulat ions jc reate random indiv iduáis ¡f«"/! :Parameters|¡

; • Separat ion interval | i o

/ i
— _ . ~ . . . _ - - - , .' ¡7

1 ut
_

• : • . : : „ ; ^ - - , - - •

j |L Okay •• Cance l | . Check J
i * • Recombinat ion (c rossove i) method |none i | 7 | j¡f?arameters| i¡

ii * . Recombinat ion probabi l i ty 7 0 . 0) i , " i ' l - ^ - ' J ' 3

nz • 1
t " " . . - . - . . - r

: Okay . | j{ Cancel ii Check J
Figure 1: The parameter settings dialog boxes of the e.params data structure. The
figure shows the setting of the dependent parameters

indicates that the value is incorrect. The Check button can be pressed to perform a
test of the values of the parameters. A check is performed automatically when the
window is first displayed and when the Okay button is pressed. Parameters with
incorrect values cannot be saved.

When the value of a parameter of type OptionList is changed to an Option that
has defined restrictions to other OptionList parameters, then the combo boxes
of the displayed restricted parameters axe updated so that they will contain those
options which are enabled by their restrictors. By pressing the Browse... button
right to a file or directory name input field a standard file/directory selection dialog
box appears in which the user can select a file/directory easily.

A Graphical User Interface for Evolutionary Algorithms 347

4 The GEA System
Kókai, Vanyi and Tóth have been involved in evolving fractal images since 1997.
The first, attempt was to reproduce and improve Koza's results with Lindenmayer
systems (L-systems) [18, 22]. This project was written in Java and did not use
any general genetic programming libraries. Then it was realized that L-systems are
capable of describing plants and these plants can be evolved by interactive evolution
(the TEvol program, [19, 37, 38]). At the same time an ophthalmologist came up
with the idea of describing the blood vessels of the eye with L-systems. This idea
led to the GREDEA system [20, 39]. These two projects required the evolution of
the rewriting rules of the L-systems as well as their parameters. The most suitable
algorithm for the evolution of the rewriting rules is genetic programming, while thé
one for the parameter vectors are evolution strategies.
Since the ANSI C++ programming language was used to implement TEvol and
GREDEA and a programming library which dealt with both GPs and ESs could
not be found at that time (in 1998), the design and implementation of a suitable
system had begun. This system was later named GEA (Generic Evolutionary
Algorithms Programming Library).

Figure 2: The class hierarchy of the GEA system

The class hierarchy of the current version of GEA can be seen in Figure 2. Already
the first version contained the Evolvable abstract class which is the superclass of
all evolvable objects, but at that time the integration of new selection methods
and evolutionary algorithms was not easy to carry out. The latest version contains
the abstract classes Select ionMethod and NextGenMethod as well, which define
interfaces for selection methods and evolutionary algorithms. These enable the
user of the system to easily expand it.
The latest version of GEA uses the so-called plug-in technology for the integration of

348 Zoltán Tóth

newly implemented classes. The subclasses of SelectionMethod, NextGenMethod
and Evolvable have to be compiled and linked as shared libraries (.so files on Unix
systems and DLLs under Windows). When the new plug-ins are registered in the
parameter data structure of GEA (see Section 3), it will find and load them if
necessary.
The application of the e_params data structure is also new in GEA. This data struc-
ture makes the extension of the system easier and provides a hierarchical structure
of the parameters. Just as a sidenote, the system has currently 94 parameters (not
all of which have to be set at the same time), which makes having a transparent
interface to them reasonable.
Class Evolvable is the abstract superclass of all evolvable classes: it declares all
the methods a class has to implement in order to become an evolvable class and
implements a few basic functions. An Evolvable object represents one individual
in the evolution process.
The GEA system uses three genetic operators which must be implemented in all
evolvable classes: Mutate, Crosswith and Recombine. Input/output and factory
functions provide an interface for the transportation of the evolvable objects.
GEA has currently four built-in representation forms, namely for bit-strings, real
vectors, integer vectors and permutations. The class that represents a population is
also an evolvable class (that is, genetic operators can be applied on it), this makes
experiments with meta-ES in GEA possible.
The abstract class Select ionMethod is the superclass of all implemented selection
methods in GEA.
As it is explained in Section 2, evolutionary algorithms mostly differ in the way
the individuals are represented and new generations are created. Various repre-
sentation forms are available via the Evolvable abstract class and its subclasses.
Different methods for creating a new generation are available in GEA through
the NextGenMethod abstract class and its subclasses. Just like in the case of the
selection methods, evolutionary algorithms are implemented as plug-ins and the
required class is loaded at running time.
Currently, two evolutionary algorithm frameworks are available in the GEA system:
GANextGen and ESNextgen implement genetic algorithms and evolution strategies
as they are described in Subsections 2.1 and 2.3, respectively.
Class EA represents an evolution process in the GEA system. It has all methods at
its disposal that are necessary to handle a population and create new generations.
The constructor of the class receives an e_params data structure and according to
the settings, it loads the necessary plug-ins and creates the initial population.
A common plug-in handling interface is provided to all classes which use shared
libraries by class Pluglns. A static data member is used to keep account of the
loaded shared libraries and a function can be used to look up a given symbol in a
given shared library; the function loads the object file if needed.
The most important problem-dependent function in all evolution processes is the
fitness function. In the GEA system, fitness functions are implemented as callbacks
and are loaded from plug-ins, like every customizable part of the program code.
The callback receives a pointer to an evolvable object as its parameter and should

