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Abstract

We analyze a dynamic programming (DP) solution for cutting overload in
electricity consumption. We are able to considerably improve the earlier DP
algorithms. Our improvements make the method practical so that it can be
used more often or, alternatively, new state variables can be added into the
state space to make the results more accurate.

1 Introduction

The shortage of electricity may cause a supplier to use direct load control (DLC);
the supplier may turn off the electricity from some of its customers or may start
generators to meet the demand. The goal is to minimize the losses by buying
the minimum amount of electricity from other suppliers to cover the demand after
DLC. A typical example of a control group is a residential appliance with electricity
heaters or air conditioners. When the supplier controls the devices, a consumption
peak called payback appears after the control period when the devices go back to
their normal state [1, 17].

Different solution methods for DLC include, e.g., DP [1, 7, 8, 18], linear pro-
gramming (LP) [12, 14], heuristics [1, 3], enumerative methods [8], and hybrids of
LP and DP [13]. Objectives include load reduction minimization [7, 8, 18], peak
load minimization [12, 13], production cost minimization [8, 18], and profit maxi-
mization [14]. Some of the decisions can be left to the customers [9]. DLC is often
combined with unit commitment and economic dispatch, and the applied methods
include, e.g., DP [4, 5, 6, 11] and evolutionary strategies [10]. See also [19].

Our method is related to that of [1, 7, 8, 14]. The present work improves
the results of [1] by focusing on DP. In our model, (small) electricity suppliers
group their customers based on the payback behavior: the payback shapes and
other properties to be presented are for groups. Thus, the suppliers end up with
a small number of controllable and prioritized groups. Our objective is between
load reduction minimization and peak load minimization, and it differs from the
objectives presented in the literature. We assume that the suppliers mainly buy
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the electricity they distribute. The above assumptions are realistic in Finland and
in some other European countries with small suppliers.

Purchase transactions of electricity and own production give optimum level to
be resold at each hour, while load over the optimum level has high price. If demand
is higher than our predefined level, we want to cut (expensive) “over loads”. We
also use purchasing and reselling prices (time-of-use rates). Our solution can use
different objectives and, e.g., energy storages of [15, 16], without major modifica-
tions.

Sections 2 and 3 describe the model, optimization problem and the DP solution.
The main results concern the “wait states” and “alternative states” (state variables)
needed in DP. We build up a hierarchy of DP solutions so that it is possible to choose
between fast and inaccurate and slow but more accurate methods. Section 4 shows
how the number of wait states can be decreased to be about half of the number
used in [1]. State space can also be decreased with the multi-pass DP of [18], but
then one should be able to relax some constraints. Section 4 includes also the use
a fourth state variable (alternative states). Tests are reported in Section 5.

2 Control, payback, restrictions and goal function

The model given below is a slight simplification of the model used in [1]. Table 1
contains relevant symbols used in this work.

An interval [a, b] is the set a, a + 1, . . . , b (a < b) of integers. The length of an
interval [a, b] is b − a + 1. A clipping situation s is a vector s0, s1 . . . , sN (N >
0) of reals representing the difference between electricity demand, and electricity
production and purchases in time interval [0, N ]. The domain [0, N ] is called the
optimization interval and values si are called either overload or underload. Overload
represents a situation where the demand is higher than combined production and

Table 1: Used symbols.

Clipping situation s = [s0, s1, . . . , sN ] Set of controls C
Prices p = [p0, p1, . . . , pN ] Control capacity Cc

Revenue r = [r0, r1, . . . , rN ] Control length Cl

Length of hour hl Resting time Cr

Time interval or control [a, b] Minimum control length Cm

Loss of incomes R(s) Maximum control length CM

Optimal control plan R∗(s) Maximum control times CT

Dynamic forward recursion R′(s, S′, k + 1) Control time Ct

Stage change R′′(s, S′, S, k + 1) Length of payback P l

Wait state W Amount of paybacka P c

Alternative state A Impact of a control I([a, b], s)(k)
State (3 variable) S = (Ct, W, Cl) Impacts of all controls I′(C, s)
State (4 variable) S = (Ct, A, W, Cl)

aAmount of payback corresponds to capacity explaining the c-superscript.
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electricity purchases (si ≥ 0), and underload represents a situation where combined
production and purchases of electricity is above the level of consumption (si ≤ 0).
The element i of optimization interval [0, N ] is called a time point. The phrase
“time point i” is also used for the interval [i, i].

