
Distance Functional Dependencies in the Presence

of Complex Values

Sebastian Link∗ and Klaus-Dieter Schewe∗

Acta Cybernetica 16 (2004) 459–472.

Abstract

Distance functional dependencies (dFDs) have been introduced in the
context of the relational data model as a generalisation of error-robust func-
tional dependencies (erFDs). An erFD is a dependency that still holds, if
errors are introduced into a relation, which cause the violation of an original
functional dependency. A dFD with a distance d = 2e + 1 corresponds to
an erFD with at most e errors in each tuple. Recently, an axiomatisation of
dFDs has been obtained.

Database theory, however, does no longer deal only with flat relations. Mod-
ern data models such as the higher-order Entity-Relationship model (HERM),
object oriented datamodels (OODM), or the eXtensible Meakup Language
(XML) provide constructors for complex values such as finite sets, multisets
and lists. In this article, dFDs with complex values are investigated. Based
on a generalisation of the HAmming distance for tuples to complex values,
which exploits a lattice structure on subattributes, the major achievement is
a finite axiomatisation of the new class of dependencies.

Keywords. functional dependencies, complex value data models, error-
robustness

1 Introduction

In [3] Demetrovics, Katona and Miklós introduced error-correcting keys in the
RDM and generalised them to error-correcting functional dependencies in [4]. In
both cases they studied the relationship of these dependencies to inclusion-free sets
of attributes and derived combinatorical results on the size of the elements in such
families. As these kinds of dependencies provide information about relations that is
stable under the introduction of errors, we prefer to talk of error-robust functional
dependencies (erFDs).

The work on error-robust functional dependencies is motivated by the fact that a
database user may be confronted with a relation that contains errors. It is presumed
that the user knows the structure of the relation schema, i.e. the attributes and

∗Information Science Research Centre, Massey University, Private Bag 11222, Palmerston
North, New Zealand, [s.link|k.d.schewe]@massey.ac.nz

459

460 Sebastian Link and Klaus-Dieter Schewe

the dependencies. There are various reasons for such errors to occur. For instance,
a relation may have been transmitted through a noisy channel, so knowing about
erFDs may help to localise the errors.

On the other hand, errors may have been introduced deliberately in order to hide
and secure data. Then the knowledge about erFDs permits drawing conclusions
about the errors. So the study of erFDs may lead to results on how reliable the used
data hiding mechanism is. Another reason for an errornous relation may be that
the data has been spoiled deliberately. Analogously to the case of using a noisy
transmission channel the knowledge about erFDs may help to detect the errors.

In the conclusion of [4, p.92] the authors pose the question, whether erFDs in
the RDM can be characterised, i.e., finitely axiomatised. As already shown in [4,
Prop. 1.1] erFDs are subsumed by another class of dependencies, called distance
functional dependencies (dFDs), where the distance refers to the Hamming distance
of tuples projected to the left hand side of the dependency. More precisely, an erFD
for the case of at most e errors in each tuple corresponds to a dFD with a distance
of at most 2e + 1. A finite axiomatisation of distance functional dependencies
for the RDM including the more general case of disjunctive distance functional
dependencies was achieved in [8].

Over the last decade the major focus of database theory has shifted from the
relational data model to data models with complex values rather than just tuples.
Examples are the higher-order Entity-Relationship model (HERM, [11]), object ori-
ented datamodels (OODM, [10]), or most recently the eXtensible Meakup Language
(XML, [1]). A natural question is, whether the theory of functional dependencies
and distance functional dependencies can be carried over to these data models.
For FDs this problem was addressed in [5] for finite sets, then generalised in [7] to
capture sets, lists and multisets, and in [6] to capture sets and disjoint unions. In
all these cases a finite axiomatisation could be achieved.

The aim of this paper is to generalise the notion and finite axiomatisation of
error-robust functional dependencies. In Section 2 we summarise the results from
[8] on dFDs in the relational data model, excluding the disjunctions. The Section
3 we introduce vthe fundamentals of nested attributes, which capture the gist of
higher-order data models. We present some results from [7] that will be needed
in this article. Section 4 introduces distance functional dependencies on nested
attributes and a sound set of derivation rules for such dependencies. Finally, the
completeness of this set of rules is proven.

2 Error-Robust Functional Dependencies in the
RDM

We assume familarity with fundamental definitions of the RDM and functional
dependencies in the RDM. One of many good sources is [9].