A Graphical User Interface for Evolutionary Algorithms 349

return the result of the evaluation as a real number. Whether this value should be
maximized or minimized is determined by the parameters of the evolution process.
For some of the optimization problems, it is necessary to perform certain prepara-
tory tasks before the start of the evolution process (e.g. the training and test
data sets have to be loaded and preprocessed for a machine learning application).
The data structures created by the preparator function and used for fitness cal-
culation have to be properly destroyed after the optimization process has finished
and sometimes the task requires maintaining operations between the generations.
These tasks can be performed in GEA by so-called preliminary, intermediary and
posterior functions.
After the problem-specific implementations (fitness function, in some cases special
functions and/or individual representation) are ready, the optimization process can
be started by typing

GEA <parameter value file> <path to parameter structure> [shmid]
into the command line. The command-line parameters are the following:

parameter value file Contains the values of the parameters of the evolution pro-
cess.

path to parameter structure The name of the directory that contains the de-
scription of the parameter data structure of GEA. .

shmid This optional argument is a so-called shared memory identifier. This is
an integer number used to identify shared memory locations in the Unix
System V Interprocess Communication system. When GEA is being run by
GraphGEA, the calling graphical user interface allocates this shared memory
and the two programs communicate through it. This feature is available only
on Unix platforms.

When GEA is started, it performs the following tasks:

• loads the parameter structure file

• loads the parameter values

• processes the termination parameters of the EA

• processes the logging parameters of the EA, initializes logging facilities

• if an shmid is provided in the command line, initializes the communication
with GraphGEA

• creates the evolution process

• runs the evolution process according to the termination parameters; during
the run, manages logging and listens to the messages of the controlling graph-
ical user interface

• after the evolution process had finished, properly frees the used resources and
closes the log files

350 Zoltán Tóth

Since the input file of GEA is an easily readable and editable text file, the au-
tomation of performing several runs of the evolutionary algorithm with different
parameters is very simple to carry out. Previous runs can be reconstructed by
directly specifying the random seed of the process. Knowing the structure of the
log files, the results of the run(s) can be extracted and converted to the desired
format with standard text-processing tools. GEA is capable to dump the genotypes
and the phenotypes of all individuals to given files in certain generation intervals
or after the evolution process had finished. The genotype dumps can be used as
milestones to start an evolution process later with a given initial population.
For more information on the GEA system, see [35] and [36]. Usage examples can
be found on the GEA home page.

5 GraphGEA
This section describes the GraphGEA program in detail. The system uses the
graphical object set of the GIMP ToolKit (GTK2) which is written in the C pro-
gramming language, thus this same language was used to implement GraphGEA.
The functionality is presented beginning with the parameter settings, through the
execution of the evolution process and closed with the visualization possibilities.

mpKSEA - /honi&'infZr,
i | File" EA Options - " * • , ' ' - i

; : D IÍJ LMJ] • I I ä 3 : 1 ! « CD |

Ikl Éj i f a á 1 1 Jls [É J • '
Welcome to GraphGEA
This program was written by Zoltan Totti, graphgea@ztoth.net

T

7
II • , !

Figure 3: The main window of GraphGEA

The central window of the software is depicted in Figure 3. Below the menu bar, the
main window of GraphGEA contains two rows of buttons (so-called toolbars), the
upper row for managing parameter settings and controlling the evolution process,
the lower one for showing and hiding the various visualization windows. The middle

mailto:graphgea@ztoth.net

A Graphical User Interface for Evolutionary Algorithms 351

of the window is occupied by a large text field where the messages of the application
are written. Among others, these messages provide information about the actions
between the graphical user interface and the underlying GEA process. Error reports
are also printed here if one or more of the parameter values are invalid. A menu
item of the Options menu serves for clearing the text field. A hint bar can be found
at the bottom of the window. If the user moves the mouse over a button or a menu
item, a short description of the associated function appears in this area.

