Retractable state-finite automata without outputs*

Attila Nagy[†]

Abstract

A homomorphism of an automaton \mathbf{A} without outputs onto a subautomaton \mathbf{B} of \mathbf{A} is called a retract homomorphism if it leaves the elements of Bfixed. An automaton \mathbf{A} is called a retractable automaton if, for every subautomaton \mathbf{B} of \mathbf{A} , there is a retract homomorphism of \mathbf{A} onto \mathbf{B} . In [1] and [3], special retractable automata are examined. The purpose of this paper is to give a construction for state-finite retractable automata without outputs.

In this paper, by an automaton we mean an automaton without outputs, that is, a system $\mathbf{A} = (A, X, \delta)$ consisting of a non-empty state set A, a non-empty input set X and a transition function $\delta : A \times X \mapsto A$. If A has only one element then the automaton \mathbf{A} will be called trivial. The function δ is extended to $A \times X^*$ (X^* denotes the free monoid over X) as follows. If a is an arbitrary state of \mathbf{A} then $\delta(a, e) = a$ for the empty word e, and $\delta(a, qx) = \delta(\delta(a, q), x)$ for every $q \in X^*$, $x \in X$.

If B is a non-empty subset of the state-set of an automaton $\mathbf{A} = (A, X, \delta)$ such that $\delta(b, x) \in B$ for every $b \in B$ and $x \in X$, then $\mathbf{B} = (B, X, \delta_B)$ is an automaton, where δ_B denotes the restriction of δ to $B \times X$. This automaton is called a *subautomaton* (more precisely, an A-subautomaton) of \mathbf{A} . A subautomaton \mathbf{B} of an automaton \mathbf{A} is called a *proper subautomaton* of \mathbf{A} if B is a proper subset of A. A subautomaton \mathbf{B} of an automaton A is said to be a *minimal subautomaton* of \mathbf{A} if \mathbf{B} has no proper subautomaton. If a subautomaton \mathbf{B} of an automaton A has only one state then \mathbf{B} is minimal; the state of \mathbf{B} is called a *trap* of \mathbf{A} . If an automaton $\mathbf{A} = (A, X, \delta)$ contains only one trap denoted by a_0 then \mathbf{A} is called a *one-trap automaton* (or an OT-*automaton*). This fact will be denoted by $(A, X, \delta; a_0)$. If an automaton \mathbf{A} has a subautomaton which is contained in every subautomaton of \mathbf{A} then it is called the *kernel* of \mathbf{A} . The kernel of \mathbf{A} is denoted by $Ker\mathbf{A}$.

Let $\mathbf{A} = (A, X, \delta)$ be an automaton containing at most one trap. Let A^0 denote the following set. $A^0 = A$ if \mathbf{A} does not contain a trap or \mathbf{A} is trivial; $A^0 = A - \{a_0\}$ if \mathbf{A} is a non-trivial OT-automaton and a_0 is the trap of \mathbf{A} . Consider the mapping $\delta^0 : A^0 \times X \mapsto A^0$ which is defined for a couple $(a, x) \in A^0 \times X$ if and only if

^{*}Research supported by the Hungarian NFSR grant No T029525 and No T042481

 $^{^\}dagger \mathrm{Department}$ of Algebra, Institute of Mathematics, Budapest University of Technology and Economics

 $\delta(a, x) \in A^0$. In this case, let $\delta^0(a, x) = \delta(a, x)$. (A^0, X, δ^0) is a partial automaton which will be denoted by \mathbf{A}^0 .

An equivalence relation α of the state set A of an automaton $\mathbf{A} = (A, X, \delta)$ is called a *congruence* of \mathbf{A} if, for every $a, b \in A$ and $x \in X$, the assumption $(a, b) \in \alpha$ implies $(\delta(a, x), \delta(b, x)) \in \alpha$. It is easy to see that if \mathbf{B} is a subautomaton of an automaton \mathbf{A} then $\rho_B = \{(a, b) \in A \times A : a = b \text{ or } a, b \in B\}$ is a congruence of \mathbf{A} , which is called the *Rees congruence* of \mathbf{A} induced by \mathbf{B} . The factor automaton \mathbf{A}/ρ_B is called the *Rees factor automaton* of \mathbf{A} modulo \mathbf{B} . If \mathbf{B} is a subautomaton of an automaton \mathbf{A} then we may describe the Rees factor \mathbf{A}/ρ_B as the result of collapsing B into a trap a_0 of the Rees factor, while the elements of A outside of Bretain their identity. Sometimes we can identify these elements a $(a \in A - B)$ with the one-element ρ_B -class [a], that is, we can suppose that the state set of the Rees factor is $(A - B) \cup \{a_0\}$.

If a is a state of an automaton **A**, then the smallest subautomaton $\mathbf{R}(a)$ of **A** containing the state a is called the *principal subautomaton* of **A** generated by a. It is easy to see that $R(a) = \delta(a, X^*) = \{\delta(a, p) : p \in X^*\}$. Clearly, every minimal subautomaton of an automaton is principal.

The relation \mathcal{R} on an automaton \mathbf{A} defined by $\mathcal{R} = \{(a, b) \in A \times A : R(a) = R(b)\}$ is an equivalence relation on A. The \mathcal{R} -class of A containing an element $a \in A$ is denoted by R_a . The subset $R(a) - R_a$ is denoted by R[a]. It is clear that R[a] is either empty or $(R[a], X, \delta_{R[a]})$ is a subautomaton of \mathbf{A} . The factor automaton $\mathbf{R}\{a\} = \mathbf{R}(a)/\rho_{R[a]}$ is called a *principal factor* of \mathbf{A} . We note that if $\mathbf{R}[a] = \emptyset$ then $\mathbf{R}\{a\}$ is defined to be $\mathbf{R}(a)$. For example, if a is a trap then $R(a) = \{a\}$ and so $R[a] = \emptyset$.