Suppose R is a relation schema and r, r′ are R-relations. For e ≥ 0 assume
that r′ results from r by introducing at most e errors per tuple. For simplicity
neglect the case that r′ has less elements than r, so that we can avoid considering

Distance Functional Dependencies in the Presence of Complex Values 461

multisets of tuples instead of sets. We say that r satisfies the e-error-robust func-
tional dependency (e-erFD) X → {e}Y with X, Y ⊆ R iff the introduction of errors
into r leading to r′ would still allow to detect the functional dependency X → Y .
Formally, for any tuple t′ ∈ r′ that corresponds to a tuple t ∈ r there must not
exist two tuples t1, t2 ∈ r, which both have a Hamming distance at most e from t,
such that t1[Y] �= t2[Y] holds.

Recall that the Hamming distance of two tuples t1 and t2 (denoted as H(t1, t2))
is the number of attributes B, on which t1[B] �= t2[B] holds.

Definition 1. Let X, Y ⊆ R and e ≥ 0. An e-error-robust functional dependency
(e-erFD) is an expression X → {e}Y . An R-relation r satisfies X → {e}Y iff
for all R-relations r′ such that there is a bijection σ between the tuples t ∈ r
and σ(t) = t′ ∈ r′ with H(t, t′) ≤ e and all tuples t1, t2 ∈ r, t′ ∈ r′ we have
H(t1[X], t′[X]) ≤ e ∧H(t2[X], t′[X]) ≤ e ⇒ t1[Y] = t2[Y].

Obviously, for tuples t1, t2 ∈ r with H(t1[X], t2[X]) ≥ 2e + 1 we obtain t′1[X] �=
t′2[X], so these tuples cannot violate the functional dependency X → Y on r′.
Conversely, for tuples t1, t2 ∈ r with H(t1[X], t2[X]) < 2e + 1 we may obtain
t′1[X] = t′2[X] in r′, so that the tuples violate the functional dependency X → Y on
r′. Using this simple fact we obtain the following easy result (see [8], also compare
[4, Prop. 1.1]).

Proposition 1. An R-relation r satisfies X → {e}Y iff H(t1[X], t2[X]) < 2e+1 ⇒
t1[Y] = t2[Y] holds for all tuples t1, t2 ∈ r.

As in [4, p.87] we take advantage of Proposition 1 to define another class of
dependencies, called d-distance functional dependencies, which will ease the task
of finding a finite axiomatisation.

Definition 2. Let X, Y ⊆ R and d > 0. A d-distance functional dependency
(d-dFD) is an expression X → (d)Y . An R-relation r satisfies X → (d)Y iff we
have H(t1[X], t2[X]) < d ⇒ t1[Y] = t2[Y] for all tuples t1, t2 ∈ r.

As usual, we use the notation |=r X → (d)Y , if r satisfies the dFD. If Σ is a
set of dFDs, we say that Σ implies X → (d)Y (notation: Σ |= X → (d)Y) iff each
relation r satisfying all dFDs in Σ also satisfies X → (d)Y . We denote by Σ∗ the
semantic hull of Σ, i.e. the set of all dFDs implied by Σ, i.e. Σ∗ = {X →
(d)Y | Σ |= X → (d)Y }.

If we can find a finite, sound and complete set of rules and axioms that allows
us to derive Σ∗ out of Σ, then we also know how to obtain the semantic hull of a
set of erFDs. This follows from the following obvious corollary of Proposition 1.

Corollary 1. A relation r satisfies the erFD X → {e}Y iff r satisfies the dFD
X → (2e + 1)Y . In particular, 0-erFDs correspond to 1-dFDs.

The main result on dFDs is the following theorem which was proven in a more
general form in [8]. Here we use again the standard notation whereby X, Y, Z, . . .
denote attribute sets, A, B, C, . . . denote attributes or attribute sets with just one
attribute, and union is denoted by juxtaposition [9].

462 Sebastian Link and Klaus-Dieter Schewe

Theorem 1. The following set R of axioms and rules is sound and complete for
the implication of dFDs in the RDM:

(i) the reflexivity axiom
X → (1)Y

Y ⊆ X

(ii) the weakening rule
X → (d + 1)Y

X → (d)Y

(iii) the strengthening rule
X → (d)Y

X → (d + 1)Y
| X |< d

(iv) the union rule
X → (d)Y X → (d)Z

X → (d)Y Z

(v) the strong transitivity rule
X → (d)Y Y Y ′ → (d′)Z

X → (d)Z
| Y ′ |< d′

(vi) the left strengthening rule
X − A1 → (d)Y · · · X − An → (d)Y

X → (d + 1)Y
X =

{A1, . . . , An}

(vii) the left weakening rule
X → (d + 1)Y
X − A → (d)Y

A ∈ X

3 An Algebra of Nested Attributes

In this section we define our model of nested attributes, which covers the gist of
higher-order datamodels including HERM, the OODM and XML. In particular, we
investigate the structure of the set S(X) of subattributes of a given nested attribute
X , which will give us a Brouwer algebra [6, 7].

3.1 Nested Attributes

We start with a definition of simple attributes and values for them.

