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Abstract

Studies of computational complementarity properties in finite state inter-
active automata may shed light on the nature of both quantum and classical
computation. But, complementarity is difficult to test even for small-size au-
tomata. This paper introduces the concept of an observation graph of an
automaton which is used as the main tool for the design of an algorithm
which tests, in a uniform manner, two types of complementarity properties.
Implementations have been run on a standard desktop computer examining
all 5-state binary automata.

1 Two Computational Complementarity Princi-
ples

Building on Moore’s “Gedanken” experiments, in [15, 14] complementarity was
modeled by means of finite automata. Two new computational complementarity
principles have been introduced and studied in [3, 6, 5, 4, 2] using Moore’s automata.

To understand Moore’s approach it is enough, at this stage, to say that the
machines we are going to consider are finite in the sense that they have a finite
number of states, a finite number of input symbols, and a finite number of output
symbols. Such a machine has a strictly deterministic behaviour: the current state
of the machine depends only on its previous state and previous input; the current
output depends only on the present state. A (simple) Moore experiment can be
described as follows: a copy of the machine will be experimentally observed, i.e.
the experimenter will input a finite sequence of input symbols to the machine and
will observe the sequence of output symbols. The correspondence between input
and output symbols depends on the particular chosen machine and on its initial
state. The experimenter will study the sequences of input and output symbols
and will try to conclude that “the machine being experimented on was in state
q at the beginning of the experiment”.1 Moore’s experiments have been studied
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1This is often referred to as a state identification experiment.
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from a mathematical point of view by various researchers, notably by Ginsburg [9],
Chaitin [7], Conway [8], and Brauer [1]. A comprehensive survey on testing finite
state machines is presented in [11].

In what follows we are going to use two non-equivalent concepts of computa-
tional complementarity based upon modeling finite automata (see [3]). Informally,
they can be expressed as follows. Consider the class of all elements of reality2 and
consider the following properties.

A Any two distinct elements of reality can be mutually distinguished by a suit-
ably chosen measurement procedure.

B For any element of reality, there exists a measurement which distinguishes
between this element and all the others. That is, a distinction between any
one of them and all the others is operational.

C There exists a measurement which distinguishes between any two elements of
reality. That is, a single pre-defined experiment exists to distinguish between
an arbitrary pair of elements of reality. (Classical case.)

Complementarity corresponds to the following cases:

CI Property A but not property B (and therefore not C): The elements of reality
can be mutually distinguished by experiments, but one of these elements
cannot be distinguished from all the other ones by any single experiment.

CII Property B but not property C: Any element of reality can be distinguished
from all the other ones by a single experiment, but there does not exist a
single experiment which distinguishes between any pair of distinct elements.

2 Moore Automata

A finite deterministic automaton consists of a finite set of states and a set of tran-
sitions from state to state that occur on input symbols chosen from some fixed
alphabet. For each symbol there is exactly one transition out of each state, possi-
ble back to the state itself. So, formally, a finite automaton consists of a finite set Q
of states, an input alphabet Σ, and a transition function δ : Q×Σ → Q. Sometimes
a fixed state, say 1, is considered to be the initial state, and a subset F of Q denotes
the final states. A Moore automaton is a finite deterministic automaton having an
output function f : Q → O, where O is a finite set of output symbols. At each time
the automaton is in a given state q and is continuously emitting the output f(q).
The automaton remains in state q until it receives an input signal σ, when it as-
sumes the state δ(q, σ) and starts emitting f(δ(q, σ)). In this paper we are going to
concentrate on the case of automata on a binary alphabet Σ = {0, 1} having O = Σ.
So, from now on, a Moore automaton will be just a triple M = (Q, δ, f). Let Σ∗ be
the set of all finite sequences (words) over the alphabet Σ, including the empty word