5.1 Managing the Parameters
When the GraphGEA program starts, it loads the parameter structure definition
and main parameter list of GEA. The first three buttons of the first toolbar realize
the New-Load-Save functions known from many applications. The program keeps
track of the changes of the parameter values and sends confirmation messages if
non-saved information might be lost or used.
The §U button brings up a dialog box of the e_params data structure (introduced
in Section 3) with the main parameters of the evolution process. The main param-
eters are divided into three groups: the representation form of individuals, halting
condition, applied genetic operators etc. belong to the first group. The second
group contains the program-specific parameters such as the fitness function and
plug-in file names, while the third group is for specifying logging options and log
files.

5.2 Running the Evolution Process
After the parameters are set, the evolution process can be started and controlled
with the buttons that resemble to those of CD or cassette players. Their functions
are the following:

ELI Starts the evolution process. The mechanism of the interaction between Graph-
GEA and GEA is described below.

PTJ If the evolution process is running, this button can be used to suspend it after
the current generation has been processed. The suspended process can be
resumed by pressing the button again.

L"| If the evolution process is suspended, it can be executed generation by gener-
ation with this button, that is, this button proceeds one generation in the
process. This enables the user to conveniently analyze the progress of the
EA.

¡5] Causes the evolution process to stop after the current generation. After it is
clicked, GraphGEA sends an appropriate signal to GEA and waits until it
exits before enabling other actions for the user.

EL and i»| The two red buttons of the second group of controls can be used to
pause/resume and stop the running evolution process immediately, i.e. with-
out finishing the current generation and writing the results to the log files.

352 Zoltán Tóth

As it can be expected from every worthy application, the above listed buttons have
their counterparts in the menu system of the program and they are enabled only if
they are meaningful in actual state of the evolution process.
When the evolution is started, the graphical user interface invokes the GEA pro-
gram as its child process and communicates with it during the run. The relationship
and interaction between the two programs are depicted in Figure 4.

Figure 4: The interaction between GraphGEA and GEA

At the start of the evolution run, GraphGEA first checks whether the current
parameter settings are correct and saved. If there are incorrect parameter values
then it lists the error messages of the e.params data structure in its text area. In
the case when the parameter settings have not been stored since the last changes,
it asks the user if they should be written to disk before starting GEA or not.
Starting the GEA program takes the following steps: first, a shared memory area is
requested from the operating system, the messages between the two programs are
stored here before they are processed. Then GraphGEA creates a child process with
the fork system call and the child invokes GEA with the necessary command-line
arguments (see Section 4) using the execvp function. The parent process opens a
pipe to the child and registers an event handler to manage its output (by default,
GEA writes its log onto the standard output channel). Signal handlers are also
registered by both programs, for they use the SIGUSR1 signal to let each other
know about messages waiting on the shared memory area for processing.
Once the evolution process has started, the graphical user interface can send mes-
sages to it with system signals. Suspending and stopping GEA after the current
generation and resuming a suspended run is done by placing the appropriate mes-
sage identifier into the shared memory and sending a SIGUSR1 signal to the child
process. GEA also sends a message to GraphGEA with the same mechanism each
time a generation is ready. This is used for example at the step-by-step execution
to enable/disable control buttons at the right time. Immediate suspend/resume
and stop of the evolution process is done by sending SIGSTOP/SIGCONT and

A Graphical User Interface for Evolutionary Algorithms 353

SIGTERM signals, respectively. GraphGEA is watching the SIGCHLD signal, too,
so that it knows when GEA exits.
The off-line visualization of an already finished evolution run can be initiated with
the HI button. For this, the parameter settings and the log file of the run are
needed. When these two files are given, GraphGEA invokes a simple program
(called GEmut) that echoes the log file to its standard output and communicates
with the graphical user interface the same way as GEA does. In short, GEmul
emulates the behavior of GEA, thus the suspension, step-by-step execution of the
EA, etc. are all possible.
When a complete reconstruction of an evolution run is needed (a reason for this
can be, for example, that the user wants to have more detailed logs), the original
parameter settings are needed and the evolution process should be started with the
random seed which was used in the original run (the used random seed is always
printed into the log file).
After the work with GraphGEA is finished, the user can leave the program with
the !®J button or by pressing Ctrl-Q on the keyboard.

5.3 The Visualization Plug-ins
The visualization options of the GraphGEA system are implemented as so-called
plug-in modules (plug-ins for short). Plug-ins are compiled code segments, modules,
which are not loaded by the operating system when the application is started, but
the application itself can load them if it needs their functionalities. The most im-
portant advantages of plug-ins against traditional objects linked to the application
are the following:

« Since they are stored in separate files (DLLs - dynamically loaded libraries
- under Windows systems and .so - shared object - files in Unices), sev-
eral applications can use the same files without the need of having the same
compiled code stored several times on the hard disks.