Definition 3. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A ∈ U . The elements of U are called simple attributes.

For the relational model a universe was enough, as a relation schema could be
defined by a subset R ⊆ U . For higher-order datamodels, however, we need nested
attributes. In the following definition we use a set L of labels, and tacitly assume
that the symbol λ is neither a simple attribute nor a label, i.e. λ /∈ U ∪L, and that
simple attributes and labels are pairwise different, i.e. U ∩ L = ∅.
Definition 4. Let U be a universe and L a set of labels. The set N of nested
attributes (over U and L) is the smallest set with λ ∈ N , U ⊆ N , and satisfying
the following properties:

Distance Functional Dependencies in the Presence of Complex Values 463

• for X ∈ L and X ′
1, . . . , X

′
n ∈ N we have X(X ′

1, . . . , X
′
n) ∈ N ;

• for X ∈ L and X ′ ∈ N we have X{X ′} ∈ N , X [X ′] ∈ N , and X〈X ′〉 ∈ N .

We call λ a null attribute, X(X ′
1, . . . , X

′
n) a record attribute, X{X ′} a set at-

tribute, X [X ′] a list attribute, and X〈X ′〉 a multiset attribute. As record, set, list
and multiset attributes have a unique leading label, say X , we often write simply
X to denote the attribute.

We can now extend the association dom from simple to nested attributes, i.e.
for each X ∈ N we will define a set of values dom(X).

Definition 5. For each nested attribute X ∈ N we get a domain dom(X) as
follows:

• dom(λ) = {�};
• dom(X(X ′

1, . . . , X
′
n)) = {(X1 : v1, . . . , Xn : vn) | vi ∈ dom(X ′

i) for i =
1, . . . , n} with labels Xi for the attributes X ′

i;

• dom(X{X ′}) = {{v1, . . . , vn} | vi ∈ dom(X ′) for i = 1, . . . , n}, i.e. each
element in dom(X{X ′}) is a finite set with elements in dom(X ′);

• dom(X [X ′]) = {[v1, . . . , vn] | vi ∈ dom(X ′) for i = 1, . . . , n}, i.e. each ele-
ment in dom(X [X ′]) is a finite list with elements in dom(X ′);

• dom(X〈X ′〉) = {〈v1, . . . , vn〉 | vi ∈ dom(X ′) for i = 1, . . . , n}, i.e. each
element in dom(X〈X ′〉) is a finite multiset with elements in dom(X ′).

Note that the relational model is covered, if only the tuple constructor is used.
Thus, instead of a relation schema R we will now consider a nested attribute X ,
assuming that the universe U and the set of labels L are fixed. Instead of an
R-relation r we will consider a finite set r ⊆ dom(X).

3.2 Subattributes

In the dependency theory for the relational model we exploited projections on
subsets X of a relation schema R. These are just special cases of projections on
subattributes. Therefore, we will define a partial order ≥ on N . However, this
partial order will be defined on equivalence classes of attributes. We will identify
nested attributes, if we can identify their domains.

Definition 6. ≡ is the smallest equivalence relation on N satisfying the following
properties:

• λ ≡ X();

• X(X ′
1, . . . , X

′
n) ≡ X(X ′

1, . . . , X
′
n, λ);

• X(X ′
1, . . . , X

′
n) ≡ X(X ′

σ(1), . . . , X
′
σ(n)) for any permutation σ;

464 Sebastian Link and Klaus-Dieter Schewe

• X(X ′
1, . . . , X

′
n) ≡ X(Y1, . . . , Yn) iff X ′

i ≡ Yi for all i = 1, . . . , n;

• X{X ′} ≡ X{Y } iff X ′ ≡ Y ;

• X [X ′] ≡ X [Y] iff X ′ ≡ Y ;

• X〈X ′〉 ≡ X〈Y 〉 iff X ′ ≡ Y .

Basically, the equivalence definition states that λ in record attributes can be
added or removed, and that order in record and union attributes does not matter.

In the following we identify N with the set N/≡ of equivalence classes. In
particular, we will write = instead of ≡, and in the following definition we should
say that Y is a subattribute of X iff X̃ ≥ Ỹ holds for some X̃ ≡ X and Ỹ ≡ Y .

Definition 7. For X, Y ∈ N we say that Y is a subattribute of X , iff X ≥ Y holds,
where ≥ is the smallest partial order on N satisfying the following properties:

• X ≥ λ for all X ∈ N ;

• X(Y1, . . . , Yn) ≥ X(X ′
σ(1), . . . , X

′
σ(m)) for some injective σ : {1, . . . , m} →

{1, . . . , n} and Yσ(i) ≥ X ′
σ(i) for all i = 1, . . . , m;

• X{Y } ≥ X{X ′} iff Y ≥ X ′;

• X [Y] ≥ X [X ′] iff Y ≥ X ′;

• X〈Y 〉 ≥ X〈X ′〉 iff Y ≥ X ′.