2The terms “elements of reality”, “properties”, and “observables” will be used as synonyms.
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ε (the neutral element in the semigroup of string concatenation); by Σ+ we denote
Σ∗ \ {ε}. The transition function δ can be extended to a function δ : Q×Σ∗ → Q,
as follows: δ(q, ε) = q, δ(q, σw) = δ(δ(q, σ), w), ∀q ∈ Q, σ ∈ Σ, w ∈ Σ∗. The out-
put produced by an experiment started in state q with input sequence w ∈ Σ∗

is described by E(q, w), where E is the function E : Q × Σ∗ −→ Σ∗ defined as
follows: E(q, ε) = f(q), E(q, σw) = f(q)E(δ(q, σ), w), q ∈ Q, σ ∈ Σ, w ∈ Σ∗, and
f : Q −→ O(= Σ) is the output function. Consider, for example, Moore’s automa-
ton, in which Q = {1, 2, 3, 4}, Σ = {0, 1}. The transition is given by the following
tables

q σ δ(q, σ)
1 0 4
1 1 3
2 0 1
2 1 3

q σ δ(q, σ)
3 0 4
3 1 4
4 0 2
4 1 2

Table 1.

and the output function is defined by f(1) = f(2) = f(3) = 0, f(4) = 1. The
following graphical representation will be consistently used in what follows:
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Figure 1.

The experiment starting in state 1 with input sequence 000100010
leads to the output 0100010001. Indeed, E(1, 000100010) =
f(1)f(4)f(2)f(1)f(3)f(4)f(2)f(1)f(3)f(4) = 0100010001.
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From a mathematical point of view properties A, B, C can be expressed as
follows. Let M = (Q, δ, f) be a Moore automaton. Following Moore [13] we shall
say that a state q is “indistinguishable” from a state q′ (with respect to M) if every
experiment performed on M starting in state q produces the same outcome as it
would starting in state q′. Formally, E(q, x) = E(q′, x), for all words x ∈ Σ+. A
pair of states will be said to be “distinguishable” if they are not “indistinguishable”.

• The automaton M has property A if every pair of different states of M are
distinguishable, i.e. for every distinct states q, q′ there exists a word w ∈ Σ+

(depending upon q, q′) such that E(q, w) �= E(q′, w). This is simply the
assertion that the automaton is minimal.

• The automaton M has property B if every state of M is distinguishable from
any other distinct state, i.e. for every state q there exists a word w ∈ Σ+

(depending upon q) such that E(q, w) �= E(q′, w), for every state q′ distinct
from q.

• The automaton M has property C if there exists an experiment distinguishing
between each different states of M , i.e. there exists a word w ∈ Σ+ such that
E(q, w) �= E(q′, w), for every distinct states q, q′.

Of course, C implies B, which, in turn, implies A; none of the converse impli-
cations is true, hence we get CI, CII.

We continue with some examples of Moore automata having C, CI, and CII.
First, the automaton in Figure 2 has C as experiment 10 distinguishes between

any pair of distinct states.
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Moore’s automaton in Figure 1 has A but non-B, hence CI (cf. [13]).
Every pair of distinct states can be distinguished by an experiment: states
1, 2 by x = 0, states 1, 3 by x = 1, states 1, 4 by x = 0, states 2, 3 by
x = 0, states 2, 4 by x = 0, and states 3, 4 by x = 0. However, there
is no (unique) experiment capable to distinguish between every pair of arbi-
trary distinct states. If the experiment starts with 1, i.e. x = 1u, then
E(1, x) = E(2, x), that is x cannot distinguish between the states 1, 2 as
E(1, x) = E(1, 1u) = f(1)f(δ(1, 1))E(δ(1, 1), u) = f(1)f(3)E(3, u) = 00E(3, u)
and E(2, x) = E(2, 1u) = f(2)f(δ(2, 1))E(δ(2, 1), u) = f(2)f(3)E(3, u) =
00E(3, u). If the experiment starts with 0, i.e. x = 0v, v ∈ Σ∗, then x cannot distin-
guish between the states 1, 3 as E(1, x) = E(1, 0v) = f(1)f(δ(1, 0))E(δ(1, 0), v) =
f(1)f(4)E(4, v) = 01E(4, v) and E(3, x) = E(3, 0v) = f(3)f(δ(3, 0))E(δ(3, 0), v) =
f(3)f(4)E(4, v) = 01E(4, v).