• If an application does not need a certain module during a particular run,
the code of that module doesn't have to be loaded and initialized, thus the
start-up speed can be increased and the program can economize on system
resources.

• Due to the standard interface of loading and using shared libraries, a part of
a program can be improved by updating the plug-in file, thus avoiding the
complete reinstallation.

• The standard interface also enables the easy and fast extension of applications,
it is usually done by just copying the compiled code into a predefined directory
and in some cases modifying configuration files.

Besides the advantages listed above, the generation of shared objects and their
usage require only a very little implementation work from the program developer:
in the compilation and linking, one only has to use a few additional command line

354 Zoltán Tóth

arguments of the linker, and loading and using the plug-ins in the main program
make the call of only three simple library functions necessary.
The main reason of using plug-ins in the GraphGEA program is extendibility: new
visualization plug-ins can be added with minimal modification of the existing pro-
gram code. Each plug-in has a corresponding button in the second toolbar which
shows and hides its visualization window. These buttons are enabled according
to the successfulness of the loading and initialization of the plug-ins at start-up.
GraphGEA looks up four functions (create, init, new.data, and done) in each loaded
plug-in for the communication.
The evolution process (that is, the GEA program) runs as a child process of the
graphical user interface and GraphGEA is reading its output from a pipe. Each
time when the input handler function of the GUI gets a line from the pipe, it
invokes the appropriate standard input handler function of each loaded plug-in.
Each visualization method can decide whether the received information is relevant
for its purposes or not and carry out the necessary actions (updating its database,
executing certain drawing commands, etc.); for this reason it is very important to
set the logging parameters of the evolution process correctly. If GEA does not print
an information into the log (and to its standard output) then obviously this infor-
mation will not be passed on to the plug-ins which might need them. On the other
hand, if the user finds the output of one or more plug-ins irrelevant to his/her work,
then turning off the corresponding logging options can be reasonable because it can
increase the performance of the GUI. If the information turns out to be important
in a later phase of the research, the evolution run can be reconstructed given the
evolution parameters and the random seed are still available. The visualization
windows with short descriptions are listed in Table 1.

5.3.1 Methods of Visualization

As it is described in Subsection 2.4, there are basically three different visualization
methods discussed in this paper: plots, color coding, and drawings. Each of these
three methods use the common plug-in interface but of course their behavior and
look are different, so the implementation of some functions differs, too. Next, the
look of the three plug-in window types and their functionality are discussed.
A plot window of GraphGEA is depicted in Figure 5. It is capable of showing
several diagrams in one coordinate system, each of which can be shown and hidden
individually with the checkboxes of the second toolbar. In the example, the best,
mean and worst fitness values are depicted with different colors and the legend
is displayed in the top-left corner of the plot. By default, the lower and upper
boundaries of the X and Y axes are computed automatically according to the ranges
of the shown values. This computation considers only the visible diagrams. Thé
boundaries can be set manually in the first toolbar by unchecking the appropriate
checkboxes and entering the values into the input lines next to them. The actual
view of the diagrams can be saved in gnuplot format with the 'Save gnuplot' button.
The gnuplot program can convert its input into various well-know graphical formats,
e.g. the encapsulated postscript file created from the plot shown in Figure 5 is

A Graphical User Interface for Evolutionary Algorithms 355

Figure 5: A plot window of GraphGEA

Fitness values

Figure 6: The gnuplot output of the plot window

displayed in Figure 6.
With the color coding technique, it is possible to depict a large amount of values in a
transparent way: they are displayed with different colors, not with numbers. A color
coding visualization window can be seen on Figure 7. Arbitrary numerical values
can be shown in the form of a two-dimensional array with additional explanatory

356 Zoltán Tóth

GOLlM.
0
2
4
I
I
10
12

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 16 H
ana

—

• • •
a a a a

-
—
-
—

r r

• • • —

• • • I

e>it
195 479004

187.729004

162 625000

179.102005

179.102005

179.102005

178102005

179.102005

175102005

178.102005

173 434998

173.434996

167 832998

167.632936

167.632938

160.796005

160 796005

160.796005

160.738005

Figure 7: A color coding window of GraphGEA

columns on the left and the right hand side of the color matrix. In the current
implementation, the lowest and highest displayed values can be specified directly
or the plug-ins can compute them automatically. The specification or the automatic
computation can be done either separately for each column or all columns can share
the same limits.
There are two possibilities of displaying the individuals' phenotypes in the Graph-
GEA system: by printing the phenotypes as a series of strings into a text field
or by using the drawing commands of the program. The phenotype visualization
plug-ins choose between these two methods according to the representation form
of the individuals. A window with a solution of the TSP problem can be seen on
Figure 8. One individual is displayed at a time and the user can use the scrollbar
at the top of the window to select from the available individuals. The initializer
function creates and displays the appropriate drawing object by looking at the
representation form of the individuals: if the representation is known as a drawable
one (that is, its phenotype is printed as a series of drawing commands) then a
drawing area is created, otherwise a text field will appear.
The set of drawing commands of GraphGEA is the following:

B x l y l x2 y2 This command determines the boundaries of the drawing area.
The individual is drawn in a way that the graphical primitives within the
boundaries are always visible in the plug-in window.

