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Abstract

The family of functional dependencies plays an important role in the re-
lational database. The main goal of this paper is to investigate closure op-
erations and choice functions. They are equivalent descriptions of family of
functional dependencies. The main properties of and relationship between
closure operations and choice functions are presented in this paper.

1 Introduction

The motivation of this study is equivalent descriptions of family of functional de-
pendencies (FDs). FDs play a significant role in the implementations of relational
database model, which was defined by E.F Codd. However, relational database
is still one of the most powerful databases. One of the most important branches
in the theory of relational database is that dealing with the design of database
schemes. This branch is based on the theory of FDs and constraints. Armstrong
observed that FDs give rise to closure operations on the set of attributes. And he
shows that closure operation is an equivalent description of family of FDs, that is,
the family of all FDs satisfying Armstrong axiom stated in next section. That the
family of FDs can be described by closure operations on the attributes’ set plays
a very important role in theory of relational database. Because this representation
was successfully applied to find many properties of FDs, studying those properties
of closure operations is indirect way of finding that of the family of FDs. Besides
closure operations, there are some other representations of family of FDs. Such as,
the closed sets of a closure form a semilattice. And the semilattice with greatest
elements gives an equivalent description of FDs. The closure operations, and other
equivalent descriptions of family of FDs have been studied widely by Armstrong
[Ar], Beeri, Dowd, Fagin and Statman [BDFS], and H. Mannila and K.J.Raiha
[MR]. More, see [DK2], [DHLM], [DT3], and [Li]. Studying equivalent descriptions
of family of FDs helps us to understand deeper the family FDs and widens the
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study of it. Closure operation is widely known and considered the representation
of family of functional dependencies most studied. Among equivalent descriptions
of functional dependencies, the properties of choice functions are not developed well
enough in contrast to those of closure operations. Moreover, a closure operation
can be derived from a choice function and vice versa. Thus, by studying properties
of choice function satisfying reverse inclusion was studied in connection with the
theory of rational behavior of individuals and groups. For the study on choice func-
tion and relationship between closure operations and choice functions, see [DHLM]
and [Li].

For relation schemes s =< U, F > and t =< U, V >, where U is a set of
attributes and F and V sets of FDs over U , we are always able to build a closure
L1(A) on F , for every A is a set of attributes on U . However, if we build L2(L1(A))
on V , we find out that a meet-semilattice can not be formed from this computation.
That is, we can not form a relation scheme from this computation. We are going to
show in this paper what condition that provide to build the composition L1(L2(A))
such that a relation scheme can be formed from this composition. In other words,
what is necessary and sufficient conditions that make sure L1(L2(A)) is a closure.
We find this result through the studies of choice functions. Besides that, many
properties of choice functions will be studies in depth. The interaction of choice
functions and closure operations also are investigated widely in this paper. We
also study the relationship between choice functions and FDs. Those results can
be used to build many algorithm problems related to choice functions and closure
operation and family of FDs.

Direct product of decomposition of a closure operation plays an important role
in the theory and practice of relational database. If we consider a relation of
database as a matrix, a row contains the data of one individual, the estimation
of the minimum cardinality of rows of such matrix is very valuable in practice of
relational database. The studies of estimation of the minimum cardinality of rows
for direct product of decomposition of a closure operation can be found variously
in [DFK], [Li], [DK2]. In this paper we present the new notion and properties of
direct product of decomposition of choice function.

In the next section some necessary definitions and facts about relational
database, some equivalent descriptions of family of functional dependencies besides
choice function and closure operation theory are given.

The result of this paper is presented in the third section. They are organized
into six parts as follows.

Part 1 represents necessary and sufficient condition of composition of choice
functions to be a choice function. The studies of composition of closure operations
has been shown through those of choice functions. The main result of this paper
will be presented in depth in Part 1.