The automaton in Figure 3 has B but not C, hence CII. Indeed, the following
pairs of states are distinguishable by every experiment: (1, 2), (1, 4), (2, 3), (3, 4).
Accordingly, 1 is distinguishable from the other states by w = 0, 2 is distinguishable
by w = 1, 3 is distinguishable by w = 0 and 4 is distinguishable by w = 1, so the
automaton has property B. It does not have property C because any experiment w
which starts with 1, i.e. w = 1x, x ∈ Σ∗, does not distinguish between 1 and 3, and
any experiment w which starts with 0, i.e. w = 0y, y ∈ Σ∗, does not distinguish
between 2 and 4.
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3 An Algorithm for Testing Simultaneously CI
and CII

In this section we briefly review a few facts on partitions and present the algorithm
that is used to test properties A, B and C, which uses partitions defined on sets
of states of an automaton. An elegant algebraic theory for machine decomposition
based on the closed partition lattice of a machine is presented in [10] and efficient
algorithms for constructing the lattice are presented in [12]; here we construct a
different partition lattice testing the properties CI and CII, a different problem.

A partition P of a set Q is a set of non-empty disjoint sets whose union is Q.
Partitions are in an one-to-one onto correspondence with equivalence relations. In
particular, we will use the partition induced by the level sets of a map f : Q → Q,
that is, the sets [q]f = {x : f(x) = f(q)}, q ∈ Q.

Given two partitions P1 and P2 of Q, we say that P1 is no coarser than (or at
least as coarse as) P2, written P1 ≤ P2 if for every p1 ∈ P1, there exists p2 ∈ P2

such that p1 ⊆ p2. We say that P2 is coarser than P1 if P1 ≤ P2 and P1 �= P2,
in symbols P1 < P2. The term finer means the inverse relation of coarser. When
P1 ≤ P2 we say that P1 is a refinement of P2, or that P2 is a coarsening of P1.

Treating the above refinement relation as a partial order ≤, we see that the
greatest lower bound P1 ∧ P2 is the coarsest partition of Q that is a refinement of
both P1 and P2. This operation, which we will call CCR (the coarsest common
refinment), can be conducted in principle by taking the intersection of all classes
in P1 with all classes in P2, and then throwing out the empty sets.

Let P1 and P2 be two partitions of Q, and ≡1 and ≡2 be the corresponding
equivalences. Then the equivalence relation p ≡ q defined by p ≡1 q and p ≡2 q,
corresponds to P1 ∧ P2.

The level sets of the composition f◦g are coarser than those of g; if g is invertible
then the level sets are the same. Let f × g : a → (f(a), g(a)). Then, the level set
partition of f × g is the coarsest common refinement of f and g.

For an automaton M , we construct a graph, called an observation graph, which
describes how information about the state of machine changes with observations.

Each vertex R is a record
[

t
P

]
, where the two fields t and P are the configuration

of states under the transition function and the partition induced by the output
function respectively. The partition induced by t, Π(t), is given by the following
equivalence relation: i is equivalent to j modulo Π(t) if f(t[i]) = f(t[j]).

An edge
([

t1
P1

]
,

[
t2
P2

])
belongs to the graph exactly when there exists

s ∈ {0, 1} such that t2 = δ(t1, s) and P2 = Π(f ◦ t2) ∧ P1. Since the CCR of two
partitions is no coarser than either it is apparent that along any path through the

graph the partitions may become finer. The function
([

t
P

]
, s

)
→ P , mapping

vertices into lattice of partitions, is monotonic.
If at the start of a path the condition P1 ≤ t1 occurs, then, P2 = Π(δ(t1, s)) ∧
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P1 ≤ Π(δ(t1, s)) = Π(t2).

For any path
([

t1
P1

]
. . .

[
tn
Pn

])
in the observation graph, Pn ≤ P1. For any

path
([

t1
P1

]
. . .