P x y Puts a point with coordinates (x,y).

L x l y l x2 y2 Draws a line from (x l , y l) to (x2,y2).

A Graphical User Interface for Evolutionary Algorithms 357

Figure 8: The phenotype of an individual drawn by GraphGEA

R x y w h f Draws a rectangle with the upper-left corner being in (x ,y) , width
w and height h. If / is equal to T then the rectangle will be filled.

A x y w h a l a2 f Draws an arc. The upper-left corner will be at (x, y), the
width and height of the arc will be w and h, respectively. The starting angle
of the arc is determined by al, the length by a2 (that is, a2 is the ending
angle relative to al) . The values of the angles should be between 0 and 360,
0 being at 12 O'clock, the positive direction is counter-clockwise. The last
argument (/) determines the filling: T = yes, F = no.

Y n f x l y l x2 y2 ... xn yn Draws a polygon. First the number of vertices (n)
is given, then the filling parameter, at the end follow the coordinates of the
vertices.

S x y s Puts the string s at the coordinates (x,y); x and y are the left edge and
the baseline of the string, respectively.

5.3.2 T h e Implemented Plug-ins

Table 1 shows the list of the currently available visualization plug-ins of GraphGEA.
Besides the name, icon of the show/hide button and type of the visualization tools,
a short description is also given.

358 Zoltán Tóth

Name Type Description
Fitness
values
11

plot,
course

Diagrams of the best, mean and worst fitness values plotted
against the generation number.

CPU
times
H

plot,
course

A diagram showing the used CPU time of the evolution
process plotted against the generation number.

Fitness
variance |jg|

plot,
course

A diagram showing the variance of the fitness values in the
population against the generation number.

Best
genotypes
HI

color
coding,
course

A table containing the color coded gene values of the best
individuals of the generations. The lowest gene values cor-
respond to black cells, the highest gene values to white
cells. The first and the last columns show the generation
number and the fitness value of the depicted individual,
respectively.

Best
phenotypes

draw,
course

The phenotypes of the best individuals of the generations.
The individual can be selected by the generation number.

Gene
variances
•

color
coding,
course

Shows the variances the of values of each gene in the pop-
ulation. Blue corresponds to low variance, red corresponds
to high variance. The first and the last column contain
the generation number and the fitness value of the best
individual in the generation, respectively.

All
fitness
values

color
coding,
course

The fitness values of all individuals are shown in one ta-
ble. High fitness values with green, low values with red.
The first and last columns of the matrix show the gener-
ation number and the fitness value of the best individual,
respectively.

All
phenotypes

draw,
status

Offers all phenotypes of the current generation for view-
ing. The individual can be selected by its position in the
population.

All
genotypes

SHI
color
coding,
status

Displays all genotypes of the current generation. The low
and high gene values are represented by white and brown
colors, respectively. The first and last columns show the
number of the individual and its fitness value.

Current
gene
values

plot,
course

The lowest, average and highest values of each gene are
plotted against the gene number.