The direct product of decomposition of a choice function is in Part 2.
It will be proposed in Part 3 to study some fundamental properties of a composi-

tion of closure operations and choice functions. We are giving important properties
of intersection, union, and composition of choice functions, which will be fully in-
vestigated in depth in Part 1.
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In Part 4, we show relationship between and interactive properties of closure
operations and choice functions. In this section we consider the closure for which
choice function defined in next section satisfies some additional properties.

In Part 5, we are presenting a class of special choice functions, which is very
useful in the studying of combinatorial problems related to choice functions and
closure operations.

Part 6 gives some special relationship between choice functions and family of
FDs, which helps us intensively into algorithm problems on building choice func-
tions and closure operations. Since the theoretical result presented here are pre-
liminary. Thus many open problems in the studies of choice functions and closure
operation will be shown in this paper.

2 Basic Definitions

Let us give some formal definitions that are used in the next sections. Those well-
known concepts in relational database given in this section can be found in [Ar,
BB, BDFS, DK2, DT1, and Ul].

A relational database system of the scheme R(a1, ..., an) is considered as a table,
where columns correspond to the attributes ai ’s while the row are n−tuples of
relation r. Let X and Y be nonempty sets of attributes in R. We say that instance
r of R satisfies the FD if two tuples agree on the values in attributes X, they must
also agree on the values in attributes Y. Here is the formal mathematical definition
of FDs.

Definition 2.1. Let U = {a1, ..., an} be a nonempty finite set of attributes. A
functional dependency is a statement of the form A → B, where A, B ⊆ U . The FD
A B holds in a relation R = {h1, ..., hm} over U if ∀hi, hj ∈ R we have hi(a) = hj(a)
for all a ∈ A implies hi(b) = hj(b) for all b ∈ B. We also say that R satisfies the
FD A → B.

Let FR be a family of all FDs that hold in R.

Definition 2.2. Then F = FR satisfies.
(1) A → A ∈ F ,
(2) (A → B ∈ F, B → C ∈ F ) =⇒ (A → C ∈ F ),
(3) (A → B ∈ F, A ⊆ C, D ⊆ B) =⇒ (C → D ∈ F ),
(4) (A → B ∈ F, C → D ∈ F ) =⇒ (A ∪ C → B ∪ D ∈ F ).

A family of FDs satisfying (1)-(4) is called an f-family over U .
Clearly, FR is an f-family over U . It is known [Ar] that if F is an arbitrary

f-family, then there is a relation R over U such that FR = F .
Given a family F of FDs over U , there exits a unique minimal f-family F+ that

contains F . It can be seen that F+ contains all FDs which can be derived from F
by the rules (1)-(4).

Definition 2.3. A relation scheme s is a pair < U, F >, where U is a set of
attributes, and F is a set of FDs over U .
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Denote A+ = {a : A → {a} ∈ F+}. A+ is called the closure of A over s. It is
clear that A → B ∈ F+ iff B ⊆ A+. Clearly, if s =< U, F > is a relation scheme,
then there is a relation R over U such that FR = F+ (see, [Ar]).

Definition 2.4. Let U be a nonempty finite set of attributes and P (U) its power
set. A map L : P (U) → P (U) is called a closure operation (closure for short) over
U if it satisfies the following conditions:

(1)A ⊆ L(A), (Extensiveness Property)
(2)A ⊆ B implies L(A) ⊆ L(B), (Monotonicity Property)
(3) L(L(A)) = L(A). (Closure Property)
Let s =< U, F > be a relation scheme. Set L(A) = {a : A → {a} ∈ F+}, we

can see that L is a closure over U .

Theorem 2.1. [Ar] If F is a f -family and if LF = {a : a ∈ U and A → {a} ∈ F},
then LF is a closure. Inversely, if L is a closure, there exists only a f -family F
over U such that L = LF , and F = {A → B : A, B ⊆ U, B ⊆ L(A)}.

Let L ⊆ P (U). L is called a meet-irreducible family over U (sometimes it is
called a family of members which are not intersection of two other members) if
A, B, C ∈ L, then A = BC implies A = B or A = C.