[
tn
Pn

])
in the observation graph if P1 ≤ Π(t1), then Pn = P1.

Finally, suppose that
([

t
P

]
, B

)
is a rooted sub-tree of the observation graph,

and P ≤ Π(t). The partition P is constant throughout the entire tree since each

node on the rooted sub-tree is the end point of a path starting at the root
[

t
P

]
.

Consequently, the node
[

t
P

]
will be pruned (ignored).

The algorithm for testing properties A, B, and C for an automaton M generates
records that are nodes of an observation graph and checks whether the partitions
components of the nodes verify the conditions associated with the properties A,
B, and C. The algorithm has the following steps.

Step 1. Initialization of

• a vector Counter recording all non-repeating nodes generated so far

• a trimmed binary tree OG recording the nodes in the observational graph

• a vector TB recording those states for which the condition in property B is
currently verified, and a Boolean variable hasB that is true if M has property
B and false otherwise

• a table TA recording those states for which the condition in property A is
currently verified, and a Boolean variable hasA that is true if M has property
A and false otherwise.

Step 2. Generate and test the first record

• Step 2.1. Generate the first record. The first record, say R, will be the root
of OG. Its two components are given by

– the vector of states (1, 2, . . . , n) and

– the partition PR, generated by the output function f ,

so R =
[

(1, 2, . . . , n)
PR

]

• Step 2.2. If M has C stop. Else:

• Step 2.3. Add the record to Counter

• Step 2.4. Update TA and hasA
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• Step 2.5. Update TB and hasB

• Step 2.6. Add the record to OG

[Comment: We generate (from left to right) all children of non-pruned nodes. If no
child can be generated, we check the values of hasB and hasA to determine whether
the automaton has B or A, then stop.]

Step 3. While there are children to be generated do

• Step 3.1. Generate the next record obtained from the left/right child, say

N =
[

tN
PN

]
. Its two components are given by

– tN the vector of states (i1, i2, . . . , in), obtained by applying the transition
function on each element of sequence of states in the parent node with
input letter 0 for the left child and 1 for the right child and

– the partition PN obtained by taking the CCR of the parent’s partition
component and the partion of states induced by the output function on
tN

• Step 3.2. If N is in Counter, then go to Step 3.1. Otherwise, add the current
record to Counter

• Step 3.3. If M has C, stop. Else:

• Step 3.4. Update TA and hasA

• Step 3.5. Update TB and hasB

• Step 3.6. If the record can be pruned, then go to Step 3.1

• Step 3.6. Add the node N to OG and go to Step 3.1

End of while loop.

If TA is false, then return non-A, stop; else, if TB is false, then return CI, stop;
else, retun CII, stop.

End of algorithm.
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4 The Algorithm in Action

In this section we present some examples illustrating the algorithm presented in
the previous section.

Example 1. Let us run the algorithm on the automaton in Figure 1.

Step 1. Initialize OG to ∅, Counter to the ∅ vector, TA and TB, respectively, the
n × n matrix with all elements 0 and the n-element all 0 vector, and the Boolean
variables hasA and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R =
[

1, 2, 3, 4
{1, 2, 3}, {4}

]

Step 2.2 The record R does not satisfy C as PR �= {1}, {2}, {3}, {4}

Step 2.3 Update Counter to [R]

Step 2.4 Update TA to

⎡
⎢⎢⎣

0, 0, 0, 1
0, 0, 0, 1
0, 0, 0, 1
1, 1, 1, 0

⎤
⎥⎥⎦ and hasA to false

Step 2.5 Update TB to

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ and hasB to false

Step 2.6 Update OG to (R, ∅)

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, N0, is[
4, 1, 4, 2

{1, 3}, {2}, {4}
]

,

where tN0 = (4, 1, 4, 2) is obtained by applying the transition function on
1, 2, 3, 4 to the input letter 0. The partition induced by the output function
on 4, 1, 4, 2 is {1, 3}, {2, 4}. Taking the CCR between this partition and the
partition component of its parent, i.e. PR = {1, 2, 3}, {4}, we obtain the
partition component of N0. Therefore