Table 1: The currently available visualization plug-ins of the GraphGEA system

A Graphical User Interface for Evolutionary Algorithms 359

6 Related Work
In this section some other EA visualizing/controlling tools and the differences be-
tween them and GraphGEA are discussed. It must be emphasized that the primary
purpose of GEA is solving real world optimization problems and GraphGEA is a
graphical user interface that supports analysis of the evolution process's behavior
and education. GraphGEA does not affect the efficiency of the underlying evolution
process.
The EA Visualizer [4] is a platform independent tool for running and visualiz-
ing evolutionary algorithms written in the Java programming language. It has a
wide variety of convergence graphs and a special tool called GraphDrawer is pro-.
vided to create various plots. Some of its disadvantages are that chromosomes can
be depicted only in the case of binary representations and the phenotypes of the
individuals can be drawn for some determined problems only, e.g. the traveling
salesman problem (Figure 9). Since all individual representation forms in GEA
have functions to output the genotypes of the individuals, these can be shown, in
every case. The internal drawing language of GraphGEA and the phenotype output
of GEA enable depicting the phenotypes of solutions of any problem (see Figure 8).
On the other hand, the EA Visualizer is able to handle multiple runs with different
parameter settings. The evolutionary algorithms are implemented in Java and as-
sembled from modules; this makes the system easily extendable, although genetic
programming is not supported.
EvolVision [12] is a client-server based tool to visualize the output of Mathematica
notebooks which use the Evolvica system [17]. The client-server architecture is
very useful to make the EA process independent from the visualization tool, but
EvolVision cannot control the run of the evolution process. It is able to perform
off-line and on-line visualization as well and can depict any genomes and a range of
various graphs. A plug-in interface is used for possible extensions. A disadvantage
of the system is that it only realizes the results and has no real connection with the
running evolution process. The graphical components of the Java language (Swing)
are slow and require much memory and time for visualizing larger data sets.
GIGA [7] is what its name stands for: a Graphical user Interface for Genetic
Algorithms. That is, only GAs are implemented and the evolution process can be
controlled via the GUI to some extent; some parameters of the GA can be set in the
control windows. It is able to do off-line and on-line visualization of some graphs
and the algorithm's internals, but the latter figures are hard to read because the
user has to find the crossover points and mutated genes himself, as these are not
shown directly (see Figure 10). The phenotypic representation of the individuals
is also available, but being completely problem dependent, this visualization has
to be implemented by the user. The system is written in the C programming
language using the Unix /X l l environment and the OSF/Motif GUI library, thus
its portability is strongly bounded, it is possible to implement new algorithms
for GIGA, but these must meet the quite strict restrictions of a given prototyping
interface.

GeatBx [30] is another very promising visualization tool with various plots and

360 Zoltán Tóth

Figure 9: The EA Visualizer working on a TSP

GIGA - Internals I
9.) 2-1-6-4-3-8-7-5

13.) 4-7-1-4-3-5-8-2
* 4-4-3-8-2-1-7-5 —> 4-6-3-8-2-1-7-5

10.) 8-3-2-5-6-7-4-1

1.) 1-6-7-«-3-S-4-2
* 8-7-6-1-4-5-2-3 —> 8-7-6-4-5-2-1-3

8.) 5-2-7-6-4-l-»-3 > 5-2-7-6-4-1-8-3

1 H * 1

Figure 10: The 'internals' window of GIGA

graphs for depicting the course and the state of the running EA, but its disadvantage
is that it is written in the Matlab computer algebra system, thus the user must
know Matlab to use GeatBx efficiently. Besides, Matlab is a commercial software.
The tool is able to do off-line and on-line visualization as well. GAs and ESs are
implemented in the system but it is not able to visualize GPs and because of the
lack of extendibility, the option to make experiments with these latter algorithms
is completely missing. Only the genotypic representation of the individuals can be
depicted, the phenotypes cannot be visualized with this tool.
Gonzo [6] is a tool for visualizing genetic algorithms written in LISP. The number of
users of this system is strongly bounded because of the choice of the programming
language, since LISP is not so widespread as C / C + + or Java. Gonzo is designed
to explain the search behavior of the algorithm, so the search space and its repre-
sentation stand in the center of this program. It can depict some graphs and plot

A Graphical User Interface for Evolutionary Algorithms 361
N

am
e

of

th
e

sy
st

em

Su
pp

or
te

d
al

go
ri

th
m

s

L
an

gu
ag

e
of

im

pl
em

en
ta

ti
on

T
yp

e
of

vi

su
al

iz
at

io
ns

E
xt

en
si

on

po
ss

ib
le

?

In
te

ra
ct

iv
e?

O
ff

-l
in

e
vi

su
al

iz
at

io
n

?

GraphGEA EAs C / C + + Genotype,
phenotype

yes yes yes

EA Visualizer no GP Java Genotype,
phenotype
with restric-
tions

yes yes no

EvolVision EAs Mathematica,
Java

Genotype,
phenotype

yes no yes

GIGA GAs c,
OSF/Motif

Genotype,
phenotype

yes partly yes

GeatBx no GP MatLab Genotype no yes yes
Gonzo GAs LISP Genotype yes yes yes

Table 2: Comparison of the various visualization tools

how the gene values develop during the EA process (note that this technique is not
applicable for genetic programming). Besides GraphGEA, this is the only system
with total control over the running evolutionary algorithm: the user can start, stop,
pause, resume the GA or execute it by generation steps.
The advantages and disadvantages of the described systems are summarized in
Table 2.

