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Abstract

A homomorphism of an automaton A without outputs onto a subautoma-
ton B of A is called a retract homomorphism if it leaves the elements of B
fixed. An automaton A is called a retractable automaton if, for every subau-
tomaton B of A, there is a retract homomorphism of A onto B. In [1] and
[3], special retractable automata are examined. The purpose of this paper is
to give a construction for state-finite retractable automata without outputs.

In this paper, by an automaton we mean an automaton without outputs, that
is, a system A = (A, X, δ) consisting of a non-empty state set A, a non-empty input
set X and a transition function δ : A × X �→ A. If A has only one element then
the automaton A will be called trivial. The function δ is extended to A× X∗ (X∗

denotes the free monoid over X) as follows. If a is an arbitrary state of A then
δ(a, e) = a for the empty word e, and δ(a, qx) = δ(δ(a, q), x) for every q ∈ X∗,
x ∈ X .

If B is a non-empty subset of the state-set of an automaton A = (A, X, δ)
such that δ(b, x) ∈ B for every b ∈ B and x ∈ X , then B = (B, X, δB) is an
automaton, where δB denotes the restriction of δ to B × X . This automaton is
called a subautomaton (more precisely, an A-subautomaton) of A. A subautomaton
B of an automaton A is called a proper subautomaton of A if B is a proper subset
of A. A subautomaton B of an automaton A is said to be a minimal subautomaton
of A if B has no proper subautomaton. If a subautomaton B of an automaton
A has only one state then B is minimal; the state of B is called a trap of A.
If an automaton A = (A, X, δ) contains only one trap denoted by a0 then A is
called a one-trap automaton (or an OT-automaton). This fact will be denoted by
(A, X, δ; a0). If an automaton A has a subautomaton which is contained in every
subautomaton of A then it is called the kernel of A. The kernel of A is denoted
by KerA.

Let A = (A, X, δ) be an automaton containing at most one trap. Let A0 denote
the following set. A0 = A if A does not contain a trap or A is trivial; A0 = A−{a0}
if A is a non-trivial OT-automaton and a0 is the trap of A. Consider the mapping
δ0 : A0 × X �→ A0 which is defined for a couple (a, x) ∈ A0 × X if and only if
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δ(a, x) ∈ A0. In this case, let δ0(a, x) = δ(a, x). (A0, X, δ0) is a partial automaton
which will be denoted by A0.

An equivalence relation α of the state set A of an automaton A = (A, X, δ) is
called a congruence of A if, for every a, b ∈ A and x ∈ X , the assumption (a, b) ∈ α
implies (δ(a, x), δ(b, x)) ∈ α. It is easy to see that if B is a subautomaton of an
automaton A then ρB = {(a, b) ∈ A × A : a = b or a, b ∈ B} is a congruence of
A, which is called the Rees congruence of A induced by B. The factor automaton
A/ρB is called the Rees factor automaton of A modulo B. If B is a subautomaton
of an automaton A then we may describe the Rees factor A/ρB as the result of
collapsing B into a trap a0 of the Rees factor, while the elements of A outside of B
retain their identity. Sometimes we can identify these elements a (a ∈ A−B) with
the one-element ρB-class [a], that is, we can suppose that the state set of the Rees
factor is (A − B) ∪ {a0}.

If a is a state of an automaton A, then the smallest subautomaton R(a) of A
containing the state a is called the principal subautomaton of A generated by a. It
is easy to see that R(a) = δ(a, X∗) = {δ(a, p) : p ∈ X∗}. Clearly, every minimal
subautomaton of an automaton is principal.

The relation R on an automaton A defined by R = {(a, b) ∈ A × A : R(a) =
R(b)} is an equivalence relation on A. The R-class of A containing an element
a ∈ A is denoted by Ra. The subset R(a) − Ra is denoted by R[a]. It is clear
that R[a] is either empty or (R[a], X, δR[a]) is a subautomaton of A. The factor
automaton R{a} = R(a)/ρR[a] is called a principal factor of A. We note that
if R[a] = ∅ then R{a} is defined to be R(a). For example, if a is a trap then
R(a) = {a} and so R[a] = ∅.