PN0 = {1, 3}, {2, 4}∧ {1, 2, 3}, {4} = {1, 3}, {2}, {4}
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Step 3.2 As the current node is not in Counter we add it:

Counter = [R, N0]

Step 3.3 The current automaton has not C as

PN0 �= {1}, {2}, {3}, {4}

Step 3.4 Update TA to

⎡
⎢⎢⎣

0, 1, 0, 1
1, 0, 1, 1
0, 1, 0, 1
1, 1, 1, 0

⎤
⎥⎥⎦ and hasA to false

Step 3.5 Update TB to

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦ and hasB to false

Step 3.6 As

{1, 3}, {2}, {4}∧ {1, 3}, {2}, {4} = {1, 3}, {2}, {4}
it follows that

{1, 3}, {2, 4}∧ PN0 = PN0

and therefore this record has to be pruned (as none of its children can bring
any new information)

Step 3 Generate next child

Second iteration:

Step 3.1 The next record, N1 is
[

3, 3, 4, 2
{1, 2}, {3}, {4}

]
,

where tN1 = (3, 3, 4, 2) is obtained by applying the transition function on
1, 2, 3, 4 and the input letter 1. The partition induced by the output function
on 3, 3, 4, 2 is {1, 2, 4}, {3}. Taking the CCR between this partition and the
partition component of the node’s parent, i.e. PR = {1, 2, 3}, {4}, we obtain
the partition component of N1. Therefore

PN1 = {1, 2, 4}, {3}∧ {1, 2, 3}, {4} = {1, 2}, {3}, {4}

Step 3.2 As the current node is not in Counter we add it:

Counter = [R, N0, N1]
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Step 3.3 The current automaton has not C as

PN1 �= {1}, {2}, {3}, {4}

Step 3.4 Update TA to

⎡
⎢⎢⎣

0, 1, 1, 1
1, 0, 1, 1
1, 1, 0, 1
1, 1, 1, 0

⎤
⎥⎥⎦ and hasA to true

Step 3.5 Update TB to

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦ and hasB to false

Step 3.6 As {1, 2}, {3}, {4} ∧ PN = {1, 2}, {3}, {4} ∧ {1, 2}, {3}, {4} =
{1, 2}, {3}, {4} this record has to be pruned

Step 3 Generate the next child

Third iteration:

As OG = (R, ∅) and Counter = (R, N0, N1), there is no child to generate,
stop. As hasA is true and hasB is false, the output is “the automaton has
CI”.

Example 2. Let us run the algorithm on the automaton in Figure 2.

Step 1. Initialize OG to ∅, Counter to the ∅ vector, TA and TB, respectively, the
n × n matrix with all elements 0 and the n-element all 0 vector, and the Boolean
variables hasA and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R =
[

1, 2, 3, 4
{1, 3}, {2, 4}

]

Step 2.2 As PR �= {1}, {2}, {3}, {4} the automaton has not C

Step 2.3 Update Counter = [R]

Step 2.4 Update TA to

⎡
⎢⎢⎣

0, 1, 0, 1
1, 0, 1, 0
0, 1, 0, 1
1, 0, 1, 0

⎤
⎥⎥⎦ and hasA to false
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Step 2.5 Update TB to

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ and hasB to false

Step 2.6 Update OG to (R, ∅)

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, N0, is
[

4, 3, 2, 1
{1, 3}, {2, 4}

]

where tN0 = (4, 3, 2, 1) is obtained by applying the transition function on
1, 2, 3, 4 to the input letter 0. The partition induced by the output function
on 4, 3, 2, 1 is {1, 3}, {2, 4}. Taking the CCR between this partition and the
partition component of its parent PR = {1, 3}, {2, 4}, we obtain the partition
component of N0:

PN0 = {1, 3}, {2, 4} ∧ PR = {1, 3}, {2, 4}

Step 3.2 As the current node is not in Counter we add it:

Counter = [R, N0]