Obviously, X ≥ Y induces a projection map πX
Y : dom(X) → dom(Y). For

X ≡ Y we have X ≥ Y and Y ≥ X and the projection maps πX
Y and πY

X are
inverse to each other.

We use the notation S(X) = {Z ∈ N | X ≥ Z} to denote the set of subattributes
of a nested attribute X . It has been shown that S(X) carries the structure of a
Brouwer algebra [5, 6, 7].

Proposition 2. The set S(X) of subattributes carries the structure of a Brouwer
algebra, i.e. it is a distributive lattice with a meet-operation �, a join-operation
�, a smallest element λ, a largest element X, and relative pseudo-complements
Y ← Z = �{U | U ∪ Y ≥ Z}.

Figure 1 as an example shows the Brouwer algebra S(X(X1{A}, X2[B])).

3.3 Ideals of Subattributes

We are dealing with several constructors for complex values at the same time. In
order to cope with the problems arising from this fact, we need some additional
notions that we will define in this subsection.

For the derivation rules for functional dependencies we need a notion of when
two subattributes are “nearly disjoint”. This property is called semi-disjointness.

Distance Functional Dependencies in the Presence of Complex Values 465

λ

X(X1{λ}) X(X2[λ])

X(X1{A}) X(X1{λ}, X2[λ]) X(X2[B])

X(X1{A}, X2[λ]) X(X1{λ}, X2[B])

X(X1{A}, X2[B])

Figure 1: The lattice S(X(X1{A}, X2[B]))

Definition 8. Two subattributes Y, Z ∈ S(X) are called semi-disjoint iff one of
the following holds:

(i) Y ≥ Z or Z ≥ Y ;

(ii) X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn), Z = X(Z1, . . . , Zn) and Yi, Zi ∈
S(Xi) are semi-disjoint for all i = 1, . . . , n;

(iii) X = X [X ′], Y = X [Y ′], Z = X [Z ′] and Y ′, Z ′ ∈ S(X ′) are semi-disjoint.

For the soundness proof in the next section we will need the following simple
fact about projections to semi-disjoint attributes.

Lemma 1. Let t1, t2 ∈ dom(X) for some nested attribute X ∈ N such that
πX

Y (t1) = πX
Y (t2) and πX

Z (t1) = πX
Z (t2) hold for semi-disjoint subattributes Y, Z ∈

S(X). Then also πX
Y �Z(t1) = πX

Y �Z(t2) holds.

Proof. We use induction on X to show πX
Y �Z(t1) = πX

Y �Z(t2). The cases X = λ
and X = A (i.e. a simple attribute) are trivial. There is also nothing to show for
Y ≥ Z or Z ≥ Y , as in these cases Y � Z is one of Y or Z.

For X = X(X1, . . . , Xn), semi-disjoint Y = X(Y1, . . . , Yn) and Z =
X(Z1, . . . , Zn), and tj = (X1 : tj1, . . . , Xn : tjn) (j = 1, 2) we have πXi

Yi
(t1i) =

πXi

Yi
(t2i) and πXi

Zi
(t1i) = πXi

Zi
(t2i), and Yi, Zi are semi-disjoint for all i = 1, . . . , n.

By induction πXi

Yi�Zi
(t1i) = πXi

Yi�Zi
(t2i), which implies πX

Y �Z(t1) = πX
Y �Z(t2).

For X = X [X ′] and semi-disjoint Y = X [Y ′] and Z = X [Z ′], the subattributes
Y ′ and Z ′ of X ′ are also semi-disjoint. Furthermore, for tj = [tj1, . . . , tjnj] (j = 1, 2)
we must have n1 = n2 and πX′

Y ′ (t1k) = πX′
Y ′ (t2k) and πX′

Z′ (t1k) = πX′
Z′ (t2k) for

all k = 1, . . . , n1. By induction we get also πX′
Y ′�Z′(t1k) = πX′

Y ′�Z′(t2k) for all
k = 1, . . . , n1, i.e. πX

Y �Z(t1) = πX
Y �Z(t2).

466 Sebastian Link and Klaus-Dieter Schewe

As S(X) is a lattice, it makes sense to investigate ideals and filters. The fol-
lowing notion of an HL-ideal will be central for the completeness proof in the next
section.

Definition 9. Let X ∈ N . An HL-ideal on S(X) is a subset F ⊆ S(X) with the
following properties:

(i) λ ∈ F ;

(ii) if Y ∈ F and Z ∈ S(X) with Y ≥ Z, then Z ∈ F ;

(iii) if Y, Z ∈ F are semi-disjoint, then Y � Z ∈ F .