Let I ⊆ P (U), U ∈ I, and A, B ∈ I ⇒ A∩B ∈ I. I is called a meet-semilattice
over U . Let M ⊆ P (U).

Denote M+ = {∩M ′ : M ′ ⊆ M}. We say that M is a generator of I if M+ = I.
Note that U ∈ M+ but not in M , by convention it is the intersection of the empty
collection of sets. Denote N = {A ∈ I : A 	= ∩{A′ ∈ I : A ⊂ A′}}. In [DK2] it is
proved that N is the unique minimal generator of I.

It can be seen that N is a family of members which are not intersections of two
other members.

Let L be a closure operation over U . Denote Z(L) = {A : L(A) = A} and
N(L) = {A ∈ Z(L) : A 	= ∩{A′ ∈ Z(L) : A ⊂ A′}}. Z(L) is called the family of
closed sets of L. We say that N(L) is the minimal generator of L.

It is shown [DK2] that if N is a meet-irreducible family then there is a closure
L such that N is the minimal generator of it.

Theorem 2.2. [Ar] There is an on-to-one correspondence between meet- irre-
ducible families and f -families on U .

Theorem 2.3. [DK2] There is a 1-1 correspondence between meet-irreducible
families and meet-semilattices on U .

Definition 2.5. Let M ⊆ P (U). M is called a Sperner system over U if A, B ∈ M ,
then A is not a subset of B.

Definition 2.6. Let U be a nonempty finite set of attributes. A family M =
{(A, {a}) : A ⊂ U, a ∈ U} is called a maximal family of attributes over R iff the
following conditions are satisfied:

(1) a /∈ A,
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(2) For all (B, {b}) ∈ M, a /∈ B and A ⊆ B implyA = B.
(3) ∃(B, {b}) ∈ M : a /∈ B, a 	= b, and La∪B is a Sperner system over R, where

La = {A : (A, {a}) ∈ M}.
Remark 2.1.

– It is possible that there are (A, {a}), (B, {b}) ∈ M such that a 	= b, but
A = B.

– It can be seen that by (1) and (2) for eacha ∈ U, La is a Sperner system over
U . It is possible that La is an empty Sperner system.

– Let U be a nonempty finite set of attribute and P (U) its power set. According
to Definition 2.6 we can see that given a family Y ⊆ P (U) × P (U) there
is a polynomial time algorithm deciding whether Y is a maximal family of
attribute over U .

Let L be a closure over R. Denote Z(L) = {A : L(A) = A} and M(L) = {(A, {A}) :
A /∈ A, A ∈ Z(L) and B ∈ Z(L), A ⊆ B, A /∈ B imply A = B}.

Z(L) is called the family of closed sets of L. It can be seen that for each
(A, {a}) ∈ M(L).Ais a maximal closed set which doesn’t contain a.

It is possible that there are (A, {a}), (B, {b}) ∈ M(L) such that a 	= b, but
A = B.

The following theorem which shows that closure operations and maximal fami-
lies of attributes determine each other uniquely.

Theorem 2.4. [DT4] LetL be a closure operation over U . Then M(L) is a
maximal family of attributes over U . Conversely, if M is a maximal family of
attributes overU , then there exists exactly one closure operation L over U so that
M(L) = M , where for all B ∈ P (U)

H(B) =

{ ⋂
B⊆A

A if ∃A ∈ L(M) : B ⊆ A,

R otherwise,

and L(M) = {a : (a, {a}) ∈ M}.
Now, we introduce the following concept.

Definition 2.7. LetY ∈ P (U)× P (U). We say that Y is a minimal family overU
if the following conditions are satisfied:

(1) ∀(A, B), (A′, B′) ∈ Y : A ⊂ B ⊆ U, A ⊂ A′ implies B ⊂ B′, A ⊂ B′ implies
B ⊆ B′,

(2) Put U(Y ) = {B : (A, B) ∈ Y } . For each B ∈ U(Y ) and C such that C ⊂ B
and there is no B′ ∈ U(Y ) : C ⊂ B′ ⊂ B, there is an A ∈ L(B) : A ⊆ C,
where L(B) = {A : (A, B) ∈ Y }.
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Remark 2.2.