A mapping φ (acting on the left) of the state set A of an automaton A =
(A, X, δA) into the state set B of an automaton B = (B, X, δB) is called a homo-
morphism of A into B if φ(δA(a, x)) = δB(φ(a), x) for every a ∈ A and x ∈ X .

A mapping φ (acting on the left) of A0 into B0 is called a partial homomorphism
of a partial automaton A0 = (A0, X, δ0

A) into a partial automaton B0 = (B0, X, δ0
B)

if, for every a ∈ A0, x ∈ X , the assumption δA(a, x) ∈ A0 implies δB(φ(a), x) ∈ B0

and δB(φ(a), x) = φ(δA(a, x)).

Definition 1. A subautomaton B of an automaton A is said to be a retract sub-
automaton if there is a homomorphism of A onto B which leaves the elements of
B fixed. Such a homomorphism is called a retract homomorphism of A onto B.

Definition 2. An automaton A is called a retractable automaton if every subau-
tomaton of A is retract.

Lemma 1. Every subautomaton of a retractable automaton is retractable.

Proof. As a subautomaton C of a subautomaton B of an automaton A is also a
subautomaton of A, and the retriction of a retract homomorphism of A onto C to
B is a retract homomorphism of B onto C, our assertion is obvious.

Lemma 2. If A is a retractable automaton and {ai : i ∈ I} are elements of A
such that R(ai) ⊆ R(b) for an element b of A then there is an index j ∈ I such that
R(ai) ⊆ R(aj) for every i ∈ I.
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Proof. Let A = (A, X, δ) be a retractable automaton and {ai : i ∈ I} be arbitrary
elements of A such that R(ai) ⊆ R(b) for an element b of A. Let R = ∪i∈IR(ai).
As R = (R, X, δR) is a subautomaton of A, there is a retract homomorphism λR

of A onto R. As λR(b) ∈ R, there is an index j ∈ I such that λR(b) ∈ R(aj). Then
λR(δ(b, p)) = δ(λR(b), p) ∈ R(aj) for every p ∈ X∗, and so λR(R(b)) ⊆ R(aj). As
R(ai) ⊆ R ∩ R(b) (i ∈ I), we get R(ai) = λR(R(ai)) ⊆ R(aj) for every i ∈ I.

Corollary 1. Every subautomaton of a principal subautomaton of a retractable
automaton is principal. In particular, for every state a of a retractable automaton
A, R[a] is either empty or R[a] is a principal subautomaton of A.

Proof. Let B be a subautomaton of a principal subautomaton R(b) of a retractable
automaton A. Then R(a) ⊆ R(b) for every a ∈ B. By Lemma 2, there is an
element c ∈ B such that R(a) ⊆ R(c) for every a ∈ B. As B = ∪a∈BR(a), we get
B = R(c).

Let T be a set with a partial ordering ≤ such that every two-element subset of
T has a lower bound in T and every non-empty subset of T having an upper bound
in T contains a greatest element. Then T is a semilattice under multiplication ∗ by
letting a ∗ b (a, b ∈ T ) be the (necessarily unique) greatest lower bound of a and b
in T . A semilattice which can be constructed as above is called a tree ([4]).

Corollary 2. A state-finite retractable automaton A contains a kernel if and only
if the principal subautomata of A form a tree with respect to inclusion.

Proof. Let A be a state-finite retractable automaton. The inclusion (the inclusion
of the state-sets) is a partial ordering on the set T of all principal subautomata
of A. By Lemma 2, every non-empty subset of T having an upper bound in T
contains a greatest element. As every finite tree has a least element, T (which is
finite) is a tree if and only if it has a least element. As the least element of T is the
kernel of A, our proof is complete.

Lemma 3. Every principal subautomaton of a state-finite retractable automaton
contains exactly one minimal subautomaton.

Proof. From the finiteness of the state set, it follows that every principal sub-
automaton contains a minimal subautomaton. As a minimal subautomaton is a
principal subautomaton, our assertion follows from Lemma 2.