7 Summary
In this document the GraphGEA system, a visualization extension of the Generic
Evolutionary Algorithms programming library is presented. The first section covers
the theoretical fundamentals of evolutionary algorithms. An evolution process has
many, sometimes intricately interrelating parameters. A data structure for handling
and extending this parameter structure is presented in Section 3. The GEA system
is described in Section 4, while Section 5 deals with the GraphGEA system itself.
Finally, a view on related work is given in Section 6.
GraphGEA has two main objectives: first, it helps the researchers to analyze and
understand the search behavior of evolutionary algorithms, and second, it is a very
good tool for students to get acquainted with these optimization methods. Since
GEA, the underlying EA implementation, is an efficient and easy-to-use optimiza-
tion utility, the graphical user interface can be used just to set all the parameters

362 Zoltán Tóth

of an optimization correctly, thus the GUI can be useful in solving real industrial
optimization problems.
The graphical user interface can be divided into three main parts. Solving an opti-
mization problem with an evolutionary algorithm always begins with the selection
of the representation form of the individuals, the most suitable evolutionary algo-
rithm and other parameters. GraphGEA offers very handy dialog boxes for setting
all the parameters and it also assures that the values are correct. If one wants to
analyze the optimization process, looking at the log files after the run is not always
the best and most convenient way. The implemented software offers the possibility
of the interactive execution of the evolution run, this way the user can suspend the
process at any time and look at its course and status. The huge amount of nu-
merical data describing an evolution run can be displayed by various visualization
plug-ins in the GraphGEA system. The visualization windows provide a run-time
look at the evolution process: the user can observe how the individuals change dur-
ing the optimization, how much system resource is consumed, what is the diversity
of the population, etc. Since the visualization methods are implemented as plug-ins
and they have a common programming interface, it is very easy to expand the GUI
with new methods.
Looking at the work done in the field of the visualization of evolutionary algo-
rithms, the most important conclusion is that most of the available tools are very
specific in terms of the implementation language and the range of suitable prob-
lems. Throughout the design of the GEA and GraphGEA systems, the two most
important objectives were efficiency and applicability. This is the reason of the
selection of the C and C + + programming languages and the application of the
plug-in technology. Together with the used parameter structure, these make the
programs able to solve and visualize a wide range of optimization problems.

References

[1] M. Abramson and L. Hunter. Classification using cultural co-evolution and
genetic programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 249-254, Stanford University, CA, USA, 28-31 July 1996.
MIT Press.

[2] K. Aoki, H. Takagi, and N. Fujimura. Interactive GA-based design support sys-
tem for lighting design in computer graphics. In International Conference on
Soft Computing (IIZUKA '96), pages 533-536, Iizuka, Fukuoka, Japan, 1996.
World Scientific.

[3] W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith, editors. Proceedings of the Genetic and Evolutionary Computation
Conference, Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

A Graphical User Interface for Evolutionary Algorithms 363

[4] P. A. N. Bosman. EA visualizer.
http://www.cs.ruu.nl/people/peterb/computer/
ea/eavisualizer/EAVisualizer.htm.

[5] C. Caldwell and V. S. Johnston. Tracking a criminal suspect through face-
space with a genetic algorithm. In ICGA91, pages 416-421, 1991.

[6] T. D. Collins. The Application of Software Visualization Technology to Evo-
lutionary Computation: A Case Study in Genetic Algorithms. Ph.D thesis,
Knowledge Media Institute, The Open University, Milton Keynes, UK, 1998.

[7] T. Dabs. Eine Entwicklungsumgebung zum Monitoring Genetischer Algorith-
men. Master's thesis, University of Würzburg, 1994.

[8] C. Darwin. On the Origin of Species. Murray, London, 1859.

[9] L. Davis. Adapting operator probabilities in genetic algorithms. In Proceedings
of the Third ICG A, pages 61-67. Morgan Kaufmann, 1989.

[10] K. A. De Jong. An analysis of the behavior of a class of genetic adaptive
systems. Ph.D thesis, University of Michigan, 1975.

[11] S. Droste. Efficient genetic programming for finding good generalizing boolean
functions. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzón, H. Iba,
and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 82-87, Stanford University, CA, USA, 13-16 July
1997. Morgan Kaufmann.

[12] T. Fühner and C. Jacob. Evolvision - an evolvica visualization tool. In L. Spec-
tor, E. D. Goodman, A. Wu, W. B. Langdon, hans Michael Voigt, M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzón, and E. Burke, editors, Proceed-
ings of the Genetic and Evolutionary Computation Conference, page 176, San
Francisco, California, USA, 7-11 July 2001. Morgan Kaufmanii.

[13] D.Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Reading, MA, 1989.

[14] J. Graph and W. Banzhaf. Interactive evolution of images. In International
Conference on Evolutionary Programming, 1995.

[15] J. H. Holland. Adaption of Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, Michigan, 1975.

[16] C. Jacob. Principia Evolvica - Simulierte Evolution mit Mathematica. Dpunkt
Verlag, 1997.

[17] C. Jacob. Principia Evolvica - Simulierte Evolution mit Mathematica, page
443. In [16], 1997.

http://www.cs.ruu.nl/people/peterb/computer/

364 Zoltán Tóth

[18] G. Kókai, Z. Tóth, and R. Ványi. Application of genetic algorithms with more
populations for Lindenmayer systems. In Proceedings of the International Sym-
posium on Engineering of Intelligent Systems, EIS'98, pages 324-331. ICSC
Academic Press, 1998.