– U ∈ U(Y ).

– From A ⊂ B′ implies B ⊆ B′ there is no a B′ ∈ U(Y ) such that A ⊂ B′ ⊂ B
and A = A′ implies B = B′.

– Because A ⊂ A′ implies B ⊂ B′ and A = A′ implies B = B′, we can be see
that L(B) is a Sperner system over R and by (2) L(B) 	= ∅.

Let I be a meet-semilattice over R. Put M∗(I) = {(A, B) : ∃C ∈ I such that
A ⊂ C, A 	= ∩{C : C ∈ I, A ⊂ C}, B = ∩{C : C ∈ I, A ⊂ C}}. Set M(I) =
{(A, B) ∈ M∗(I) : there does not exist (A′, B) ∈ M∗(I) such that A′ ⊂ A}.
Theorem 2.5. [DT4] Let I be a meet-semilattice over U . ThenM(I)is a minimal
family overU . Conversely, if Y is a minimal family over U , then there is exactly
one meet-semilattice I so that M(I) = Y , where I = {C ⊆ R : ∀(A, B) ∈ Y : A ⊆
C implies B ⊆ C}.

Let Z be an intersection semilattice on U and suppose that H ⊂ U, H 	⊂ Zhold
and Z ∪ {H} is also closed under intersection. Consider the sets A satisfying
A ∈ Z, H ⊂ A. The intersection of all of these sets is in Z therefore it is different
form H . Denote it by L(H). H ⊂ L(H) is obvious. Let H(Z) denote the set of all
pairs (H, L(H)) where H ⊂ U, H /∈ Z, but Z ∪ {H} is closed under intersection.
The following theorem characterize the possible sets H(Z):

Theorem 2.6. [DK1] The set {(Ai, Bi)|i = 1, ..., m} is equal to H(Z) for some
intersection semilattice Z iff the following conditions are satisfied:

Ai ⊂ Bi ⊆ U, Ai 	= Bi,

Ai 	= Aj implies either Bi ⊆ Aj, or Aj ⊆ Bi,

Ai ⊆ Bj implies Bi ⊆ Bj,

for any i and C ⊂ U satisfying Ai ⊂ C ⊂ Bi(Ai 	= C 	= Bi).
There is a j such that either C = Aj or Aj ⊂ C, Bj 	⊂ C, C 	⊂ Bj all hold.

The set of pair (Ai, Bi) satisfying those condition above is called an extension.
Its definition is not really beautiful but it is needed in some application. On the
other hand it is also an equivalent notion to the closures:

Theorem 2.7. [DK1] Z → H(Z) is a bijection between the set of intersection
semilattices and the set of extensions.

Definition 2.8. Let U be a nonempty finite set of attributes and P (U) its power
set. A map C : P (U) → P (U) is called a choice function, if every A ∈ P (U) , then
C(A) ⊆ A.
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U is interpreted as a set of alternatives, A as a set of alternatives given to the
decision-maker to choose the best and C(A) as a choice of the best alternatives
among A.

Let L be a closure operation, we define C and H associated with L as follows:

C(A) = U − L(U − A), (*)

and

H(A) = A ∩ L(U − A). (**)

We can easily prove that C(A) and H(A) are two choice functions. And we
name C(A) choice function - I (for short, CF-I), and H(A) choice function - II (for
short, CF-II).

Theorem 2.8. The relationship like (*) is considered as a 1-1 correspondence
between closures and choice functions, which satisfies the following two conditions:
For every A, B ⊆ U,

(1) If C(A) ⊆ B ⊆ A, then C(A) = C(B) (Out Casting Property),

(2) If A ⊆ B , then C(A) ⊆ C(B) (Monotonicity Property).