A mapping ϕ (acting on the left) of the state set A of an automaton $\mathbf{A} = (A, X, \delta_A)$ into the state set B of an automaton $\mathbf{B} = (B, X, \delta_B)$ is called a *homo-morphism* of \mathbf{A} into \mathbf{B} if $\phi(\delta_A(a, x)) = \delta_B(\phi(a), x)$ for every $a \in A$ and $x \in X$.

A mapping ϕ (acting on the left) of A^0 into B^0 is called a *partial homomorphism* of a partial automaton $\mathbf{A}^0 = (A^0, X, \delta^0_A)$ into a partial automaton $\mathbf{B}^0 = (B^0, X, \delta^0_B)$ if, for every $a \in A^0$, $x \in X$, the assumption $\delta_A(a, x) \in A^0$ implies $\delta_B(\phi(a), x) \in B^0$ and $\delta_B(\phi(a), x) = \phi(\delta_A(a, x))$.

Definition 1. A subautomaton \mathbf{B} of an automaton \mathbf{A} is said to be a retract subautomaton if there is a homomorphism of \mathbf{A} onto \mathbf{B} which leaves the elements of B fixed. Such a homomorphism is called a retract homomorphism of \mathbf{A} onto \mathbf{B} .

Definition 2. An automaton \mathbf{A} is called a retractable automaton if every subautomaton of \mathbf{A} is retract.

Lemma 1. Every subautomaton of a retractable automaton is retractable.

Proof. As a subautomaton \mathbf{C} of a subautomaton \mathbf{B} of an automaton \mathbf{A} is also a subautomaton of \mathbf{A} , and the retriction of a retract homomorphism of \mathbf{A} onto \mathbf{C} to \mathbf{B} is a retract homomorphism of \mathbf{B} onto \mathbf{C} , our assertion is obvious.

Lemma 2. If **A** is a retractable automaton and $\{a_i : i \in I\}$ are elements of *A* such that $R(a_i) \subseteq R(b)$ for an element *b* of *A* then there is an index $j \in I$ such that $R(a_i) \subseteq R(a_j)$ for every $i \in I$.

Proof. Let $\mathbf{A} = (A, X, \delta)$ be a retractable automaton and $\{a_i : i \in I\}$ be arbitrary elements of A such that $R(a_i) \subseteq R(b)$ for an element b of A. Let $R = \bigcup_{i \in I} R(a_i)$. As $\mathbf{R} = (R, X, \delta_R)$ is a subautomaton of \mathbf{A} , there is a retract homomorphism λ_R of \mathbf{A} onto \mathbf{R} . As $\lambda_R(b) \in R$, there is an index $j \in I$ such that $\lambda_R(b) \in R(a_j)$. Then $\lambda_R(\delta(b, p)) = \delta(\lambda_R(b), p) \in R(a_j)$ for every $p \in X^*$, and so $\lambda_R(R(b)) \subseteq R(a_j)$. As $R(a_i) \subseteq R \cap R(b)$ $(i \in I)$, we get $R(a_i) = \lambda_R(R(a_i)) \subseteq R(a_j)$ for every $i \in I$.

Corollary 1. Every subautomaton of a principal subautomaton of a retractable automaton is principal. In particular, for every state a of a retractable automaton \mathbf{A} , R[a] is either empty or $\mathbf{R}[a]$ is a principal subautomaton of \mathbf{A} .

Proof. Let **B** be a subautomaton of a principal subautomaton $\mathbf{R}(b)$ of a retractable automaton **A**. Then $R(a) \subseteq R(b)$ for every $a \in B$. By Lemma 2, there is an element $c \in B$ such that $R(a) \subseteq R(c)$ for every $a \in B$. As $B = \bigcup_{a \in B} R(a)$, we get B = R(c).

Let T be a set with a partial ordering \leq such that every two-element subset of T has a lower bound in T and every non-empty subset of T having an upper bound in T contains a greatest element. Then T is a semilattice under multiplication * by letting a * b $(a, b \in T)$ be the (necessarily unique) greatest lower bound of a and b in T. A semilattice which can be constructed as above is called a *tree* ([4]).

Corollary 2. A state-finite retractable automaton \mathbf{A} contains a kernel if and only if the principal subautomata of \mathbf{A} form a tree with respect to inclusion.

Proof. Let \mathbf{A} be a state-finite retractable automaton. The inclusion (the inclusion of the state-sets) is a partial ordering on the set T of all principal subautomata of \mathbf{A} . By Lemma 2, every non-empty subset of T having an upper bound in T contains a greatest element. As every finite tree has a least element, T (which is finite) is a tree if and only if it has a least element. As the least element of T is the kernel of \mathbf{A} , our proof is complete.

Lemma 3. Every principal subautomaton of a state-finite retractable automaton contains exactly one minimal subautomaton.

Proof. From the finiteness of the state set, it follows that every principal subautomaton contains a minimal subautomaton. As a minimal subautomaton is a principal subautomaton, our assertion follows from Lemma 2.

Lemma 4. If a_1, a_2 are states of a state-finite retractable automaton $\mathbf{A} = (A, X, \delta)$ such that $B_1 \subseteq R(a_1), B_2 \subseteq R(a_2)$ for distinct minimal subautomata \mathbf{B}_1 and \mathbf{B}_2 of \mathbf{A} then $R(a_1) \cap R(a_2) = \emptyset$.