The key step in the completeness proof for dFDs in the RDM in [8] consists in
the construction of a relation with exactly two tuples, which coincide exactly on a
given set of attributes. While this is trivial for the RDM, the presence of complex
values requires a similar result. However, instead of a set of attributes we now have
to deal with an HL-ideal. This result — denoted Central Lemma in [6] — provides
the major difficulty for the axiomatisation of functional dependencies in [5], [7] and
[6].

The following theorem states this result for the case that we deal with records,
lists, sets and multisets. The non-trivial lengthy proof is contained in [7].

Theorem 2. Let X ∈ N and F be an HL-ideal on S(X). Then there exist
t1, t2 ∈ dom(X) with πX

Y (t1) = πX
Y (t2) iff Y ∈ F .

4 Distance Functional Dependencies on Nested

Attributes

Our major goal is to generalise Theorem 1 to dFDs on nested attributes. Therefore,
we first have to generalise FDs and dFDs to this case. For the latter ones the major
difficulty is to define a generalisation of the Hamming distance for complex values.

4.1 A Generalised Distance Function on Complex Values

Let us first define ordinary functional dependencies. As a set of attributes in the
RDM corresponds to a single record attribute, the first idea is to replace sets of
attributes by a single subattribute. While this is sufficient for records and lists, it is
not a good idea for sets and multisets. The reason is that the well known extension
rule in Armstrong’s axiomatisation for FDs in the RDM does not generalise in this
way [5]. Therefore, we have to consider sets of subattributes instead.

Definition 10. Let X ∈ N . A functional dependency (FD) on S(X) is an expres-
sion Y → Z with Y,Z ⊆ S(X).

Let r be an instance of X . We say that r satisfies the FD Y → Z on S(X)
(notation: r |= Y → Z) iff for all t1, t2 ∈ r with πX

Y (t1) = πX
Y (t2) for all Y ∈ Y we

also have πX
Z (t1) = πX

Z (t2) for all Z ∈ Z.

Distance Functional Dependencies in the Presence of Complex Values 467

Now recall, that the difference between a FD and a dFD in the RDM was
that we replaced the equality on the left hand side by a bound on the Hamming
distance bewtwen two tuples with the distance d = 1 corresponding to the case of
an ordinary FD. The Hamming distance counts the number of attributes, on which
two tuples differ. These attributes form some kind of a “basis” in the sense that
each subset of a relation schema can be constructed as a union of singleton sets
containing just one attribute.

In order to generalise the distance notion to complex values, we therefore need
a basis made of subattributes.

Definition 11. Let X ∈ N . The subattribute basis of X is the smallest subset
B(X) ⊆ S(X) such that each Y ∈ S(X) can be written in the form Y =

⊔

Y ′∈BY

Y ′

for some BY ⊆ B(X).

The subattribute basis of a simple record attribute would just give us the simple
attributes. Therefore, considering the subattribute basis suggests to be a good
choice to replace the set of attributes in the definition of the distance function.
However, in order to cope properly with sets ans multisets, we need to close B(X)
under the join of attributes that are not semi-disjoint.

Definition 12. Let X ∈ N . The Hamming basis of X is the smallest subset
C(X) ⊆ S(X) with B(X) ⊆ C(X) such that for all non-semi-disjoint Y, Z ∈ C(X)
we also have Y � Z ∈ C(X).

The following is an easy implication of Lemma 1.

Lemma 2. Let t1, t2 ∈ dom(X) for some nested attribute X and Y ∈ X . If
πX

Y ′(t1) = πX
Y ′(t2) holds for all Y ′ ∈ C(Y), then also πX

Y (t1) = πX
Y (t2) holds.

Proof. According to the definition of the subattribute basis B(X) and the Hamming
basis C(X) we can write Y in the form Y =

⊔

Y ′∈CY

Y ′ for some subset CY ⊆ C(X).

By definition the elements in CY are pairwise semi-disjoint. As t1 and t2 coincide
on all elements of CY , the also coincide on Y by Lemma 1.

Now we can use the Hamming basis of X to define the distance of two complex
values t1, t2 ∈ dom(X).

Definition 13. Let X ∈ N and t1, t2 ∈ dom(X). The Hamming distance H(t1, t2)
between t1 and t2 is defined as H(t1, t2) = |{Y ∈ C(X) | πX

Y (t1) �= πX
Y (t2)}|, i.e. as

the number of subattributes in the Hamming basis, on which t1 and t2 differ.

This leads us straightforward to the generalisation of dFDs on a nested attribute.

Definition 14. Let X ∈ N be a nested attribute and d ≥ 1. A d-distance
functional dependency (dFD) on S(X) is an expression of the form Y → (d)Z with
Y,Z ⊆ S(X).