Step 3.3 The current automaton has not C as

PN0 = {1}, {2}, {3}, {4}

Step 3.4 Update TA to

⎡
⎢⎢⎣

0, 1, 0, 1
1, 0, 1, 0
0, 1, 0, 1
1, 0, 1, 0

⎤
⎥⎥⎦ and hasA to false

Step 3.5 Update TB to

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ and hasB to false

Step 3.6 As
{1}, {2}, {3}, {4}∧ PN0 �= PN0

this record should not be pruned. Update OG = (R, N0, [R, N0])
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Step 3 Generate the next child

Second iteration:

Step 3.1 The next record, N1, is
[

2, 2, 1, 1
{1}, {2}, {3}, {4}

]

where tN1 = (2, 2, 1, 1) is obtained by applying the transition function on
states 1, 2, 3, 4 and the input letter 1. The partition induced by the output
function on 2, 2, 1, 1 is {1, 2}, {3, 4}. Taking the CCR between this partition
and the partition component of the node’s parent, i.e. PR = {1, 3}, {2, 4}, we
obtain the partition component of N1:

PN1 = {1, 3}, {2, 4} ∧ {1, 2}, {3, 4} = {1}, {2}, {3}, {4}

Step 3.2 The current node is not in Counter, so we add it:

Counter = [R, N0, N1]

Step 3.3 The current automaton has C as

PN1 = {1}, {2}, {3}, {4}

so the output is “the automaton has C”.

Example 3. Let us run the algorithm on the automaton in Figure 3.

Step 1. Initialize OG to ∅, Counter to the ∅ vector, TA and TB, respectively, the
n × n matrix with all elements 0 and the n-element all 0 vector, and the Boolean
variables hasA and hasB to false

Step 2 Generate the first record

Step 2.1 Generate the record R =
[

1, 2, 3, 4
{1, 3}, {2, 4}

]

Step 2.2 The record R has not C as PR �= {1}, {2}, {3}, {4}
Step 2.3 Update Counter = [R]

Step 2.4 Update TA to

⎡
⎢⎢⎣

0, 1, 0, 1
1, 0, 1, 0
0, 1, 0, 1
1, 0, 1, 0

⎤
⎥⎥⎦ and hasA to false
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Step 2.5 Update TB to

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ and hasB to false

Step 2.6 Update OG to (R, ∅)

Step 3 Generate the next child

First iteration:

Step 3.1 The next record, N0, is
[

1, 2, 2, 2
{1}, {2, 4}, {3}

]
,

where tN0 = (1, 2, 2, 2) is obtained by applying the transition function on
states 1, 2, 3, 4 to the input letter 0. The partition induced by the output
function on 1, 2, 2, 2 is {1}, {2, 3, 4}. Taking the CCR between this partition
and the partition component of its parent PR = {1, 3}, {2, 4} we obtain the
partition component of N0:

PN0 = {1}, {2, 3, 4}∧ PR = {1}, {2, 4}, {3}

Step 3.2 The current node is not in Counter, so we add it:

Counter = [R, N0]

Step 3.3 The current automaton has not C as

PN0 �= {1}, {2}, {3}, {4}

Step 3.4 Update TA to

⎡
⎢⎢⎣

0, 1, 1, 1
1, 0, 1, 0
1, 1, 0, 1
1, 0, 1, 0

⎤
⎥⎥⎦ and hasA to false

Step 3.5 Update TB to

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ and hasB to false

Step 3.6 As
{1}, {2, 3, 4}∧ PN0 = PN0

this record has to be pruned
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Step 3 Generate the next child

Second iteration:

Step 3.1 The next record, N1, is
[

1, 2, 1, 1
{1, 3}, {2}, {4}

]
,

where tN1 = (1, 2, 1, 1) is obtained from applying the transition function on
states 1, 2, 3, 4 and the input letter 1. The partition induced by the output
function on 2, 1, 1, 1 is {1, 3, 4}, {2}. Taking the CCR between this partition
and the partition component of the node’s parent PR = {1, 3}, {2, 4} we
obtain the partition component of N1:

PN1 = {1, 3, 4}, {2}∧ {1, 3}, {2, 4} = {1, 3}, {2}, {4}.