Proof. If $c \in R(a_1) \cap R(a_2)$ then, by Lemma 3, there is a minimal subautomaton **B** of **A** such that $B \subseteq R(c) \subseteq R(a_1) \cap R(a_2)$. Using again Lemma 3, we get $B_1 = B = B_2$ which is a contradiction.

If $\mathbf{A}_i = (A_i, X, \delta_i)$, $i \in I$ are automata such that $A_i \cap A_j = \emptyset$ for every $i \neq j$, then $\mathbf{A} = (A, X, \delta)$ is an automaton, where $A = \bigcup_{i \in I} A_i$ and $\delta(a, x) = \delta_i(a, x)$ for every $a \in A_i$ and $x \in X$. The automaton \mathbf{A} is called the *direct sum* of the automata \mathbf{A}_i , $i \in I$.

Definition 3. We say that an automaton \mathbf{A} is a strong direct sum of a family of subautomata \mathbf{A}_i , $i \in I$ if \mathbf{A} is a direct sum of \mathbf{A}_i , $i \in I$ and, for every couple $(i, j) \in I \times I$, there is a homomorphism of \mathbf{A}_i into \mathbf{A}_j .

Theorem 1. A strong direct sum of retractable automata is retractable.

Proof. Assume that an automaton $\mathbf{A} = (A, X, \delta)$ is a strong direct sum of automata $\mathbf{A}_i = (A_i, X, \delta_i), i \in I$. Let $\phi_{i,j}$ be the corresponding homomorphism of \mathbf{A}_i into \mathbf{A}_j $(i, j \in I)$. Let \mathbf{R} be an arbitrary subautomaton of \mathbf{A} . Let $R_i = R \cap A_i$. It is clear that R_i is either empty or $\mathbf{R}_i = (R_i, X, \delta_{R_i})$ is a subautomaton of \mathbf{A}_i . Let λ_{R_i} denote a retract homomorphism of \mathbf{A}_i onto \mathbf{R}_i if $R_i \neq \emptyset$, and let i_0 denote a fixed index, for which $R_{i_0} \neq \emptyset$. We define a mapping λ_R of A onto R as follows. If $a \in A_i$ and $R_i = \emptyset$, then let $\lambda_R(a) = \lambda_{R_{i_0}}(\phi_{i,i_0}(a))$; if $a \in A_i$ and $R_i \neq \emptyset$, then let $\lambda_R(a) = \lambda_{R_i}(a)$. It is clear that λ_R mapps A onto R and leaves the elements of R fixed. To prove that λ_R is a homomorphism of \mathbf{A} onto \mathbf{R} , let $i \in I$, $a \in A_i$, $x \in X$ be arbitrary elements. In case $R_i = \emptyset$,

$$\lambda_R(\delta(a, x)) = \lambda_{R_{i_0}}(\phi_{i, i_0}(\delta_i(a, x))) = \lambda_{R_{i_0}}(\delta_{i_0}(\phi_{i, i_0}(a), x)) =$$
$$= \delta_{i_0}(\lambda_{R_{i_0}}(\phi_{i, i_0}(a)), x) = \delta(\lambda_R(a), x),$$

and, in case $R_i \neq \emptyset$,

$$\lambda_R(\delta(a, x)) = \lambda_{R_i}(\delta_i(a, x)) = \delta_i(\lambda_{R_i}(a), x) = \delta(\lambda_R(a), x),$$

because $a, \delta(a, x) \in A_i$. Hence λ_R is a retract homomorphism of **A** onto **R**. Thus the theorem is proved.

Theorem 2. For a state-finite automaton $\mathbf{A} = (A, X, \delta)$, the following assertions are equivalent:

(i) \mathbf{A} is retractable;

(ii) \mathbf{A} is a direct sum of finite many state-finite retractable automata containing kernels being isomorphic to each other.

(iii) \mathbf{A} is a strong direct sum of finite many state-finite retractable automata containing kernels.

Proof. (i) implies (ii): Assume that **A** is retractable. As **A** is finite, it has a minimal subautomaton. Let $\{\mathbf{B}_i, i = 1, 2, ..., r\}$ be the set of all distinct minimal subautomata of **A**. Let $A_i = \bigcup_{a \in A} \{R(a) : B_i \subseteq R(a)\}, i = 1, 2, ..., r$. It is clear that \mathbf{A}_i is a subautomaton of **A** and \mathbf{B}_i is the kernel of \mathbf{A}_i for every i = 1, ..., r. By Lemma 3, for every principal subautomaton $\mathbf{R}(a)$ of **A**, there is a unique index i such that $B_i \subseteq R(a)$. Thus $A = \bigcup_{i=1}^r A_i$. By Lemma 4, $A_i \cap A_j = \emptyset$ for every

 $i \neq j$. Hence **A** is a direct sum of the automata \mathbf{A}_i , $i = 1, \ldots, r$. By Lemma 1, every automaton \mathbf{A}_i is retractable. Let $i, j \in \{1, 2, \ldots, r\}$ be arbitrary. As \mathbf{B}_i is a minimal subautomaton of **A**, the retract homomorphism λ_{B_i} of **A** onto \mathbf{B}_i maps \mathbf{B}_j onto \mathbf{B}_i . Thus $|B_j| \geq |B_i|$. Similarly, $|B_i| \geq |B_j|$. Thus $|B_i| = |B_j|$ and the restriction of λ_{B_j} to B_i is an isomorphism of \mathbf{B}_i onto \mathbf{B}_j . Thus (ii) is satisfied.