Let r be an instance of X . We say that r satisfies the dFD Y → (d)Z on S(X)
(notation: r |= Y → (d)Z) iff for all t1, t2 ∈ r with H(πX

Y (t1), πX
Y (t2)) < d for all

Y ∈ Y we also have πX
Z (t1) = πX

Z (t2) for all Z ∈ Z.

468 Sebastian Link and Klaus-Dieter Schewe

As before, we use |= to denote implication of dFDs and Σ∗ to denote the se-
mantic hull of a set Σ of dFDs.

4.2 Sound Derivation Rules

Using the definitions from the last subsection we will show now that derivation
rules similar to the ones in Theorem 1 are sound for the implication of dFDs on
nested attributes. Before we can define this set of derivation rules, we need a few
more notation.

For Y ∈ Y ⊆ S(X) let ↓ Y = {Y ′ | Y ′ maximal with Y � Y ′}. Furthermore,
if Y = {Y1, . . . , Yk}, write ↓ Y = {{Y ′

1 , . . . , Y ′
k} | Y ′

i ∈↓ Yi for one i and Y ′
j =

Yj for all j �= i}. In particular we have a mapping Yi �→ Y ′
i and we can define ki =

|C(Yi)| − |C(Y ′
i)|. We use this to define k(Y,Y ′) = max ki for Y ′ = {Y ′

1 , . . . , Y ′
k} ∈↓

Y.

Theorem 3. Let X ∈ N be a nested attribute. The following rules are sound for
the implication of dFDs on S(X):

reflexivity axiom: Y → (1)Z Z ⊆ Y (1)

lambda axiom: ∅ → (d){λ} (2)

subattribute axiom: {Y } → (1){Z} Y ≥ Z (3)

join axiom: {Y, Z} → (1){Y � Z} Y, Z semi-disjoint (4)

weakening rule:
Y → (d + 1)Z
Y → (d)Z (5)

strengthening rule:
Y → (d)Z

Y → (d + 1)Z max{|C(Y)| | Y ∈ Y} < d (6)

union rule:
Y → (d)Z1 Y → (d)Z2

Y → (d)Z1 ∪ Z2
(7)

strong transitivity rule:
Y → (d)Z Z ∪ Z ′ → (d′)U

Y → (d)U max{|C(Z)| | Y ∈ Z ′} < d′

(8)

left strengthening rule:
Y1 → (d − k1)Z . . . Ym → (d − km)Z

Y → (d)Z (9)

for ↓ Y = {Y1, . . . ,Ym} and ki = k(Y,Yi)

left weakening rule:
Y → (d + k)Z
Y ′ → (d)Z Y ′ ∈↓ Y, k = k(Y,Y ′) (10)

Distance Functional Dependencies in the Presence of Complex Values 469

Proof. In the following let r be an instance of X , i.e. r ⊆ dom(X). The soundness
of the weakening rule (5) is obvious.

For the soundness of the reflexivity axiom (1) let t1, t2 ∈ r with
H(πX

Y (t1), πX
Y (t2)) < 1 for all Y ∈ Y. That is, t1 and t2 coincide on all subat-

tributes in C(Y) for all Y ∈ Y. As Z ⊆ Y holds, they must also coincide on all
subattributes in C(Z) for all Z ∈ Z.

The soundness of the lambda-axiom (2) is obvious, as any t1, t2 ∈ r coincide on
λ.

If t1 and t2 coincide on all subattributes in C(Y), they also coincide on Y by
Lemma 2, and as Y ≥ Z, they must also coincide on Z, which proves the soundness
of the subattribute-axiom (3).

Similarly, H(πX
Y (t1), πX

Y (t2)) < 1 and H(πX
Z (t1), πX

Z (t2)) < 1 implies that t1
and t2 coincide on all subattributes in C(Y) ∪ C(Z). By Lemma 2 they must also
coincide on Y and Z. As Y , Z are semi-disjoint, we obtain πX

Y �Z(t1) = πX
Y �Z(t2)

by Lemma 1, which proves the soundness of the join-axiom (4).
For the soundness of the strengthening rule (6) take t1, t2 ∈ r with

H(πX
Y (t1), πX

Y (t2)) < d + 1 for all Y ∈ Y. As H(πX
Y (t1), πX

Y (t2)) < |C(Y)| < d
for all Y ∈ Y, the premise implies πX

Z (t1) = πX
Z (t2) for all Z ∈ Z as claimed.