A time point i with overload has a positive real pi called the price (buying
price of electricity). Similarly, a time point i with underload has a positive real
ri, the revenue (selling price of electricity). The overload interval is an interval
[a, b] ⊆ [0, N ] with overload at every time point i ∈ [a, b]. The clipping situation is
partitioned into hours 0 = a1, a2, . . . , an+1 = N , of equal length, i.e., ai+1 − ai =
ai − ai−1 (2 ≤ i ≤ n). The length ai+1 − ai of an hour is denoted by hl. Hour
i refers to the interval [ai, ai+1 − 1]. Overloads (underloads), revenues and prices
do not change during an hour, because of the electricity trading system. Thus, we
have sj = sj+1, pj = pj+1, and rj = rj+1, where j ∈ [ai−1, ai − 1] (2 ≤ i ≤ n).

The total loss is

R(s) =
∑

i∈[0,N ]

K(i, si), where K(i, si) =

{
−pisi, if si ≥ 0,

risi, otherwise.
(1)

Note that K(i, si) ≤ 0. If there is underload, we lose income (revenue) and if
there is overload, we have to pay some extra. We count the money lost, so its best
possible value is 0.

A group is used to decrease the overload with a control made for interval [a, b]
by turning electricity off (an auxiliary generator corresponds to a group). The
controlling capacity of a group, denoted by Cc, is the amount the group can decrease
the load in an hour. The hours [ai, a, ai+1, . . . , aj−1, b, aj ], where ai ≤ a < ai+1

and aj−1 < b ≤ aj (and a < b), are affected by a control. Control amount is the
product of the controlling capacity Cc and of the control length b − a + 1.

Function P l : N → N maps the control length b−a+1 to the length of a payback
and function P c : 2N ×N → R describes the amount of the payback of control [a, b]
at time i. We always have P c([a, b], i) ≥ 0, where i ∈ [b + 1, b + P l(b − a + 1)], and
otherwise P c([a, b], i) = 0. Further, “in practice” we have

∑
k∈[b+1,b+P l(b−a+1)]

P c([a, b], k) ≤ Cc(b − a + 1)

meaning that a payback does not exceed the control amount.
Next we show the impact of a control [a, b] and its payback to clipping situation

s as a function I (functions I1 and I2 used in I are defined below). The hours to
be affected are [ai, a, b, aj , b + P l(b − a + 1), al]. By function

I
(
[a, b], s

)
(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sk, if 0 ≤ k < ai, or al ≤ k ≤ m,

sk + I1

(
[a, b]

)
(k), if ai ≤ k < aj−1,

sk +
(
I1 + I2

)(
[a, b]

)
(k), if aj−1 ≤ k < aj ,

sk + I2

(
[a, b]

)
(k), if aj ≤ k < al

(2)
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(0 ≤ k ≤ m) we obtain the control amount of a control [a, b] into the clipping
situation. The first line leaves the unaffected hours as they are and the second line
calculates the effects of control. The third line is for both the control and payback
calculation, and the fourth line calculates the effects of payback. By I([a, b], s) we
mean the new clipping situation obtained after control [a, b].

The effects of control part having no payback are calculated with I1:

I1

(
[a, b]

)
(k) =

⎧⎪⎨
⎪⎩
−Cc(ai+1 − 1 − a + 1)/hl, if ai ≤ k < ai+1,
−Cc, if ai+1 ≤ k < aj−1,
−Cc(b − aj−1)/hl, if aj−1 ≤ k < aj .