Theorem 2.9. The relationship like (**) is considered as a 1-1 correspondence
between closures and choice functions, which satisfies the following two conditions:
For every A, B ⊆ U,

(1) If If H(A) ⊆ B ⊆ A, then H(A) = H(B) (Out Casting Property),

(2) If A ⊆ B , then H(B) ∩ A ⊆ H(A) (Heredity Property).

We also note that both C and H uniquely determine the closure L as the
following

L(A) = U − C(U − A) and H(A) = A ∪ L(U − A).

For every A ⊆ U , the sets C(A) and H(A) form a partition of A, that is, C(A) ∪
H(A) = A , and C(A) ∩ H(A) = ∅.

Theorem 2.10. There is a 1-1 correspondence between CFs - I and closure oper-
ations on U .

Theorem 2.11. There is a 1-1 correspondence between CFs - II and closure op-
erations on U .
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3 Results

3.1 Properties of and Relationship between Composition of
Closure Operations and CFs - I and - II

First of all, we are giving the formal definition of composition of functions.

Definition 3.1. Let f and g be two functions (e.g. closure operations, CFs - I, or
II) on U , and we determine a map T as a composition of f and g the following:

T (X) = f(g(X)) = f.g(X) = fg(X) for every X ⊆ U.

In this section we are going to answer two questions. The first one is: given
many CFs - I (or II), what can be said about the composition of those CFs - I (or
II). In other words, what is necessary and sufficient conditions that provide that
composition to be a CF - I (or II). The second one is: what is the relationship
between that composition of CFs - I(or II) and that of closure operations. And if
we can find the necessary and sufficient conditions that provide that composition
of closure operations to be closure operation through those of CFs - I(or II).

With the same questions, however, first we are going to investigate problems
with two choice functions. For convenient, we show the results of CFs - II. We will
soon see that

Theorem 3.1. Let H1 and H2 be CFs-II on U , then composition H1H2 and H2H1

are a CFs-II on U , and H1H2 = H2H1 = H1 ∩ H2.

However, to achieve this result, we necessarily prove those following Lemmas
and Propositions. First we need to prove the following Proposition:

Proposition 3.1. Let H1 and H2 be CFs - II on U , then for all X ⊆ U,

H1(X) ∩ H2(X) is a CF - II on U.

To prove H1 ∩ H2 is a CF - II, we need to prove the following.

Lemma 3.1. Let L1 and L2 be closure operations on U , then for all X ⊆ U ,

L1(X) ∩ L2(X) is a closure operation on U.

Proof. Assume L1 and L2 be two closure operations on U , then for all X ⊆ U , it is
easy to obtain that X ⊆ L1(X) ∩ L2(X) since X ⊆ L1(X) and X ⊆ L2(X). Now,
to prove the Monotonicity Property of L1(X) ∩ L2(X), for every X ⊆ Y , we have
L1(X) ⊆ L1(Y ) and L2(X) ⊆ L2(Y ). Therefore, L1(X)∩L2(X) ⊆ L1(Y )∩L2(Y ),
so L1∩L2 satisfies Monotonicity Property. Then, we have to prove Closure Property
of L1 ∩ L2 . We always have X ⊆ L1(X) ∩ L2(X) ⊆ L1(X). Using Monotonicity
Property of L1, we attain L1(X) ⊆ L1(L1(X) ∩ L2(X)) ⊆ L1(L1(X)) = L1(X).
That means L1(X) = L1(L1(X) ∩ L2(X)). Similarly, we attain that L2(X) =
L2(L1(X)∩L2(X)). Therefore, L1(X)∩L2(X) = L1(L1(X)∩L2(X))∩(L2(L1(X)∩
L2(X)). That is, L1 ∩ L2 satisfies Closure Property, so L1 ∩ L2 is a closure on U .
The proof is completed.



Relationships Between Closure Operations and Choice Functions. . . 493

Now we are moving on proving Proposition 3.1.