(ii) implies (iii): Assume that **A** is a direct sum of the state-finite retractable automata \mathbf{A}_i , i = 1, 2, ..., r such that each of \mathbf{A}_i contains a kernel \mathbf{B}_i , and, for every $i, j \in \{1, 2, ..., r\}$, there is an isomorphism $\phi_{i,j}$ of \mathbf{B}_i onto \mathbf{B}_j . It is easy to see that $\Phi_{i,j}$ defined by

$$\Phi_{i,j}(a) = \phi_{i,j}(\lambda_{B_i}(a)), \ a \in A_i$$

is a homomorphism of \mathbf{A}_i into \mathbf{A}_j , where λ_{B_i} denotes a retract homomorphism of \mathbf{A}_i onto \mathbf{B}_i . Thus \mathbf{A} satisfies (iii).

(iii) implies (i): By Theorem 1, it is obvious.

By the previous theorem, we concentrate our attention to state-finite retractable automata containing a kernel. These automata will be described by Corollary 3 and Theorem 7. First consider some results and notions which will be needed for us.

Lemma 5. Every principal factor of an automaton can contain at most one trap.

Proof. If $R[a] = \emptyset$ for a state *a* then the principal factor $\mathbf{R}\{a\}$ has a trap only that case when *a* is a trap of **A**, that is, the principal factor is trivial. If $R[a] \neq \emptyset$ then R(b) = R(a) for every $b \in R_a = R(a) - R[a]$, and so $\mathbf{R}\{a\}$ contains only one trap, namely the $\rho_{R[a]}$ -class R[a] of $\mathbf{R}(a)$.

Definition 4. An automaton $\mathbf{A} = (A, X, \delta)$ is called strongly connected if, for every couple $(a, b) \in A \times A$, there is a word $p \in X^+$ (X^+ denotes the free semigroup over X) such that $b = \delta(a, p)$.

We note that every strongly connected automaton can contain only one subautomaton, namely itself. We also note that if an automaton is trivial (has only one state which is a trap) then it is strongly connected. If an automaton has at least two state and has a trap then it is not strongly connected.

Definition 5. A non-trivial OT-automaton $\mathbf{A} = (A, X, \delta; a_0)$ is called strongly trap-connected if, for every couple $(a, b) \in A \times A$, $a \neq a_0$, there is a word $p \in X^+$ such that $b = \delta(a, p)$.

We note that every strongly trap-connected automaton $\mathbf{A} = (A, X, \delta; a_0)$ contains only two subautomaton, namely itself and $(\{a_0\}, X, \delta_{\{a_0\}})$. Moreover, for every state $a \neq a_0$ of \mathbf{A} there is a word $p \in X^+$ such that $a = \delta(a, p)$.

Definition 6. We say that a non-trivial OT-automaton $\mathbf{A} = (A, X, \delta; a_0)$ is strongly trapped if $\delta(a, x) = a_0$ for every $a \in A$ and $x \in X$.

Theorem 3. Every principal factor of an automaton is either strongly connected or strongly trap-connected or strongly trapped.

Proof. If $R[a] = \emptyset$ then $\mathbf{R}\{a\} = \mathbf{R}(a)$ is strongly connected. If $R[a] \neq \emptyset$ then, by Lemma 5, $\mathbf{R}\{a\}$ is a non-trivial OT-automaton. Let a_0 denote the trap of $\mathbf{R}\{a\}$. If $|R_a| = 1$, that is, $R\{a\} = \{a, a_0\}$, then $\mathbf{R}\{a\}$ is either strongly trapped (if $\delta(a, x) \in R[a]$ in \mathbf{A} , that is, $\delta(a, x) = a_0$ in $\mathbf{R}\{a\}$ for every $x \in X$) or strongly trap-connected (if $a = \delta(a, x)$ for some $x \in X$). If $|R_a| > 1$ then, for every elements b, c of $R_a, c = \delta(b, p)$ for some $p \in X^+$. Moreover, for every $b \in R_a$, there is a word $p \in X^+$ such that $\delta(b, p) \in R[a]$ in \mathbf{A} , that is, $\delta(b, p) = a_0$ in $\mathbf{R}\{a\}$. Hence $\mathbf{R}\{a\}$ is strongly trap-connected.

Definition 7. An automaton **A** is called semiconnected if every principal factor of **A** is either strongly connected or strongly trap-connected.

Theorem 4. An automaton $\mathbf{A} = (A, X, \delta)$ is semiconnected if and only if every subautomaton \mathbf{B} of \mathbf{A} satisfies the following: for every $a \in B$ there are elements $b \in B$ and $p \in X^+$ such that $a = \delta(b, p)$.

Proof. Let $\mathbf{A} = (A, X, \delta)$ be a semiconnected automaton and \mathbf{B} be a subautomaton of \mathbf{A} . Let a be an arbitrary element of B. Then $R(a) \subseteq B$. If a is a trap then $a = \delta(a, x)$ for every $x \in X$. Consider the case when a is not a trap. Then $|R(a)| \geq 2$. If $R[a] = \emptyset$ then, by Theorem 3, $\mathbf{R}(a) = \mathbf{R}\{a\}$ is strongly connected which means that, for every $b \in R(a)$ there is a word $p \in X^+$ such that $a = \delta(b, p)$. If $R[a] \neq \emptyset$ then, by Theorem 3, $\mathbf{R}\{a\}$ is strongly trap-connected and so, for every element $b \in R_a$, there is a word $p \in X^+$ such that $a = \delta(b, p)$. Thus, in all cases, there is a state $b \in B$ and a word $p \in X^+$ such that $a = \delta(b, p)$.