(3)

The second line is for the hours between the starting and stopping hours, if any.
The first and the third lines handle the hours where the control starts and stops.
These hours may have partial control (in contrast to a full control lasting the whole
hour). Controls decrease the overload. Paybacks are calculated with I2:

I2

(
[a, b]

)
(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aj−1∑
k′=b+1

P c([a, b], k′)
hl

, if aj−1 ≤ k < aj ,

ak′+1−1∑
k′′=ak′

P c([a, b], k′′)
hl

,
if j ≤ k′ ≤ l − 1
and ak′ ≤ k < ak′+1,

al−1∑
k′=al−1

P c([a, b], k′)
hl

,
if al−1 ≤ k

< b + P l(b − a + 1).

(4)

The payback starts in the first line, and in the third line we calculate the last
moments having payback. (Both may involve partial hours.) The second line
calculates the payback for hours, where each time point will get some payback.
The payback increases the overload.

It would simplify formulas (2)–(4) a bit if we were not to hourly even out the
effects. Another alternative is to let the overloads and underloads vary within the
hours and even out the loads when calculating the results. If the control starts and
stops in the same hour, we cannot directly apply (2). In this situation we calculate
the effects for the first hour with

sk − Cc(b − a + 1)/hl +
aj−1∑

k′=b+1

P c([a, b], k′)/hl, where aj−1 ≤ k < aj , (5)

and the rest of the payback is calculated with the second line of I2. If the payback
starts and stops in the same hour, we have to make a correction similar to (5).
Energy storage capability is similar to payback: energy storing appears before
control while payback appears after the control.

Figure 1 shows two examples of a control. The vertical lines indicate hours.
The dotted line is a clipping situation without control and the straight line is a
clipping situation with control. The left picture shows the advantage of a control:
payback can “move” the overload to the next hour where the overload is cheaper.
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Figure 1: Realistic and theoretic clipping situation with a control.

The combined effect of all controls C can be calculated recursively by the func-
tion

I ′(C, s) =
{

I ′
(
C− [a, b], I([a, b], s)

)
, if [a, b] ∈ C (�= ∅),

s, if C = ∅. (6)

When all the effects of controls have been calculated, we can use (1) to find out the
value of the new clipping situation.

Next we look at the restrictions. First, the controls must be separate such that
for all [a, b], [c, d] ∈ C we have

[a, b] �= [c, d] ⇒ [a, b] ∩ [c, d] = ∅. (7)

Further, during resting time it is not allowed to start a new control. Function
Cr : N → N is increasing and it maps the length of a control to the length of a
resting time. So, for all [a, b], [c, d] ∈ C we have

[a, b] ∩ [c, d] = ∅ ⇒ [b + 1, b + Cr(b − a + 1)] ∩ [c, d] = ∅. (8)

Note that a new control can be started even if the payback still occurs, provided
that the resting time does not overlap with the new control. Usually, the resting
time is used to prevent a new control to start in the beginning of the payback, when
the need for extra electricity is the largest. If we start a new control at the end of
a payback, the change in the payback of the new control is so small that it is not
usually taken into account.

We also need the minimum and maximum control times Cm and CM , respec-
tively, which bound the length of control as

Cm ≤ b − a + 1 ≤ CM . (9)

Sometimes we also restrict the number of control times
∑

[a,b]∈C 1 by CT , a positive
integer.

We can suppose that at every time point k the price factor pk is (much) larger
than the revenue rk. By making controls we can affect the clipping situation, so
the optimization problem can be given in the form

max
C

N∑
k=0

R(k, I(C, s)) (10)

with restrictions (7)–(9).



432 Isto Aho

3 A DP solution

The problem (10) can be solved with DP by using two state variables corresponding
to the control times and control length [1, 8, 7, 19]. The tests in [1] indicated that
it is possible to add at least one state variable to improve the results. In this work
we use the state variables control time Ct, wait state W and control length Cl.
As a result, we have a slower but more accurate system than those with two state
variables. The state variables are defined in finite integer domain.