For the soundness of the union rule (7) take t1, t2 ∈ r with H(πX
Y (t1), πX

Y (t2)) <
d for all Y ∈ Y. The premises of the rule imply πX

Z (t1) = πX
Z (t2) for all Z ∈ Zj

(j = 1, 2), which trivially implies πX
Z (t1) = πX

Z (t2) for all Z ∈ Z1 ∪ Z2.
In order to prove the soundness of the strong transitivity rule (8) take again

t1, t2 ∈ r with H(πX
Y (t1), πX

Y (t2)) < d for all Y ∈ Y. The first premise of the rule
implies πX

Z (t1) = πX
Z (t2) for all Z ∈ Z. For Z ′ ∈ Z ′ we have H(πX

Z′ (t1), πX
Z′(t2)) <

|C(Z ′)| < d′. Hence H(πX
Z (t1), πX

Z (t2)) < d′ for all Z ∈ Z∪Z ′. The second premise
of the rule gives the desired πX

U (t1) = πX
U (t2) for all U ∈ U .

Now take again t1, t2 ∈ r with H(πX
Y (t1), πX

Y (t2)) < d for all Y ∈ Y. Unless
πX

Y (t1) = πX
Y (t2) there must exist some Yi ∈↓ Y with H(πX

Y ′(t1), πX
Y ′(t2)) < d − ki

for all Y ′ ∈ Yi, and we can apply the corresponding premise of the left strengthening
rule (9) to conclude πX

Z (t1) = πX
Z (t2) for all Z ∈ Z, which proves the soundness of

this rule.
Finally, for the soundness of the left weakening rule (10) take again t1, t2 ∈ r

with H(πX
Y ′(t1), πX

Y ′(t2)) < d for all Y ′ ∈ Y ′. Hence, H(πX
Y (t1), πX

Y (t2)) < d + 1 for
all Y ∈ Y. Applying the premise of the rule leads to πX

Z (t1) = πX
Z (t2) for all Z ∈ Z

as claimed.

4.3 Completeness

As usual, given a set of axioms and rules R, and a set Σ of dFDs, we let Σ+ denote
the syntactic hull of Σ, i.e. the set of all dFDs that can be derived from Σ using the
axioms and rules in R. In the following we take R as the axioms and rules from
Theorem 3. This theorem already states the soundness of R, i.e. Σ+ ⊆ Σ∗.

A set of axioms and rules is called complete iff Σ∗ ⊆ Σ+ holds. Our final goal
is to show the completeness of the rules in R. Theorem 2 will turn out to be the
key for the completeness proof in this section.

470 Sebastian Link and Klaus-Dieter Schewe

Theorem 4. The set R of axioms and rules from Theorem 3 is complete for the
implication of dFDs on nested attributes.

Proof. Let X ∈ N be a nested attribute, and let Σ denote a set of dFDs on S(X).
In order to show Σ∗ ⊆ Σ+ let Y → (d)Z /∈ Σ+.

Let d be minimal with this property. Then, according to rule (6) we can assume
that |C(Y)| ≥ d−1 for at least one Y ∈ Y. Otherwise, we would have max{|C(Y)| |
Y ∈ Y} < d − 1. As d is minimal, we have Y → (d − 1)Z ∈ Σ+, and applying the
strengthening rule (6) would result in the contradiction Y → (d)Z ∈ Σ+.

Due to the union rule (7) there must be some Z ∈ Z with Y → (d){Z} /∈ Σ+.
Then, applying the left strengthening rule (9) k times with k ≤ d − 1 — which is
possible, as |C(Y)| ≥ d − 1 for at least one Y ∈ Y — we find some Y ′ ∈↓k Y with
Y ′ → (1){Z} /∈ Σ+.

Now take Y ′+ = {U | Y ′ → (1){U} ∈ Σ+}, so Z /∈ Y ′+, but due to the
reflexivity axiom (1) we have Y ′ ⊆ Y ′+.

Obviously, due to the lambda axiom (2), the subattribute axiom (3) and the
join axiom (4) Y ′+ is an HL-ideal in the Brouwer algebra S(X). Applying Theorem
2 to Y ′+ we obtain an instance r = {t1, t2} such that πX

U (t1) = πX
U (t2) holds iff

U ∈ Y ′+.
Hence, r �|= Y ′ → (1){Z}, and applying the sound left weakening rule (10) k

times we obtain r �|= Y → (d){Z}. From the soundness of the reflexivity axiom (1)
we further obtain r �|= Y → (d)Z.

We now show r |= Σ. So let U → (d′)V ∈ Σ. We consider two cases:

(i) Assume max{|C(U)| | U ∈ U} < d′. Due to the lambda rule (2) we have
Y ′ → (1){λ} ∈ Σ+. Using the strong transitivity rule (8) with Z ′ = U , we
obtain Y ′ → (1)V ∈ Σ+, hence V ⊆ Y ′+. Due to the construction of r we
obtain πX

V (t1) = πX
V (t2) for all V ∈ V , which shows r |= U → (d′)V .