Conversely, assume that every subautomaton of an automaton \mathbf{A} satisfies the condition of the theorem. We show that \mathbf{A} is semiconnected. Let a be an arbitrary element of A. If a is a trap of \mathbf{A} then the principal factor $\mathbf{R}\{a\}$ is trivial (and so it is strongly connected). Consider the case when a is not a trap of \mathbf{A} . Then a is an element of $\mathbf{R}\{a\}$ (and is not the trap of $\mathbf{R}\{a\}$). By Theorem 3, it is sufficient to show that the principal factor $\mathbf{R}\{a\}$ is not strongly trapped. As $\mathbf{R}(a)$ is a subautomaton of \mathbf{A} , by the condition of the theorem, there are elements $b \in R(a) \ p \in X^*$ and $x \in X$ such that $a = \delta(b, px) = \delta(\delta(b, p), x)$ in \mathbf{A} . It is clear that $b' = \delta(b, p) \notin R[a]$ and so $a = \delta(b', x)$ in $\mathbf{R}\{a\}$. Thus $\mathbf{R}\{a\}$ is not strongly trapped.

Definition 8. Let $\mathbf{B} = (B, X, \delta_B)$ be a subautomaton of an automaton $\mathbf{A} = (A, X, \delta)$. We say that \mathbf{A} is a dilation of \mathbf{B} if there is a mapping ϕ of A onto B which leaves the elements of B fixed and $\delta(a, x) = \delta_B(\phi(a), x)$ for all $a \in A$ and $x \in X$.

Theorem 5. Every dilation of a retractable automaton is retractable.

Proof. Let $\mathbf{A} = (A, X, \delta)$ be a dilation of a retractable subautomaton $\mathbf{B} = (B, X, \delta_B)$. Then there is a mapping ϕ of A onto B which leaves the elements of B fixed and $\delta(a, x) = \delta_B(\phi(a), x)$ for every $a \in A$ and $x \in X$. Let \mathbf{R} be a subautomaton of \mathbf{A} . Then, for every $c \in R$ and $x \in X$, $\delta(c, x) \in R \cap B$. Let $\lambda_{R \cap B}$ denote

a retract homomorphism of **B** onto the subautomaton $\mathbf{R} \cap \mathbf{B}$. Define a mapping λ_R of A onto R as follows. Let $\lambda_R(a) = a$ if $a \in R$, and let $\lambda_R(a) = \lambda_{R \cap B}(\phi(a))$ if $a \notin R$. We show that λ_R is a homomorphism of **A** onto **R**. Let $a \in A$ and $x \in X$ be arbitrary elements. If $a \in R$ then

$$\delta(\lambda_R(a), x) = \delta(a, x) = \lambda_R(\delta(a, x)).$$

Assume $a \notin R$. Then

$$\delta(\lambda_R(a), x) = \delta_B(\lambda_{R \cap B}(\phi(a)), x) =$$
$$= \lambda_{R \cap B}(\delta_B(\phi(a), x)) = \lambda_R(\delta(a, x)),$$

because $\lambda_R(a), \delta(a, x) \in B$ and the restriction of λ_R to B equals $\lambda_{R \cap B}$. Hence λ_R is a homomorphism of **A** onto **R**. As λ_R leaves the elements of R fixed, it is a retract homomorphism of **A** onto **R**. Consequently, **A** is a retractable automaton.

Theorem 6. Every retractable automaton is a dilation of a semiconnected retractable automaton.

Proof. Let $\mathbf{A} = (A, X, \delta)$ be a retractable automaton and let $B = \delta(A, X)$. Then $\mathbf{B} = (B, X, \delta_B)$ is a subautomaton of \mathbf{A} and so there is a retract homomorphism ϕ of \mathbf{A} onto \mathbf{B} . Let $a \in A, x \in X$ be arbitrary elements. Then $\delta(a, x) = \phi(\delta(a, x)) = \delta_B(\phi(a), x)$. Hence \mathbf{A} is a dilation of \mathbf{B} . By Lemma 1, \mathbf{B} is retractable. Let \mathbf{R} be an arbitrary subautomaton of \mathbf{B} . If $c \in R$ is an arbitrary element, then $c = \delta(a, x)$ for some $a \in A$ and $x \in X$. Let λ_R denote the retract homomorphism of \mathbf{A} onto \mathbf{R} . Then $\lambda_R(a) \in R$ and

$$c = \lambda_R(c) = \lambda_R(\delta(a, x)) = \delta(\lambda_R(a), x).$$

Thus, by Theorem 4, **B** is semiconnected.

Corollary 3. An automaton is retractable if and only if it is a dilation of a semiconnected retractable automaton.

Proof. By the previous two theorems, it is evident.

Theorem 2 shows that the state-finite retractable automata are exactly the direct sums of finite many state-finite retractable automata such that each component in a mentioned direct sum contains a kernel, and these kernels are isomorphic with each other. Corollary 3 and the remark after Theorem 2 show that every component in a direct sum is a dilation of a state-finite semiconnected retractable automaton containing a kernel. Theorem 7 will show how we can construct the state-finite semiconnected retractable automata containing a kernel. These results togethet give a complete description of state-finite retractable automata.

Construction. Let T be a finite tree (under partial ordering \leq) with the least element i_0 . Let $i \succ j$ $(i, j \in T)$ denote the fact that i > j and, for every $k \in T$, $i \geq k \geq j$ implies i = k or j = k.

Let $\mathbf{A}_i = (A_i, X, \delta_i), i \in T$ be a family of disjunct automata such that

(i) \mathbf{A}_{i_0} is strongly connected and \mathbf{A}_i is a strongly trap-connected OT-automaton for every $i \in T$ with $i \neq i_0$.