Lemma 4. If a1, a2 are states of a state-finite retractable automaton A = (A, X, δ)
such that B1 ⊆ R(a1), B2 ⊆ R(a2) for distinct minimal subautomata B1 and B2

of A then R(a1) ∩ R(a2) = ∅.
Proof. If c ∈ R(a1) ∩ R(a2) then, by Lemma 3, there is a minimal subautomaton
B of A such that B ⊆ R(c) ⊆ R(a1) ∩ R(a2). Using again Lemma 3, we get
B1 = B = B2 which is a contradiction.
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If Ai = (Ai, X, δi), i ∈ I are automata such that Ai ∩ Aj = ∅ for every i �= j,
then A = (A, X, δ) is an automaton, where A = ∪i∈IAi and δ(a, x) = δi(a, x) for
every a ∈ Ai and x ∈ X . The automaton A is called the direct sum of the automata
Ai, i ∈ I.

Definition 3. We say that an automaton A is a strong direct sum of a family
of subautomata Ai, i ∈ I if A is a direct sum of Ai, i ∈ I and, for every couple
(i, j) ∈ I × I, there is a homomorphism of Ai into Aj.

Theorem 1. A strong direct sum of retractable automata is retractable.

Proof. Assume that an automaton A = (A, X, δ) is a strong direct sum of automata
Ai = (Ai, X, δi), i ∈ I. Let φi,j be the corresponding homomorphism of Ai into
Aj (i, j ∈ I). Let R be an arbitrary subautomaton of A. Let Ri = R ∩ Ai. It is
clear that Ri is either empty or Ri = (Ri, X, δRi) is a subautomaton of Ai. Let
λRi denote a retract homomorphism of Ai onto Ri if Ri �= ∅, and let i0 denote a
fixed index, for which Ri0 �= ∅. We define a mapping λR of A onto R as follows. If
a ∈ Ai and Ri = ∅, then let λR(a) = λRi0

(φi,i0 (a)); if a ∈ Ai and Ri �= ∅, then let
λR(a) = λRi(a). It is clear that λR mapps A onto R and leaves the elements of R
fixed. To prove that λR is a homomorphism of A onto R, let i ∈ I, a ∈ Ai, x ∈ X
be arbitrary elements. In case Ri = ∅,

λR(δ(a, x)) = λRi0
(φi,i0 (δi(a, x))) = λRi0

(δi0(φi,i0 (a), x)) =

= δi0(λRi0
(φi,i0 (a)), x) = δ(λR(a), x),

and, in case Ri �= ∅,

λR(δ(a, x)) = λRi(δi(a, x)) = δi(λRi (a), x) = δ(λR(a), x),

because a, δ(a, x) ∈ Ai. Hence λR is a retract homomorphism of A onto R. Thus
the theorem is proved.

Theorem 2. For a state-finite automaton A = (A, X, δ), the following assertions
are equivalent:

(i) A is retractable;

(ii) A is a direct sum of finite many state-finite retractable automata containing
kernels being isomorphic to each other.

(iii) A is a strong direct sum of finite many state-finite retractable automata con-
taining kernels.

Proof. (i) implies (ii): Assume that A is retractable. As A is finite, it has a
minimal subautomaton. Let {Bi, i = 1, 2, . . . r} be the set of all distinct minimal
subautomata of A. Let Ai = ∪a∈A{R(a) : Bi ⊆ R(a)}, i = 1, 2, . . . , r. It is clear
that Ai is a subautomaton of A and Bi is the kernel of Ai for every i = 1, . . . , r.
By Lemma 3, for every principal subautomaton R(a) of A, there is a unique index
i such that Bi ⊆ R(a). Thus A = ∪r

i=1Ai. By Lemma 4, Ai ∩ Aj = ∅ for every
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i �= j. Hence A is a direct sum of the automata Ai, i = 1, . . . , r. By Lemma 1,
every automaton Ai is retractable. Let i, j ∈ {1, 2, . . . , r} be arbitrary. As Bi is a
minimal subautomaton of A, the retract homomorphism λBi of A onto Bi maps
Bj onto Bi. Thus |Bj | ≥ |Bi|. Similarly, |Bi| ≥ |Bj |. Thus |Bi| = |Bj | and the
restriction of λBj to Bi is an isomorphism of Bi onto Bj . Thus (ii) is satisfied.