Proof of Proposition 3.1. Assume H1 and H2 be CFs - II on U , then for all X ⊆
U , we have H1(X) = X ∩ L1(U − X), and H2(X) = X ∩ L2(U − X), with L1

and L2 two closure operations corresponding to H1 and H2 respectively. Thus
H1(X)∩H2(X) = (X∩L1(U−X))∩(X∩L2(U−X)) = X∩L1(U−X)∩L2(U−X).
However, due to Lemma 3.1, L1(U −X)∩L2(U −X) is a closure operation, that is,
there exists a closure operation L3 such that L3(U −X) = L1(U −X)∩L2(U −X).
Thus,C1(X)∩C2(X) = X∩L3(U−X) = C3(X), with C3 is a CF - II corresponding
to L3. The proof is completed.

Before proving Theorem 3.1, we need to prove the follows.

Lemma 3.2. Let H1 and H2 be CFs - II on U , then
1) H1H2 = H2H1H2.
2) H2H1 = H1H2H1

Proof. Assume H1 and H2 be CFs - II on U . Then for all X ⊆ U, H1(X) =
X ∩ L1(U − X) and H2(X) = X ∩ L2(U − X), with L1 and L2 two closure op-
erations corresponding to H1 and H2 respectively. H1H2(X) = H1(H2(X)) =
X ∩L2(U −X) ∩L1(U − X ∩L2(U −X)) ⊆ X . Due to Heredity Property of CFs
- II for H2, we obtain H2(X) ∩ H1H2(X) ⊆ H2(H1H2(X)). By using H1H2(X) =
H1(H2(X)) ⊆ H2(X), we attain H1H2(X) ⊆ H2(H1H2(X)) ⊆ H1H2(X). Hence
H1H2(X) = H2(H1H2(X)), that is, H1H2 = H2H1H2. Similarly, we obtain
H2H1 = H1H2H1.The proof is completed.

Lemma 3.3. Let H1 and H2 be CFs - II on U , then following is equivalence:
1)H1 ⊆ H2

2)H1H2 = H1

Proof.
(1 → 2). Assume H1 and H2 be CFs-II on U and H1 ⊆ H2. Since H1 is a CF-II,
H1 must satisfy Out Casting property: if H1(X) ⊆ Y ⊆ X , then H1(X) = H1(Y ).
Therefore, we have H1 ⊆ H2 or H1(X) ⊆ H2(X) ⊆ X for every X ⊆ U , so
H1(H2(X)) = H1(X) or we conclude that H1H2 = H1.

(2 → 1). Assume H1 and H2 be CFs - II on U and H1H2 = H1. Since H1 and H2

are CFs - II, according to Definition of choice function, we have H1H2 ⊆ H2, but
H1H2 = H1, so we have H1 ⊆ H2. The proof is completed.

Easily, we obtain the following Corollary.

Corollary 3.1. If H is a CF - II on U , then HH = H.

Proof of Theorem 3.1. Assume H1 and H2 be CFs - II on U . Then for all X ⊆
U, H2(X) ⊆ X . Due to Heredity Property of CF - II for H1, we obtain H1(X) ∩
H2(X) ⊆ H1(H2(X)). Besides that, H1(H2(X)) ⊆ H2(X) ⊆ X , we obtain H1 ∩
H2(X) ⊆ H1H2(X) ⊆ X . By Proposition 3.1, H1(X) ∩ H2(X) is a CF - II. Using
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Out Casting Property for H1 ∩ H2, we achieve H1 ∩H2(H1H2(X)) = H1 ∩H2(X)
or H1(H1H2(X))∩H2(H1H2(X)) = H1 ∩H2(X). Due to Corollary 3.1, we obtain
H1(H1H2(X)) = H1H2(X), and Lemma 3.2, we obtain H1H2(X) = H2H1H2(X).
Therefore, we attain that H1H2(X) = H1 ∩H2(X), that is H1H2 = H1 ∩H2.That
means H1H2 is a CF-II. Similarly, we obtain H2H1 = H1 ∩ H2 and H2H1 is a
CF-II. The proof is completed.