(ii) Let $\phi_{i,i}$ denote the identity mapping of \mathbf{A}_i , and assume that, for every $i, j \in T$ with $i \succ j$, there is a partial homomorphism $\phi_{i,j}$ of \mathbf{A}_i^0 into \mathbf{A}_j^0 such that

(iii) for every $i \succ j$ there are elements $a \in A_i^0$ and $x \in X$ such that $\delta_i(a, x) \notin A_i^0$ and $\delta_j(\phi_{i,j}(a), x) \in A_j^0$.

For arbitrary elements $i, j \in T$ with $i \geq j$, define a partial homomorphism $\Phi_{i,j}$ of \mathbf{A}_i^0 into \mathbf{A}_j^0 as follows. $\Phi_{i,i} = \phi_{i,i}$ and, if i > j such that $i \succ k_1 \succ \ldots k_n \succ j$ then let

$$\Phi_{i,j} = \phi_{k_n,j} \circ \phi_{k_{n-1},k_n} \circ \ldots \circ \phi_{k_1,k_2} \circ \phi_{i,k_1}.$$

(We note that if $i \ge j \ge k$ are arbitrary elements of T then $\Phi_{i,k} = \Phi_{j,k} \circ \Phi_{i,j}$.)

Let $A = \bigcup_{i \in T} A_i^0$. Define a transition function $\delta' : A \times X \to A$ as follows. If $a \in A_i^0$ and $x \in X$ then let $\delta'(a, x) = \delta_{i'[a,x]}(\Phi_{i,i'[a,x]}(a), x)$, where i'[a,x] denotes the greatest element of the set $\{j \in T : \delta_j(\Phi_{i,j}(a), x) \in A_j^0\}$.

It is easy to see that $\mathbf{A} = (A, X, \delta')$ is an automaton which will be denoted by $(A_i, X, \delta_i; \phi_{i,j}, T)$.

Theorem 7. A finite automaton is a semiconnected retractable automaton containing a kernel if and only if it is isomorphic to an automaton $(A_i, X, \delta_i; \phi_{i,j}, T)$ constructed as above.

Proof. Let **R** be a subautomaton of an automaton $(A_i, X, \delta_i; \phi_{i,j}, T)$. As every automaton \mathbf{A}_i $(i \in T - \{i_0\})$ is strongly trap-connected and \mathbf{A}_{i_0} is strongly connected, it follows that $R = \bigcup_{j \in \Gamma} A_j^0$ for some non-empty subset Γ of T. We show that Γ is an ideal of T, that is, $i \in \Gamma$ and $j \leq i$ together imply $j \in \Gamma$ for all $i, j \in T$. Let i be an arbitrary element of T such that $i \in \Gamma$, $i \neq i_0$. If $j \in T$ with $i \succ j$ then, by (iii), there are elements $a \in A_i^0$ and $x \in X$ such that $\delta_i(a, x) \notin A_i^0$ and $\delta_j(\phi_{i,j}(a), x) \in A_j^0$. Then $\delta'(a, x) \in A_j^0$. Hence $A_j^0 \cap R \neq \emptyset$ which implies that $A_i^0 \subseteq R$ and so $j \in \Gamma$. This implies that Γ is an ideal of T. As T is a tree,

$$\pi: i \mapsto \max\{\gamma \in \Gamma: \gamma \le i\}$$

is a well-defined mapping of T onto Γ which leaves the elements of Γ fixed (in fact, π is a retract homomorphism of the semigroup T onto the ideal Γ of T (see [4])). We define a retract homomorphism λ_R of \mathbf{A} onto \mathbf{R} . For an arbitrary element $a \in A$, let

$$\lambda_R(a) = \Phi_{i,\pi(i)}(a)$$

if $a \in A_i^0$. It is easy to see that λ_R leaves the elements of R fixed. We prove that λ_R is a homomorphism of \mathbf{A} onto \mathbf{R} . Let $x \in X$, $a \in A_i^0$ be arbitrary elements. Using $\delta'(a, x) = \delta_{i'[a,x]}(\Phi_{i,i'[a,x]}(a), x) \in A_{i'[a,x]}^0$ and the fact that $\Phi_{i'[a,x],\pi(i'[a,x])}$ is a partial homomorphism, we get

$$\lambda_R(\delta'(a,x)) = \lambda_R(\delta_{i'[a,x]}(\Phi_{i,i'[a,x]}(a),x)) =$$

= $\Phi_{i'[a,x],\pi(i'[a,x])}(\delta_{i'[a,x]}(\Phi_{i,i'[a,x]}(a),x)) =$

$$= \delta_{\pi(i'[a,x])}(\Phi_{i,\pi(i'[a,x])}(a), x) \in A^0_{\pi(i'[a,x])}$$

Using $\Phi_{i,\pi(i)}(a) \in A^0_{\pi(i)}$, we have

$$\delta'(\lambda_R(a), x) = \delta'(\Phi_{i,\pi(i)}(a), x) =$$

= $\delta_{(\pi(i))'[\Phi_{i,\pi(i)}(a), x]}(\Phi_{\pi(i),(\pi(i))'[\Phi_{i,\pi(i)}(a), x]}(\Phi_{i,\pi(i)}(a)), x) =$
= $\delta_{(\pi(i))'[\Phi_{i,\pi(i)}(a), x]}(\Phi_{i,(\pi(i))'[\Phi_{i,\pi(i)}(a), x]}(a), x) \in A^0_{(\pi(i))'[\Phi_{i,\pi(i)}(a), x]}.$