(ii) implies (iii): Assume that A is a direct sum of the state-finite retractable
automata Ai, i = 1, 2, . . . , r such that each of Ai contains a kernel Bi, and, for
every i, j ∈ {1, 2, . . . , r}, there is an isomorphism φi,j of Bi onto Bj . It is easy to
see that Φi,j defined by

Φi,j(a) = φi,j(λBi(a)), a ∈ Ai

is a homomorphism of Ai into Aj , where λBi denotes a retract homomorphism of
Ai onto Bi. Thus A satisfies (iii).

(iii) implies (i): By Theorem 1, it is obvious.

By the previous theorem, we concentrate our attention to state-finite retractable
automata containing a kernel. These automata will be described by Corollary 3
and Theorem 7. First consider some results and notions which will be needed for
us.

Lemma 5. Every principal factor of an automaton can contain at most one trap.

Proof. If R[a] = ∅ for a state a then the principal factor R{a} has a trap only that
case when a is a trap of A, that is, the principal factor is trivial. If R[a] �= ∅ then
R(b) = R(a) for every b ∈ Ra = R(a) − R[a], and so R{a} contains only one trap,
namely the ρR[a]-class R[a] of R(a).

Definition 4. An automaton A = (A, X, δ) is called strongly connected if, for every
couple (a, b) ∈ A×A, there is a word p ∈ X+ (X+ denotes the free semigroup over
X) such that b = δ(a, p).

We note that every strongly connected automaton can contain only one subau-
tomaton, namely itself. We also note that if an automaton is trivial (has only one
state which is a trap) then it is strongly connected. If an automaton has at least
two state and has a trap then it is not strongly connected.

Definition 5. A non-trivial OT-automaton A = (A, X, δ; a0) is called strongly
trap-connected if, for every couple (a, b) ∈ A × A, a �= a0, there is a word p ∈ X+

such that b = δ(a, p).

We note that every strongly trap-connected automaton A = (A, X, δ; a0) con-
tains only two subautomaton, namely itself and ({a0}, X, δ{a0}). Moreover, for
every state a �= a0 of A there is a word p ∈ X+ such that a = δ(a, p).

Definition 6. We say that a non-trivial OT-automaton A = (A, X, δ; a0) is
strongly trapped if δ(a, x) = a0 for every a ∈ A and x ∈ X.
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Theorem 3. Every principal factor of an automaton is either strongly connected
or strongly trap-connected or strongly trapped.

Proof. If R[a] = ∅ then R{a} = R(a) is strongly connected. If R[a] �= ∅ then,
by Lemma 5, R{a} is a non-trivial OT-automaton. Let a0 denote the trap of
R{a}. If |Ra| = 1, that is, R{a} = {a, a0}, then R{a} is either strongly trapped
(if δ(a, x) ∈ R[a] in A, that is, δ(a, x) = a0 in R{a} for every x ∈ X) or strongly
trap-connected (if a = δ(a, x) for some x ∈ X). If |Ra| > 1 then, for every elements
b, c of Ra, c = δ(b, p) for some p ∈ X+. Moreover, for every b ∈ Ra, there is a word
p ∈ X+ such that δ(b, p) ∈ R[a] in A, that is, δ(b, p) = a0 in R{a}. Hence R{a} is
strongly trap-connected.

Definition 7. An automaton A is called semiconnected if every principal factor of
A is either strongly connected or strongly trap-connected.

Theorem 4. An automaton A = (A, X, δ) is semiconnected if and only if every
subautomaton B of A satisfies the following: for every a ∈ B there are elements
b ∈ B and p ∈ X+ such that a = δ(b, p).

Proof. Let A = (A, X, δ) be a semiconnected automaton and B be a subautomaton
of A. Let a be an arbitrary element of B. Then R(a) ⊆ B. If a is a trap then
a = δ(a, x) for every x ∈ X . Consider the case when a is not a trap. Then
|R(a)| ≥ 2. If R[a] = ∅ then, by Theorem 3, R(a) = R{a} is strongly connected
which means that, for every b ∈ R(a) there is a word p ∈ X+ such that a = δ(b, p).
If R[a] �= ∅ then, by Theorem 3, R{a} is strongly trap-connected and so, for every
element b ∈ Ra, there is a word p ∈ X+ such that a = δ(b, p). Thus, in all cases,
there is a state b ∈ B and a word p ∈ X+ such that a = δ(b, p).