[19] G. Kókai, Z. Tóth, and R. Ványi. Evolving artificial trees described by para-
metric L-systems. In Proceedings of the First Canadian Workshop on Soft
Computing, pages 1722-1728, Edmonton, Alberta, Canada, 9 # may 1999.

[20] G. Kókai, R. Ványi, and Z. Tóth. Parametric L-system description of the retina
with combined evolutionary operators. In Banzhaf et al. [3], pages 1588-1595.

[21] J. R. Koza. Evolving a computer program to generate random numbers using
the genetic programming paradigm. In R. K. Belew and L. B. Booker, editors,
Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 37-44, University of California - San Diego, La Jolla, CA, USA, 13-16
July 1991. Morgan Kaufmann.

[22] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, Massachusetts, 1992.

[23] J. R. Koza. Automated discovery of detectors and iteration-performing calcu-
lations to recognize patterns in protein sequences using genetic programming.
In Proceedings of the Conference on Computer Vision and Pattern Recognition,
pages 684-689. IEEE Computer Society Press, 1994.

[24] D. Levine, M. Facelllo, and P. Hallstrom. Stalk: An interactive system for
virtual molecular docking. IEEE Science and Engineering, 2/97:55-67, 1997.

[25] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Artificial Intelligence. Springer-Verlag, 1992.

[26] J. F. Miller. An empirical study of the efficiency of learning boolean functions
using a cartesian genetic programming approach. In Banzhaf et al. [3], pages
1135-1142.

[27] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge
Massachusetts, 1996.

[28] U.-M. O'Reilly and G. Ramachandran. A preliminary investigation of evolu-
tion as a form design strategy. In C. Adami, R. K. Belew, H. Kitano, and
C. E. Taylor, editors, Proceedings of the Sixth International Conference on
Artificial Life, University of California, Los Angeles, 26-29 June 1998. MIT
Press, Cambridge.

[29] V. P. Plagianakos and M. N. Vrahatis. Training neural networks with 3-bit
integer weights. In Banzhaf et al. [3], pages 910-915.

[30] H. Pohlheim. Visualization of evolutionary algorithms - set of standard tech-
niques and multidimensional visualization. In Banzhaf et al. [3] , pages 533-540.

A Graphical User Interface for Evolutionary Algorithms 365

[31] I. Rechenberg. Evolutionsstrategien: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Fromman-Holzboog, Stuttgart, 1973.

[32] H.-P. Schwefel. Numerische Optimierung von Computer-Modellen mittels der
Evolutonsstrategie. Interdisciplinary Systems research (26), Birkh.user, Basel,
1977.

[33] J. Sherrah. Automatic Feature Extraction for Pattern Recognition. PhD thesis,
University of Adelaide, South Australia, July 1998.

[34] J. R. Smith. Designing biomorphs with an interactive genetic algorithm. In
ICGA91, pages 535-538, 1991.

[35] Z. Tóth. The Generic Evolutionary Algorithms Programming Library. Master's
thesis, University of Szeged, Szeged, Hungary, 2000.

[36] Z. Tóth and G. Kókai. An evolutionary optimum searching tool. In The
Proceedings of the Fourteenth International Conference on Industrial & En-
gineering Applications of Artificial Intelligence & Expert Systems (IEA/AIE-
2001), volume 2070 of LNAI, pages 19-24, Budapest, Hungary, June 4-7 2001.
Springer-Verlag.

[37] Z. Tóth, G. Kókai, and R. Ványi. Interactive visual tree evolution. In EIS2000
Second International ICSC Symposium on Engineering of Intelligent Systems,
June 27 - 30, 2000 at the University of Paisley, Scotland, U.K., pages 384-390,
2000.

[38] R. Ványi. Modelling the Evolution of the Flora. Bachelor's thesis (in Hungar-
ian), József Attila University, Szeged, Hungary, 1998.

[39] R. Ványi, G. Kókai, Z. Tóth, and T. Pető. Grammatical retina description
with enhanced methods. In R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller,
P. Nordin, and T. C. Fogarty, editors, Genetic Programming, Proceedings of
EuroGP'2000, volume 1802 of LNCS, pages 193-208, Edinburgh, Apr. 15-16
2000. Springer-Verlag.

[40] G. Venturini, M. Slimane, F. Morin, and J. P. A. de Beauville. On using inter-
active genetic algorithms for knowledge discovery in databases. In ICGA97,
pages 696-703, 1997.

[41] N. Wirth. What can we do about the unnecessary diversity of notation for
syntatic definitions. Communications of the ACM, 20(ll):822-823, Nov. 1977.