Step 3.2 As the current node is not in Counter we add it:

Counter = [R, N0, N1]

Step 3.3 The current automaton has not C as

PN1 �= {1}, {2}, {3}, {4}

Step 3.4 Update TA to

⎡
⎢⎢⎣

0, 1, 1, 1
1, 0, 1, 1
1, 1, 0, 1
1, 1, 1, 0

⎤
⎥⎥⎦ and hasA to true

Step 3.5 Update TB to

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ and hasB to true

Step 3.6 As {1, 3, 4}, {2}∧ PN = PN this record has to be pruned

Step 3 Generate the next child

Third iteration:

As OG = (R, ∅) and Counter = [R, N0, N1], there is no child to generate,
stop. As hasA is true and hasB is true, the automaton has property B, but
not C, so the output is “the automaton has CII”.
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5 Experimental Results

The proposed algorithm was implemented in C and the program3 was run on a
Pentium III, i686 processor using Redhat 8.0 Linux, 250 Mb of RAM. The aim was
to study the distributions of CI and CII over the set of all possible automata with
a given number of states and input/output symbols. Table 2 presents the results
of the main tests that have been done so far.

n × s # automata
time

CI CII
CII/CI CI CII

(sec) % % %

2 × 2 32 < 1 0 0 0 0 0
3 × 2 2916 < 2 0 0 0 0 0
4 × 2 524288 < 11 73728 30720 41.67 14.06 5.86
5 × 2 156250000 < 8435 46862400 19436160 41.47 29.99 12.44

4 × 3 452984832 < 14018 54577152 46227456 84.70 12.05 10.12

Table 2.

In the first column n × s stands for the class of automata with n states and s
input letters. Because of symmetries (the automaton (Q, δ, f) “is equivalent” to
the automaton (Q, δ, 1 − f)), the program actually tests only half of automata of
type n × s; the numbers of tested automata are shown in the second column. The
third column contains the time for processing all automata mentioned in the second
column. The numbers of automata verifying CI and CII are given in the next two
columns. The last three columns present the percentage of CII over CI and the
percentage of CI, respectively, CII, over the total number of automata processed.

We also tested automata with more than five states. For example, the 10-state
automaton in Table 3

q δ(q, 0) δ(q, 1) f(q)
1 2 1 0
2 3 2 0
3 4 3 0
4 5 4 0
5 6 5 0
6 7 6 0
7 8 7 0
8 9 8 0
9 9 10 0
10 10 10 1

Table 3.
3See http://www.massey.ac.nz/~bimills/obgraph.c for the program.
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has A (00000001 distinguishes the pairs (i, j) for i = 1, 2, 3, j = 1, 2, . . . , 10 and i �=
j, 00001 distinguishes the pairs (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), 0001 distinguishes
the pairs (5, 6), (5, 7), (5, 8), (5, 9), 001 distinguishes the pairs (6, 7), (6, 8), (6, 9), 01
distinguishes the pairs (7, 8), (7, 9), 1 distinguishes the pair (8, 9) and ε distinguishes
the pairs (i, 10) for i = 1, 2, . . . , 9), has B (as state 1 is distinguished from all other
states by the word 00000001, state 2 by 000000101, state 3 by 00000101, state 4 by
0000101, state 5 by 000101, state 6 by 00101, state 7 by 0101, state 8 by 101, state
9 by 1, and state 10 by ε) and has C (the word 101010101010101 distinguishes
every pair of distinct states). The algorithm has scanned 766 nodes in less than a
second.

6 Final Remarks

Based on the concept of observation graph of an automaton, new equivalent def-
initions have been given for two types of computational complementarity studied
in [3]. As a result, we proposed an algorithm for simultaneously determining these
properties. The algorithm has been shown in practice to be fast enough (on a
standard desktop machine) for testing all binary Moore machines up to five states.
Some other experiments reported in the paper illustrate the power of the algorithm.

Many problems remain open; for example, what is the complexity of the decision
problems CI, CII.
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