Conversely, assume that every subautomaton of an automaton A satisfies the
condition of the theorem. We show that A is semiconnected. Let a be an arbitrary
element of A. If a is a trap of A then the principal factor R{a} is trivial (and so it
is strongly connected). Consider the case when a is not a trap of A. Then a is an
element of R{a} (and is not the trap of R{a}). By Theorem 3, it is sufficient to show
that the principal factor R{a} is not strongly trapped. As R(a) is a subautomaton
of A, by the condition of the theorem, there are elements b ∈ R(a) p ∈ X∗ and
x ∈ X such that a = δ(b, px) = δ(δ(b, p), x) in A. It is clear that b′ = δ(b, p) /∈ R[a]
and so a = δ(b′, x) in R{a}. Thus R{a} is not strongly trapped.

Definition 8. Let B = (B, X, δB) be a subautomaton of an automaton A =
(A, X, δ). We say that A is a dilation of B if there is a mapping φ of A onto
B which leaves the elements of B fixed and δ(a, x) = δB(φ(a), x) for all a ∈ A and
x ∈ X.

Theorem 5. Every dilation of a retractable automaton is retractable.

Proof. Let A = (A, X, δ) be a dilation of a retractable subautomaton B =
(B, X, δB). Then there is a mapping φ of A onto B which leaves the elements
of B fixed and δ(a, x) = δB(φ(a), x) for every a ∈ A and x ∈ X . Let R be a subau-
tomaton of A. Then, for every c ∈ R and x ∈ X , δ(c, x) ∈ R∩B. Let λR∩B denote
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a retract homomorphism of B onto the subautomaton R ∩B. Define a mapping
λR of A onto R as follows. Let λR(a) = a if a ∈ R, and let λR(a) = λR∩B(φ(a)) if
a /∈ R. We show that λR is a homomorpism of A onto R. Let a ∈ A and x ∈ X be
arbitrary elements. If a ∈ R then

δ(λR(a), x) = δ(a, x) = λR(δ(a, x)).

Assume a /∈ R. Then

δ(λR(a), x) = δB(λR∩B(φ(a)), x) =

= λR∩B(δB(φ(a), x)) = λR(δ(a, x)),

because λR(a), δ(a, x) ∈ B and the restriction of λR to B equals λR∩B. Hence λR is
a homomorphism of A onto R. As λR leaves the elements of R fixed, it is a retract
homomorphism of A onto R. Consequently, A is a retractable automaton.

Theorem 6. Every retractable automaton is a dilation of a semiconnected re-
tractable automaton.

Proof. Let A = (A, X, δ) be a retractable automaton and let B = δ(A, X). Then
B = (B, X, δB) is a subautomaton of A and so there is a retract homomorphism φ
of A onto B. Let a ∈ A, x ∈ X be arbitrary elements. Then δ(a, x) = φ(δ(a, x)) =
δB(φ(a), x). Hence A is a dilation of B. By Lemma 1, B is retractable. Let R be
an arbitrary subautomaton of B. If c ∈ R is an arbitrary element, then c = δ(a, x)
for some a ∈ A and x ∈ X . Let λR denote the retract homomorphism of A onto
R. Then λR(a) ∈ R and

c = λR(c) = λR(δ(a, x)) = δ(λR(a), x).

Thus, by Theorem 4, B is semiconnected.

Corollary 3. An automaton is retractable if and only if it is a dilation of a semi-
connected retractable automaton.

Proof. By the previous two theorems, it is evident.

Theorem 2 shows that the state-finite retractable automata are exactly the di-
rect sums of finite many state-finite retractable automata such that each component
in a mentioned direct sum contains a kernel, and these kernels are isomorphic with
each other. Corollary 3 and the remark after Theorem 2 show that every component
in a direct sum is a dilation of a state-finite semiconnected retractable automaton
containing a kernel. Theorem 7 will show how we can construct the state-finite
semiconnected retractable automata containing a kernel. These results togethet
give a complete description of state-finite retractable automata.