(ii) Next assume max{|C(U)| | U ∈ U} ≥ d′. We show r |= U ′ → (1)V , whenever
U ′ ∈↓k′ U with k′ ≤ d′ − 1, and U ′ → (1)V ∈ Σ+ results from applying the
left weakening rule (10) k′ times.

Then the soundness of the left strengthening rule (9) implies r |= U → (d′)V
as desired.

We distinguish again two subcases:

(a) If U ′ �⊆ Y ′+, we have πX
U ′(t1) �= πX

U ′(t2) for at least one U ′ ∈ U ′, which
immediately implies r |= U ′ → (1)V .

(b) If U ′ ⊆ Y ′+, we have Y ′ → (1){U ′} ∈ Σ+ for all U ′ ∈ U ′. Using the union
rule (7) we conclude Y ′ → (1)U ′ ∈ Σ+, and further Y ′ → (1)V ∈ Σ+ by
applying the strong transitivity rule (8).
Hence V ⊆ Y ′+, which implies r |= U ′ → (1)V as desired.

Now r |= Σ∗, but r �|= Y → (d)Z. Hence Y → (d)Z /∈ Σ∗, which completes the
proof.

Distance Functional Dependencies in the Presence of Complex Values 471

5 Conclusion

In this article we presented a finite axiomatisation of distance functional depen-
dencies on nested attributes. This result generalises a corresponding result for the
RDM that was achieved (in a more general form) in [8].

The major tasks to solve this problem were generalising the Hamming distance
from tuples to arbitrary complex values, and constructing values that coincide
exactly on a given ideal of subattributes. The latter problem was solved in [7] with
solutions to a subcase contained in [5].

For the generalisation of the Hamming distance we used the “Hamming basis”,
which results from the subattribute basis by adding the joins of all non-semi-disjoint
subattributes. This preserves the Hamming distance on flat tuples as a special
case. That is, the new Hamming distance counts the number of subattributes in
the Hamming basis, on which two values differ.

Alternatively, we could have chosen all subattributes instead of just those in the
Hamming basis. Looking through the proofs in this article, this would not have
affected the finite axiomatisation. However, we would have obtained a distance
function with significant jumps.

We might still feel that the new distance function is still too coarse, as it cannot
express counting. For instance, two sets with elements in the domain of a simple
attribute either have distance 0, i.e. they are equal, or 1, i.e. they are different but
both non-empty, or 2, i.e. they are different and one of thre sets is empty. However,
the same problem appears already with functional dependencies, and thus, has to
be solved in a larger context.

References

[1] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers 2000.

[2] W.W. Armstrong. Dependency Structures of Database Relationships. Infor-
mation Processing vol. 74: 580-583, 1974.

[3] J. Demetrovics, G.O.H. Katona, D. Miklós. Error-Correcting Keys in Re-
lational Databases. in K.-D. Schewe, B. Thalheim (Eds.). Foundations of
Information and Knowledge Systems . First International Symposium, FoIKS
2000 . Springer-Verlag, LNCS vol. 1762: 88-93. Berlin 2000.

[4] J. Demetrovics, G.O.H. Katona, D. Miklós. Functional Dependencies in Pres-
ence of Errors. in T. Eiter, K.-D. Schewe (Eds.). Foundations of Informa-
tion and Knowledge Systems . Second International Symposium, FoIKS 2002 .
Springer-Verlag, LNCS vol. 2284: 85-92. Berlin 2002.

[5] S. Hartmann, A. Hoffmann, S. Link, K.-D. Schewe. Axiomatizing Functional
Dependencies in the Higher-Order Entity-Relationship Model. Information
Processing Letters vol. 87 (2003): 133-137.

472 Sebastian Link and Klaus-Dieter Schewe

[6] S. Hartmann, S. Link, K.-D. Schewe. Weak Functional Dependencies in Higher-
Order Datamodels – The Case of the Union Constructor. in D. Seipel, J. M.
Turull Torres (Eds.). Foundations of Information and Knowledge Systems.
Third International Symposium, FoIKS 2004 . Springer-Verlag LNCS vol. 2942:
117-134. Berlin 2004.

[7] S. Hartmann, S. Link, K.-D. Schewe. Axiomatisation of Functional Dependen-
cies in the Presence of Records, Lists, Sets and Multisets. Massey University
2003. submitted for publication.

[8] S. Hartmann, S. Link, K.-D. Schewe, B.Thalheim. Error-Robust Functional
Dependencies. Massey University 2002. submitted for publication.

[9] J. Paredaens, P. De Bra, M. Gyssens, D. Van Gucht. The Structure of the
Relational Database Model . EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin Heidelberg 1989.

[10] K.-D. Schewe and B. Thalheim. Fundamental concepts of object oriented
databases. Acta Cybernetica vol. 11 (4): 49-85, 1993.

[11] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer-Verlag, Berlin Heidelberg 2000.

Received October, 2002