To prove that $\lambda_R(\delta'(a, x)) = \delta'(\lambda_R(a), x)$, it is sufficient to show that

$$(\pi(i))'[\Phi_{i,\pi(i)}(a),x] = \pi(i'[a,x]).$$

First, assume $i'[a, x] \geq \pi(i)$ (and so $\pi(i'[a, x]) = \pi(i)$). As $\phi_{i'[a, x], \pi(i)}$ is a partial homomorphism of $A^0_{i'[a, x]}$ into $A^0_{\pi(i)}$ and $\delta_{i'[a, x]}(\Phi_{i, i'[a, x]}(a), x) \in A^0_{i'[a, x]}$, we get

$$\delta_{\pi(i)}(\Phi_{i,\pi(i)}(a),x) = \delta_{\pi(i)}(\Phi_{i'[a,x],\pi(i)}(\Phi_{i,i'[a,x]}(a)),x) =$$
$$= \Phi_{i'[a,x],\pi(i)}(\delta_{i'[a,x]}(\Phi_{i,i'[a,x]}(a),x)) \in A^0_{\pi(i)}$$

and so

$$(\pi(i))'[\Phi_{i,\pi(i)}(a),x] = \pi(i) = \pi(i'[a,x]).$$

Next, consider the case when $i'[a, x] < \pi(i)$ (and so $\pi(i'[a, x]) = i'[a, x]$). If $j \in T$ with $\pi(i) \ge j > i'[a, x]$ then we have

$$\delta_j(\Phi_{\pi(i),j}(\Phi_{i,\pi(i)}(a)), x) = \delta_j(\Phi_{i,j}(a), x) \notin A_j^0.$$

Then

$$(\pi(i))'[\Phi_{i,\pi(i)}(a), x] \le i'[a, x].$$

 \mathbf{As}

$$\delta_{i'[a,x]}(\Phi_{\pi(i),i'[a,x]}(\Phi_{i,\pi(i)}(a)),x) = \delta_{i'[a,x]}(\Phi_{i,i'[a,x]}(a),x) \in A^0_{i'[a,x]},x)$$

we get

$$(\pi(i))'[\Phi_{i,\pi(i)}(a), x] \ge i'[a, x].$$

Hence

$$(\pi(i))'[\Phi_{i,\pi(i)}(a),x] = i'[a,x] = \pi(i'[a,x]).$$

Consequently, $(\pi(i))'[\Phi_{i,\pi(i)}(a), x] = \pi(i'[a, x])$ in both cases. Hence λ_R is a (retract) homomorphism of **A** onto **R**. Thus $\mathbf{A} = (A_i, X, \delta_i; \phi_{i,j}, T)$ is a retractable automaton.

We show that **A** is semiconnected. If **R** is an arbitrary subautomaton of **A**, then there is an ideal Γ of T such that $R = \bigcup_{j \in \Gamma} A_j^0$ (see above). Let $a \in R$ be an arbitrary element. Then $a \in A_k^0$ for some $k \in \Gamma$. As A_k is strongly connected or strongly trap-connected, there are elements $b \in A_k^0$ and $p \in X^+$ such that $a = \delta_k(b, p) = \delta'(b, p)$. By Theorem 4, it means that **A** is semiconnected. As i_0 is contained in every ideal of T, \mathbf{A}_{i_0} is the kernel of $(A_i, X, \delta_i; \phi_{i,j}, T)$. Conversely, let **A** be a finite semiconnected retractable automaton containing a kernel. Let Prf(A) denote the set of all principal factors of **A**. By Corollary 2, Prf(A) is a (finite) tree under partial ordering \leq defined by $\mathbf{R}\{a\} \leq \mathbf{R}\{b\}$ if and only if $R(a) \subseteq R(b)$. As **A** is semiconnected, the least element of Prf(A) is strongly connected, the other ones are strongly trap-connected.

Let T be a set with |T| = |Prf(A)|. Denote a bijection of T onto Prf(A) by f. Define a partial ordering \leq on T by $i \leq j$ $(i, j \in T)$ if and only if $f(i) \leq f(j)$. Let i_0 denote the least element of T. Clearly, T is a finite tree with the least element i_0 . For every element $i \in T$, fix an element a_i in A such that $f(i) = \mathbf{R}\{a_i\}$. (We note that $\mathbf{R}\{a_i\} = \mathbf{R}\{a_j\}$ iff $a_i = a_j$ iff i = j). As $\mathbf{R}\{a_{i_0}\}$ is strongly connected and $\mathbf{R}\{a_i\}$ is strongly trap-connected if $i \neq i_0$, condition (i) of the Construction is satisfied.

Let $\lambda_{R(a_j)}$ $(j \in T)$ denote a fix retract homomorphism of \mathbf{A} onto $\mathbf{R}(a_j)$. For every $i, j \in T$ with $i \succeq j$, let $\lambda_{i,j}$ denote the restriction of $\lambda_{R(a_j)}$ to $R(a_i)$. It is obvious that $\lambda_{i,j}$ is a retract homomorphism of $\mathbf{R}(a_i)$ onto $\mathbf{R}(a_j)$ for every $i \succeq j$, $(i, j \in T)$. Moreover, $\lambda_{i,i}$ is the identity mapping of $\mathbf{R}(a_i)$, for every $i \in T$. We show that $\lambda_{i,j}$ maps R_{a_i} into R_{a_j} . Let $a \in R_{a_i}$ be an arbitrary element (so $R(a) = R(a_i)$). Then, for every $p \in X^*, \lambda_{i,j}(\delta(a, p)) = \delta(\lambda_{i,j}(a), p)$. If $\lambda_{i,j}(a)$ was in $R[a_j]$ then we would have $\lambda_{i,j}(\delta(a, p)) \in R[a_j]$ for every $p \in X^*$, because $\mathbf{R}[a_j]$ is a subautomaton of \mathbf{A} . This would imply that $\lambda_{i,j}(R(a_i)) \subseteq R[a_j]$ which is impossible, because $\lambda_{i,j}$ maps $R(a_i)$ onto $R(a_j) = R_{a_j} \cup R[a_j] \supset R[a_j]$. Hence $\lambda_{i,j}$ maps R_{a_i} into R_{a_j} and so $\lambda_{i,j}$ can be considered as a mapping of $R^0\{a_i\}$ into $R^0\{a_j\}$. If $\delta(a, x) \in R_{a_i}$ for some $a \in R_{a_i}$ and $x \in X$ then $\delta(\lambda_{i,j}(a), x) = \lambda_{i,j}(\delta(a, x)) \in R_{a_j}$. Hence $\lambda_{i,j}$ is a partial homomorphism of the partial automaton $\mathbf{R}^0\{a_i\}$ into the partial automaton $\mathbf{R}^0\{a_j\}$. Thus condition (ii) of the Construction is satisfied (for $\mathbf{A}_i = \mathbf{R}\{a_i\}, \phi_{i,j} = \lambda_{i,j}$).