Construction. Let T be a finite tree (under partial ordering ≤) with the least
element i0. Let i 
 j (i, j ∈ T ) denote the fact that i > j and, for every k ∈ T ,
i ≥ k ≥ j implies i = k or j = k.
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Let Ai = (Ai, X, δi), i ∈ T be a family of disjunct automata such that
(i) Ai0 is strongly connected and Ai is a strongly trap-connected OT-automaton

for every i ∈ T with i �= i0.
(ii) Let φi,i denote the identity mapping of Ai, and assume that, for every

i, j ∈ T with i 
 j, there is a partial homomorphism φi,j of A0
i into A0

j such that
(iii) for every i 
 j there are elements a ∈ A0

i and x ∈ X such that δi(a, x) /∈ A0
i

and δj(φi,j(a), x) ∈ A0
j .

For arbitrary elements i, j ∈ T with i ≥ j, define a partial homomorphism Φi,j

of A0
i into A0

j as follows. Φi,i = φi,i and, if i > j such that i 
 k1 
 . . . kn 
 j
then let

Φi,j = φkn,j ◦ φkn−1,kn ◦ . . . ◦ φk1,k2 ◦ φi,k1 .

(We note that if i ≥ j ≥ k are arbitrary elements of T then Φi,k = Φj,k ◦ Φi,j .)
Let A = ∪i∈T A0

i . Define a transition function δ′ : A × X �→ A as follows. If
a ∈ A0

i and x ∈ X then let δ′(a, x) = δi′[a,x](Φi,i′ [a,x](a), x), where i′[a, x] denotes
the greatest element of the set {j ∈ T : δj(Φi,j(a), x) ∈ A0

j}.
It is easy to see that A = (A, X, δ′) is an automaton which will be denoted by

(Ai, X, δi; φi,j , T ).

Theorem 7. A finite automaton is a semiconnected retractable automaton con-
taining a kernel if and only if it is isomorphic to an automaton (Ai, X, δi; φi,j , T )
constructed as above.

Proof. Let R be a subautomaton of an automaton (Ai, X, δi; φi,j , T ). As every au-
tomaton Ai (i ∈ T −{i0}) is strongly trap-connected and Ai0 is strongly connected,
it follows that R = ∪j∈ΓA0

j for some non-empty subset Γ of T . We show that Γ
is an ideal of T , that is, i ∈ Γ and j ≤ i together imply j ∈ Γ for all i, j ∈ T .
Let i be an arbitrary element of T such that i ∈ Γ, i �= i0. If j ∈ T with i 
 j
then, by (iii), there are elements a ∈ A0

i and x ∈ X such that δi(a, x) /∈ A0
i and

δj(φi,j(a), x) ∈ A0
j . Then δ′(a, x) ∈ A0

j . Hence A0
j ∩ R �= ∅ which implies that

A0
j ⊆ R and so j ∈ Γ. This implies that Γ is an ideal of T . As T is a tree,

π : i �→ max{γ ∈ Γ : γ ≤ i}
is a well-defined mapping of T onto Γ which leaves the elements of Γ fixed (in fact,
π is a retract homomorphism of the semigroup T onto the ideal Γ of T (see [4])).
We define a retract homomorphism λR of A onto R. For an arbitrary element
a ∈ A, let

λR(a) = Φi,π(i)(a)

if a ∈ A0
i . It is easy to see that λR leaves the elements of R fixed. We prove that

λR is a homomorphism of A onto R. Let x ∈ X , a ∈ A0
i be arbitrary elements.

Using δ′(a, x) = δi′[a,x](Φi,i′ [a,x](a), x) ∈ A0
i′[a,x] and the fact that Φi′[a,x],π(i′[a,x]) is

a partial homomorphism, we get

λR(δ′(a, x)) = λR(δi′[a,x](Φi,i′[a,x](a), x)) =

= Φi′[a,x],π(i′[a,x])(δi′[a,x](Φi,i′ [a,x](a), x)) =
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= δπ(i′[a,x])(Φi,π(i′[a,x])(a), x) ∈ A0
π(i′[a,x]).