In the state space we need the control length Cl, so that DP can form the
optimal control length and at the same time fulfill the restriction (9). In addition
to control length, Cl also contains the resting time. Without the control times, DP
complying with conditions (7)–(9) would find only one control. With these three
state variables we have one state of stage k ∈ [0, N ] as a triple (Ct, W, Cl)(k). The
phrase “stage k” refers to a time point. A system in state (Ct, W, Cl) is defined
to be the Ctth control of length Cl with W time points delay before its start.
Our tests demonstrate that the three variable solution does not give the optimal
solution, if the the group has payback (see Section 5).

In practice we have to determine upper bound for the number of wait states W .
Theorem 2 gives an upper bound for W when the group does not have payback. If
the group does have payback, we assume that W can have hl − 1 (hl is the length
of an hour) different values. We also test other possibilities, see Section 5.

We denote S = (Ct, W, Cl) and S′ = (C′t, W ′, C′l). The variables with primes
are “new” ones and the plain variables are “old”, when we form the connections
between the “new” stage k + 1 and the “old” stage k. Function

R′′(s, S′, S, k + 1) =

⎧⎪⎪⎨
⎪⎪⎩

0, when (14)–(17),
−P ′, when (18),
R(I([k − Ct, k], s)) − R(s), when (19),
−∞, otherwise,

(11)

gives the change in the value, when moving from state (Ct, W, Cl) of stage k into
state (C′t, W ′, C′l) of stage k + 1. The first line is used when the value does not
change. The second line is used, when we start a new control and the third line
is applied, when we make a decision about the best control. The cost of making
a control is denoted by P ′. The last line is used with every other values of the
variables S and S′. They are impossible since they do not have any reasonable real
world interpretation.

The dynamic forward recursion equation is

R′(s, S′, k + 1) = max
S

(
R′(s, S, k) + R′′(s, S′, S, k + 1)

)
(12)

and

R′(s, (Ct, W, Cl), 0) =

{
R(s), when Ct = W = Cl = 0,
−∞, otherwise.

(13)
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Figure 2: The structure of the state space. Alternative states are similar to control
times, except that they do not choose the best control plan available.

When

C′t = Ct + 1, W ′ = C′l = 0, 0 ≤ W ≤ hl − 2,
and Cr(Cm) + CM − 1 ≤ Cl ≤ Cr(CM ) + CM − 1,

(14)

the control at stage k and in state (Ct, W, Cl) has stopped, which in turn increases
the amount of control times by one (C′t = Ct +1). The next control starts in state
(C′t, 0, 0) at stage k + 1. We add CM + 1 both for minimum and maximum resting
times, because Cl indexes the control length and the resting time (see Figure 2),
and because the states corresponding to the resting time are located next to the
control lengths (i.e., after state CM −1). Note, that we restrict the number of wait
states by hl − 2 (wait states can get hl − 1 different values).

Moreover, it is possible that “old” optimal plan at stage k does not change (or
be better) when moving into stage k + 1, and so

C′t = Ct, W ′ = C′l = 0, and W = Cl = 0. (15)

This is the only case with conditions (14) and (19), where DP (recursion formula
(12)) can make decisions about the path. If two paths give the same result, DP
(12) chooses the one with a later control. This does not have any impact on the
result, but in practice we usually want to do the controls as late as possible.

Figure 2 shows the state structure. Conditions (14) and (15) are shown on the
left. There we have several states, from which we choose the maximum. When

C′t = Ct, W ′ = W + 1, and C′l = Cl = 0, (16)

we “move some information from the past” to new stage k+1. With this information
we can check what result can be achieved, if we choose the best path W stages ago
instead of some other control plan with the last control started in the interval
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[k − W, k]. Figure 2 shows this in the middle, where a control time is depicted.
When

C′t = Ct, W ′ = W, C′l = Cl + 1, and (C′l �= 1, C′l �= CM + 1), (17)

we increase the control length (the control started Cl time points ago). When

C′t = Ct W ′ = W, and 1 = C′l = Cl + 1, (18)

a new control starts. In this situation we add the cost of control P ′ to the result.
Finally, when

C′t = Ct W ′ = W, C′l = CM + 1, and Cm ≤ Cl ≤ CM , (19)

we can calculate the impact of a legal control on a clipping situation. Figure 2
shows conditions (17)–(19) in the right.