We can generalize Theorem 3.1 by the following

Generalization 3.1. Let Hi be CFs - II on U with i = 1 → n , then
Hi1Hi2....Hi(n−1)Hin is a CFs - II on U , and

Hi1Hi2...Hin =
n⋂

i=1

Hi

with {Hi1, Hi2., ..., Hi(n−1), Hin} be permutations of {H1, H2, .., H(n−1), Hn}.
Thus, for CFs - II, a composition of CFs - II is always a CF - II. Now we move

on the composition of CFs - I before investigating on closure operations.

Theorem 3.2. Let C1 and C2 be CFs - I on U . A composition of C1 and C2,
denoted as C1C2, is a CF - I if and only if

C1C2C1 = C1C2.

However, before proving Theorem 3.2, we need to have the following Lemmas.

Lemma 3.4. Let C1 and C2 be CF-Is on U . Then
1) C1C2 ⊆ C1,
2) C1C2 ⊆ C2,
3) C2C1 ⊆ C1,
4) C2C1 ⊆ C2.

Due to Definition of choice function, and Monotonicity Property of CFs - II,
clearly we obtain that Lemma.

Lemma 3.5. Let C1 and C2 be CFs - I on U , then following is equivalence:
1) C1 ⊆ C2,
2) C1C2 = C1.

Proof. The proof of this Lemma is similar to that of Lemma 3.3.

Easily, we obtain the following Corollary.

Corollary 3.2. If C is a CF - I on U , then CC = C.

Now we move on proving Theorem 3.2.
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Proof Theorem 3.2. Assume C1 and C2 be CFs-I on U and the composition C1C2

also a CF - I. Due to Lemma 3.4, we have C1C2(X) ⊆ C1(X) ⊆ X . Due to Out
Casting Property of composition C1C2, we have C1C2C1(X) = C1C2(X).

Inversely, assume C1 and C2 be CFs-I on U and the composition C1C2 satisfying
that C1C2C1 = C1C2. For all X ⊆ U , it is clear to obtain that C1(C2(X)) ⊆
C2(X) ⊆ X . It means C1C2 is a choice function. Now, to prove the Monotonicity
Property of the composition C1C2. For every X ⊆ Y , using Monotonicity Property
of C1 and C2, we have C2(X) ⊆ C2(Y ), then C1(C2(X)) ⊆ C1(C2(Y )). That means
that C1C2 satisfies Monotonicity Property. Then, we have to prove Out Casting
Property of the composition C1C2. For all X and Y ⊆ U, C1C2(X) ⊆ Y ⊆ X ,
we need to prove that C1C2(X) = C1C2(Y ). Using Monotonicity Property of
C1, we obtain that C2(C1C2(X)) ⊆ C2(Y ) ⊆ C2(X). Applying Monotonicity
Property of C1 once again, we have C1(C2C1C2(X)) ⊆ C1(C2(Y )) ⊆ C1(C2(X)).
However, C1C2C1 = C1C2. Therefore, C1C2C2(X) ⊆ C1C2(Y ) ⊆ C1C2(X). Due
to Corollary 3.2, we obtain that C1C2(X) ⊆ C1C2(Y ) ⊆ C1C2(X) That means
C1C2(X) = C1C2(Y ). That is, C1C2 satisfies Out Casting Property, so C1C2 is a
CF-I on U . The proof is completed.

We generalize the Theorem above.

Generalization 3.2. Let C1, C2, .., and Cn be CFs-I on U . A composition of
C1, C2, ...,and Cn, denoted as C1C2....Cn−1Cn, is a CF-I if and only if

C1C2...Cn−1CnC1C2....Cn−1 = C1C2...Cn−1Cn.

Proof. We prove this Generalization by induction. It is obvious for n = 1. The
Theorem 3.2 proves the case that n = 2.