Using Φi,π(i)(a) ∈ A0
π(i), we have

δ′(λR(a), x) = δ′(Φi,π(i)(a), x) =

= δ(π(i))′[Φi,π(i)(a),x](Φπ(i),(π(i))′[Φi,π(i)(a),x](Φi,π(i)(a)), x) =

= δ(π(i))′[Φi,π(i)(a),x](Φi,(π(i))′[Φi,π(i)(a),x](a), x) ∈ A0
(π(i))′[Φi,π(i)(a),x].

To prove that λR(δ′(a, x)) = δ′(λR(a), x), it is sufficient to show that

(π(i))′[Φi,π(i)(a), x] = π(i′[a, x]).

First, assume i′[a, x] ≥ π(i) (and so π(i′[a, x]) = π(i)). As φi′ [a,x],π(i) is a partial
homomorphism of A0

i′[a,x] into A0
π(i) and δi′[a,x](Φi,i′[a,x](a), x) ∈ A0

i′[a,x], we get

δπ(i)(Φi,π(i)(a), x) = δπ(i)(Φi′[a,x],π(i)(Φi,i′[a,x](a)), x) =

= Φi′[a,x],π(i)(δi′[a,x](Φi,i′ [a,x](a), x)) ∈ A0
π(i)

and so
(π(i))′[Φi,π(i)(a), x] = π(i) = π(i′[a, x]).

Next, consider the case when i′[a, x] < π(i) (and so π(i′[a, x]) = i′[a, x]). If j ∈ T
with π(i) ≥ j > i′[a, x] then we have

δj(Φπ(i),j(Φi,π(i)(a)), x) = δj(Φi,j(a), x) /∈ A0
j .

Then
(π(i))′[Φi,π(i)(a), x] ≤ i′[a, x].

As
δi′[a,x](Φπ(i),i′[a,x](Φi,π(i)(a)), x) = δi′[a,x](Φi,i′[a,x](a), x) ∈ A0

i′[a,x],

we get
(π(i))′[Φi,π(i)(a), x] ≥ i′[a, x].

Hence
(π(i))′[Φi,π(i)(a), x] = i′[a, x] = π(i′[a, x]).

Consequently, (π(i))′[Φi,π(i)(a), x] = π(i′[a, x]) in both cases. Hence λR is a (re-
tract) homomorphism of A onto R. Thus A = (Ai, X, δi; φi,j , T ) is a retractable
automaton.

We show that A is semiconnected. If R is an arbitrary subautomaton of A,
then there is an ideal Γ of T such that R = ∪j∈ΓA0

j (see above). Let a ∈ R be
an arbitrary element. Then a ∈ A0

k for some k ∈ Γ. As Ak is strongly connected
or strongly trap-connected, there are elements b ∈ A0

k and p ∈ X+ such that
a = δk(b, p) = δ′(b, p). By Theorem 4, it means that A is semiconnected. As i0 is
contained in every ideal of T , Ai0 is the kernel of (Ai, X, δi; φi,j , T ).
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Conversely, let A be a finite semiconnected retractable automaton containing
a kernel. Let Prf(A) denote the set of all principal factors of A. By Corollary
2, Prf(A) is a (finite) tree under partial ordering ≤ defined by R{a} ≤ R{b} if
and only if R(a) ⊆ R(b). As A is semiconnected, the least element of Prf(A) is
strongly connected, the other ones are strongly trap-connected.

Let T be a set with |T | = |Prf(A)|. Denote a bijection of T onto Prf(A) by f .
Define a partial ordering ≤ on T by i ≤ j (i, j ∈ T ) if and only if f(i) ≤ f(j). Let
i0 denote the least element of T . Clearly, T is a finite tree with the least element
i0. For every element i ∈ T , fix an element ai in A such that f(i) = R{ai}. (We
note that R{ai} = R{aj} iff ai = aj iff i = j). As R{ai0} is strongly connected
and R{ai} is strongly trap-connected if i �= i0, condition (i) of the Construction is
satisfied.