For each state (Ct, W, Cl) and for each stage k > 0, we save the connection
pointing to some state of the previous stage. The connections form a path. When
we have the values

R′(s, (Ct, W, Cl), N)

with appropriate values in Ct, W and Cl, we can form the control plan C by
traversing the path formed by the connections. The path is optimal with respect
to the state space used (but not with respect to the problem). Note that functions
R′ and R′′ in equations (11)–(13) comply with the conditions (7)–(9).

4 The properties of the state space

Next we study the properties of the dynamic recursion formula (12)–(13). Consider
stage i. A local control for state (Ct + 1, 0, 0) is a control formed at control time
Ct + 1, stopped at stage j > i + Cr(Cm), and using the control plan formed at
stage i for state (Ct, 0, 0). Stages k > i do not belong to the local control, provided
that we do not use the control plan of state (Ct, 0, 0)(i) at stage k. This means
that the wait states are not considered when forming a local control.

In the next theorem we suppose that all references to wait states have been
omitted from the conditions (14), (15), (18) and (19).

Theorem 1. State space (Ct, Cl) finds, for each stage i, the best local control
following stage i.

Proof. Consider the controls starting after stage i from state (Ct, 0) and using con-
trol plan C determined by i and (Ct, 0). The conditions (14) and (15) determine the
best control for state (Ct + 1, 0)(j), according to the equation (12). The condition
(14) gives the maximum because of the conditions (18) and (19).

Corollary 1. State (1, 0, 0)(N) gives the best control plan having one control.
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Note that the length and the amount of payback do not have any consequences
in the case of Theorem 1. State space (Ct, Cl) gives sub-optimal results [1], which
can be improved with wait states (still being sub-optimal).

Let Ci,Ci+1, . . . ,Ca be the control plans of the control time Ct and the stages
(time points) i, i + 1, . . . , a, respectively, i being the first time point of an hour. In
the next theorem we show that it is enough to choose between the control plans
Ci,Ci+1, . . . ,Ca, when forming a control [a, b]. This refers to the situation in
condition (14) of DP (12), where we check, how well the control plans of states
(Ct, 0, 0)(i), (Ct, 0, 0)(i+1), . . . , (Ct, 0, 0)(a) work with the control starting at time
point a.

Intuitively, the next theorem is based on the property that if the last control of
some control plan stops with resting time in the “previous hour”, it will not have
any impact on the controls in the “present hour”.

Theorem 2. Suppose there is no payback. Suppose further that we start a new
control from stage a for control time Ct, which will stop at stage b locally maxi-
mizing the control plan Ca. Let i be the first moment of the hour containing a.
Now it is enough to choose (with the wait states) from the set of control plans
Ci,Ci+1, . . . ,Ca, when forming a new control [a, b].

Proof. We show that it is not necessary to reach time points earlier than the start
of the present hour. Consider situations where it is possible to choose between
control plan Ci−n of time point i− n (n ≥ 1), and control plans Ci,Ci+1, . . . ,Ca,
when forming [a, b]. Since DP (12) chooses always the maximum, the result of Cj

does not decrease when j increases. Thus, the result of Ci is at least that of Ci−n.
If we choose some of the control plans Ci−n, . . . ,Ci−1 to be used with a control
that starts at a, we obtain at least as good result with the control plan Ci.

Note that the absence of payback and the fact that the resting time is coded
into the state space are crucial here. It follows from Theorem 2 that we need one
wait state at the first time point of an hour, two at the second time point and
finally hl − 1 at the last time point of an hour (hl is the length of an hour). In
other words, we need on the average (hl − 1)/2 wait states at each time point. (In
[1] we used hl − 1 wait states at each time point.)