Assume $i \succ j$. Let $b \in R_{a_j}$ be an arbitrary element. Then $a_i \neq b \in R(a_i)$ and so there is a word $p = x_1 x_2 \dots x_n \in X^+$ $(x_1, x_2, \dots, x_n \in X)$ such that $b = \delta(a_i, p)$. Let m be the least index such that $\delta(a_i, x_1 \dots x_m) \in R_{a_j}$. Consider an element aof R_{a_i} (or of $\mathbf{R}^0\{a_i\}$) as follows. Let $a = a_i$ if m = 1. Let $a = \delta(a_i, x_1 \dots x_{m-1})$ if m > 1. Then $\delta(a, x_m) \notin R_{a_i}$ (or $\delta(a, x_m) \notin \mathbf{R}^0\{a_i\}$). On the other hand,

$$\delta(\lambda_{i,j}(a), x_m) = \lambda_{i,j}(\delta(a, x_m)) = \delta(a, x_m) \in R_{a_j} = R^0\{a_j\},$$

because $\lambda_{i,j}$ leaves the elements of $R(a_j)$ fixed. Thus (iii) of the Construction is satisfied (for $\phi_{i,j} = \lambda_{i,j}, x = x_m$).

For arbitrary elements $i, j \in T$ with $i \geq j$, define the mapping $\Phi_{i,j}$ as follows. Let $\Phi_{i,i} = \lambda_{i,i}$ and, if i > j with $i \succ k_1 \succ k_2 \succ \ldots k_n \succ j$ then let

$$\Phi_{i,j} = \lambda_{k_n,j} \circ \ldots \circ \lambda_{i,k_1}.$$

It is clear that $\Phi_{i,j}$ is a retract homomorphism of $\mathbf{R}(a_i)$ onto $\mathbf{R}(a_j)$ such that it maps R_{a_i} into R_{a_j} . Thus $\Phi_{i,j}$ can be considered as a partial homomorphism of $\mathbf{R}^0\{a_i\}$ into $\mathbf{R}^0\{a_j\}$. Moreover, $\Phi_{i,k} = \Phi_{j,k} \circ \Phi_{i,j}$ for every $i, j, k \in T$ with $i \geq j \geq k$.

Construct the automaton $\mathbf{R} = (R\{a_i\}, X, \delta_i; \lambda_{i,j}, T)$, where δ_i is the transitive function of the factor automaton $\mathbf{R}\{a_i\}$ induced by δ . It is clear that the state sets

of the automata **R** and **A** are the same. We show that the transitive functions δ of **A** equals the transitive function δ' of **R**. Let $i \in T$, $a \in R_{a_i} = R^0\{a_i\}$, $x \in X$ be arbitrary elements. Assume $\delta(a, x) \in R_{a_j}$ $(i \geq j)$. Let $k \in T$ with $i \geq k > j$. Then $\delta(a, x) \in R[a_k] \subset R(a_k)$ and so

$$\delta(\Phi_{i,k}(a), x) = \Phi_{i,k}(\delta(a, x)) = \delta(a, x) \notin R_{a_k} = R^0\{a_k\},$$

because $\Phi_{i,k}$ leaves the elements of $R(a_k)$ fixed. If $j \ge k$ then

$$\delta(\Phi_{i,k}(a), x) = \Phi_{i,k}(\delta(a, x)) =$$

$$= \Phi_{j,k} \circ \Phi_{i,j}(\delta(a,x)) = \Phi_{j,k}(\delta(a,x)) \in R_{a_k} = R^0\{a_k\},$$

because $\Phi_{i,j}$ leaves the element $\delta(a, x) \in R_{a_j} = R^0\{a_j\}$ fixed, and $\Phi_{j,k}$ maps R_{a_j} into R_{a_k} . Consequently i'[a, x] = j. Hence

$$\delta(a, x) = \Phi_{i,j}(\delta(a, x)) = \delta(\Phi_{i,j}(a), x) = \delta_j(\Phi_{i,j}(a), x) =$$
$$= \delta_{i'[a,x]}(\Phi_{i,i'[a,x]}(a), x) = \delta'(a, x).$$

Thus the theorem is proved.

References

- Babcsányi, I. and A. Nagy, Boolean-type retractable automata, Publicationes Mathematicae, Debrecen, 48/3-4 (1996), 193-200.
- [2] Gécseg, F. and I. Peák, Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1972.
- [3] Nagy, A., Boolean-type retractable automata with traps, Acta Cybernetica, Szeged, Tom. 10, Fasc. 1-2 (1991), 53-64.
- [4] Tully, E.J., Semigroups in which each ideal is a retract, J. Austral Math. Soc., 9 (1969), 239-245.

Received February, 2003