Let λR(aj) (j ∈ T ) denote a fix retract homomorphism of A onto R(aj). For
every i, j ∈ T with i � j, let λi,j denote the restriction of λR(aj) to R(ai). It is
obvious that λi,j is a retract homomorphism of R(ai) onto R(aj) for every i � j,
(i, j ∈ T ). Moreover, λi,i is the identity mapping of R(ai), for every i ∈ T .
We show that λi,j maps Rai into Raj . Let a ∈ Rai be an arbitrary element (so
R(a) = R(ai)). Then, for every p ∈ X∗, λi,j(δ(a, p)) = δ(λi,j(a), p). If λi,j(a) was in
R[aj] then we would have λi,j(δ(a, p)) ∈ R[aj ] for every p ∈ X∗, because R[aj ] is a
subautomaton of A. This would imply that λi,j(R(ai)) ⊆ R[aj] which is impossible,
because λi,j maps R(ai) onto R(aj) = Raj ∪ R[aj ] ⊃ R[aj]. Hence λi,j maps Rai

into Raj and so λi,j can be considered as a mapping of R0{ai} into R0{aj}. If
δ(a, x) ∈ Rai for some a ∈ Rai and x ∈ X then δ(λi,j(a), x) = λi,j(δ(a, x)) ∈ Raj .
Hence λi,j is a partial homomorphism of the partial automaton R0{ai} into the
partial automaton R0{aj}. Thus condition (ii) of the Construction is satisfied (for
Ai = R{ai}, φi,j = λi,j).

Assume i 
 j. Let b ∈ Raj be an arbitrary element. Then ai �= b ∈ R(ai) and
so there is a word p = x1x2 . . . xn ∈ X+ (x1, x2, . . . xn ∈ X) such that b = δ(ai, p).
Let m be the least index such that δ(ai, x1 . . . xm) ∈ Raj . Consider an element a
of Rai (or of R0{ai}) as follows. Let a = ai if m = 1. Let a = δ(ai, x1 . . . xm−1) if
m > 1. Then δ(a, xm) /∈ Rai (or δ(a, xm) /∈ R0{ai}). On the other hand,

δ(λi,j(a), xm) = λi,j(δ(a, xm)) = δ(a, xm) ∈ Raj = R0{aj},
because λi,j leaves the elements of R(aj) fixed. Thus (iii) of the Construction is
satisfied (for φi,j = λi,j , x = xm).

For arbitrary elements i, j ∈ T with i ≥ j, define the mapping Φi,j as follows.
Let Φi,i = λi,i and, if i > j with i 
 k1 
 k2 
 . . . kn 
 j then let

Φi,j = λkn,j ◦ . . . ◦ λi,k1 .

It is clear that Φi,j is a retract homomorphism of R(ai) onto R(aj) such that
it maps Rai into Raj . Thus Φi,j can be considered as a partial homomorphism
of R0{ai} into R0{aj}. Moreover, Φi,k = Φj,k ◦ Φi,j for every i, j, k ∈ T with
i ≥ j ≥ k.

Construct the automaton R = (R{ai}, X, δi; λi,j , T ), where δi is the transitive
function of the factor automaton R{ai} induced by δ. It is clear that the state sets
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of the automata R and A are the same. We show that the transitive functions δ of
A equals the transitive function δ′ of R. Let i ∈ T , a ∈ Rai = R0{ai}, x ∈ X be
arbitrary elements. Assume δ(a, x) ∈ Raj (i ≥ j). Let k ∈ T with i ≥ k > j. Then
δ(a, x) ∈ R[ak] ⊂ R(ak) and so

δ(Φi,k(a), x) = Φi,k(δ(a, x)) = δ(a, x) /∈ Rak
= R0{ak},

because Φi,k leaves the elements of R(ak) fixed. If j ≥ k then

δ(Φi,k(a), x) = Φi,k(δ(a, x)) =

= Φj,k ◦ Φi,j(δ(a, x)) = Φj,k(δ(a, x)) ∈ Rak
= R0{ak},

because Φi,j leaves the element δ(a, x) ∈ Raj = R0{aj} fixed, and Φj,k maps Raj

into Rak
. Consequently i′[a, x] = j. Hence

δ(a, x) = Φi,j(δ(a, x)) = δ(Φi,j(a), x) = δj(Φi,j(a), x) =

= δi′[a,x](Φi,i′[a,x](a), x) = δ′(a, x).

Thus the theorem is proved.
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