In general, the state space (Ct, W, Cl) does not achieve the optimal result when
the length of payback is non-zero (a sample case is given in Section 5). We need at
least one more state variable to be able to form a better path [2, pp. 30–34]. With
variable A we check the non-maximum paths according to (12) for the three state
variable system.

A local alternative of stage i is a control which stops at the stage i including the
resting time and which is not chosen into the control plan. A three variable system
chooses the best alternative among several, as shown in the left side of Figure 2.
We set this to be the alternative state one. In the alternative state two, we choose
the second best path from the control time Ct for the first state of control time
Ct + 1. The third alternative state uses the third best path found so far and so on.
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Alternative states can be easily implemented. When looking for the best path,
we can cater the required amount of paths to find the Ath path. Moreover, the
solution (a path) given by the condition (15) has to be checked when we are looking
for the number of the best paths. The starting configuration (13) and the transition
conditions (14)–(19) work with alternative states without major modifications. The
initial solution is calculated only for the first alternative state and the conditions
(14)–(19) work inside an alternative state just as in the case of the three variable
system.

5 Tests

We first checked that Theorem 2 gives twice as fast method as the old DP. After
that, we wanted to see whether paybacks affect the solutions given by the new three
state variable DP. When we saw that paybacks do affect the results, we tried to
improve the accuracy by increasing the number of wait states.

Intuitively, the wait states starting at point a can only “look up” that far (to
point a) later on at the moment b. So if a is the beginning of an hour, we “do not
see” into the previous hour at moment b and cannot make a choice between earlier
control plans. When there is no payback, the number of wait states equaling to the
number of time points after a start of an hour is enough, because a control finished
in the previous hour does not affect the present hour to be cut. However, when we
are using payback, we need to be able to look further into the previous hours in
order to increase the accuracy. By adding c wait states, we directly reach earlier
moments. We are tempted to think that increasing c will improve the solution.
Our tests, however, show that while this is mostly true, there are exceptions.

In the tests we used a group shown in the upper left corner in Figure 3. We
tested the group with 5 different clipping situations. Tests 1–4 could be clipping
situations occurring in reality. They are similarly shaped and contain “morning
and afternoon” consumption peaks. The shapes are at different levels giving tests

0

0 8 16 24

test 3

0

0 8 16 24

test 4

0

0 8 16 24

test 5

0

0 8 16 24

test 1

0

0 8 16 24

test 2and its

0

1 2 3

1 hour
control payback

Figure 3: Payback used in the tests and the test cases.



Notes on the properties of dynamic programming used in direct load control 437

# c

50

40

30

20

10

test 1

test 2

test 4

test 5

test 3

3 6 9

seconds

Figure 4: Running times.

of different difficulty. Test 5 is artificial. When load curve is above 0, we have
overload that should be cut off. One tick stands for 1 MW. (Horizontal axis are for
time.)

Each hour is discretized into twelve time points. The group had 1.2 MW control
capacity (i.e., 0.1 for five minutes). The payback is two hours long, the minimum
control length is 30 minutes and the maximum control length is one hour. One
MW overload costs −99 000 and underload −900. Resting time is 10 minutes.

Figure 4 contains running times (in seconds) for the old DP solution and for
DPs with c = 0, 1, 2, 3, 5 and 11 (horizontal axis). Moreover, hl = 12. We see that
the running times increase almost linearly on the number of waits states. Table 2
contains the results for the tests used in Figure 3. Here we see that, in general, the
results improve if the number of wait states is increased.

In the second test, however, we see that increasing the number of wait states
has decreased the result between DPs with c = 3 and c = 5 (a locally better
solution is worse). This somewhat non-intuitive result follows from the fact that
our DP solutions do not fulfill the optimality principle usually stated for dynamic
programming solutions [2, p. 16]. Reason for this is that we cannot guarantee that
optimal solution at stage i entails optimal solution for the rest of the case. Payback
may affect later hours and decisions. This information should be available at the
moment when we are deciding the length of a control.

We did not use any alternative states in the test series reported in Table 2 and

Table 2: Solutions without alternative states.
Test old DP c = 0 c = 1 c = 3 c = 5 c = 11

1. −144 478 −144 478 −144 478 −144 478 −144 478 −144 478
2. −15 603 −15 662 −15 662 −15662 −15778 −15 603
3. −368 665 −371 296 −370 238 −368 665 −368 665 −368 665
4. −174 490 −175 668 −175 668 −175 668 −175 668 −174 490
5. −9 860 −9 860 −9 860 −9 860 −9 860 −9 860
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Table 3: The best solutions with alternative states.
Test old DP c = 0 c = 1 c = 3 c = 5 c = 11

1. −144478 −144 478 −144 478 −144 478 −144 478 −144 478
2. −15 603 −15 662 −15 662 −15487 −15487 −15487
3. −368 373 −369 069 −368046 −368 162 −368 278 −368 373
4. −174 490 −175 668 −175 543 −174 398 −174398 −174 490
5. −8 956 −8 336 −8 351 −8 186 −7 742 −7538

Figure 4. We run the same test series using 2, 5, 10 and 15 alternative states.
Table 3 contains the best solutions found among all the test series. Results were
improved in most of the cases, sometimes over 10%.

Test 5 informatively demonstrates how results improve as the number of wait
states or alternative states (or both) increases. The results and running times are
shown in Figures 5 and 6. We also tried DPs with 30 and 100 alternative states. DP
with 15 alternative states gives −8 336, with 30 states −7 872, and with 100 states
−7 214, which is better than the solution given by 15 alternative and 11 additional
wait states (see Table 3). Our conclusion is that a clipping situation with many
overload intervals most likely benefits from the use of alternative states.

We also studied how alternative states and wait states together improve the
results and how they affect the running times. The left hand side of Figure 5
contains the results for different alternative state amounts (1, 2, 5, 10 and 15). As
the number of wait states is increased, the results improve in general. There are
exceptions where few wait states do worse than DP with c = 0 (see lines for A5
and A15). The number of additional wait states used is irrelevant for this instance,
when we used only one alternative state.

On the right side the same data is plotted for five different additional wait
state amounts as well as for the old DP system. We conclude that the number
of alternative states is much more crucial for the results than the number of wait
states. Alternative states also improve the results of DP system with fixed amount
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Figure 5: Wait and alternative states, results for test 5.
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Figure 6: Wait and alternative states, running times for test 5.

of wait states (in old DP c = hl − 1).
Figure 6 contains the running times for test 5. Execution decelerates almost

linearly as the number of alternative or wait states is increased. The number of
wait states in one hour is

∑hl−1
a=0

(
c + (a mod hl)

)
(where c = 0, . . . , hl − 1 and a

is a moment). Hence, the increase of c by one gives hl − 1 additional wait states
for one hour. This is proportionally less than the increase brought by the increase
of the number of alternative states by one, which is the number of used wait states
in one hour. This explains why the increase of the number of alternative states
decelerates more the running times than the increase of the number of wait states.

6 Conclusions

In this work we have analyzed the properties of the state space of a dynamic
programming problem arising in direct load control, and quicker optimization al-
gorithms are formed without sacrificing the accuracy of the results when payback
is not used. Moreover, we have found practical ways to improve the results by
increasing the state space when payback is used. We have described (sub-optimal)
solutions for three and four state variables. If the result accuracy is not crucial,
one can drop wait states away, arriving to a faster two state variable solution of [8].

There are still open problems concerning the properties of state variable Ct.
They seem to behave in a way that enables us to reduce the number of states
used (for details, see [1]). Moreover, we conjecture that the control length Cl has
properties, by which we can further speed up the algorithms.

If there is enough time, it is possible to add a new state variable, called alterna-
tive state. With four state variables we achieve even better results, as is shown in
our tests. Most of the time, additional wait states as well as additional alternative
states improve the results. Hence, one can choose between fast inaccurate, and
accurate but slow solutions. Similar trade can be made between two, three and
four variable state spaces. The alternative states seem to improve the results also
in the cases occurring in production systems.
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