For n = k, we assume that C1, C2, .., and Ck be CFs-I on U , and the com-
position of C1, C2, ..., and Ck, denoted as C1C2....Ck−1Ck, is a CF - I. We need
to prove that, for n = k + 1, the composition C1C2....CkCk+1 is a CF - I iff
C1C2...CkCk+1C1C2....Ck = C1C2...CkCk+1. Surely, since C1C2....Ck−1Ck is a CF
- I, by using Theorem 3.2, we obtain that the composition C1C2....CkCk+1 is a CF
- I iff C1C2...CkCk+1C1C2....Ck = C1C2...CkCk+1. The proof is completed.

Now we move on the relationship between the composition of closure operations
and CFs - I. We have the following Theorem.

Theorem 3.3. Let L1 and L2 be closure operations and C1 and C2 be CF-Is
corresponding to L1 and L2 respectively on U . The following are equivalent:

1) C1C2 is a CF-I,
2)L1L2 is a closure operation.

Proof. (1 → 2). Assume L1 and L2 be closure operations, and C1 and C2 be CF-
Is corresponding to L1 and L2 respectively on U and C1C2 is a closure operation.
Then for all X ⊆ U , we have L1(X) = U−C1(U−X), and L2(X) = U−C2(U−X).
Thus, L1L2(X) = L1(L2(X)) = U − C1(U − (U − C2(U − X))) = U − C1(C2(U −
X)) = U − C1C2(U − X). However, C1C2 is a closure operation. Therefore,
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there exists a closure operation C3 such that C3(U − X) = C1C2(U − X). Thus,
L1L2(X) = U − C3(U − X) = L3(X), with L3 a closure operation corresponding
to C3. That is L1L2 is a closure operation. The proof is completed.

(2 → 1). Assume L1 and L2 be closure operations and C1 and C2 be CF-
Is corresponding to L1 and L2 respectively on U and L1L2 is a closure operation.
Then for all X ⊆ U , we have C1(X) = U−L1(U−X), and C2(X) = U−L2(U−X).
Thus, C1C2(X) = C1(C2(X)) = U − L1(U − (U − L2(U − X))) = U − L1(L2(U −
X)) = U − L1L2(U − X). However, L1L2 is a closure operation. Therefore,
there exists a closure operation L3 such that L3(U − X) = L1L2(U − X). Thus,
C1C2(X) = U − L3(U − X) = C3(X), with C3 a choice function-I corresponding
to L3. That is C1C2 is a CF-I. The proof is completed.

It can be seen that.
Generalization 3.3. Let Li be closure operations and {Ci} be CFs - I correspond-
ing to Li respectively on U , with i = 1 → n. The following are equivalent:

1) L1L2...Ln is a closure operation
2) C1C2...Cn is a CF-I

And we also have L1L2...Ln(X) = U − C1C2...Cn(U − X) and C1C2...Cn(X) =
U − L1L2...Ln(U − X).

Through Theorem 3.2 and 3.3, it is easy to obtain the following Theorem.

Theorem 3.4. Let L1 and L2 be closure operations on U . A composition of L1

and L2, denoted as L1L2, is a closure operation if and only if

L1L2L1 = L1L2.

For generalization, we have the same conclusion for following Generalization as
Generalization 3.2.
Generalization 3.4. Let L1, L2, .., and Ln be closure operations on U . A compos-
ite function of L1, L2, ..., and Ln, denoted as L1L2....Ln−1Ln, is a closure operation
if and only if

L1L2...Ln−1LnL1L2....Ln−1 = L1L2...Ln−1Ln.

3.2 Direct Product of CFs - I and - II

The direct product of closure operations plays very important role in theory of
relational database, especially in combinatorial problems. Plenty of properties re-
lated to direct product of closure operation can be found in [DFK] and [Li]. By
relationship and interaction between closure operations and choice functions, we
introduce the new definitions of direct product of choice function-Is as well as -IIs.
First of all, we have the following.

Theorem 3.5. [Li] Let L1 and L2 be closure operations on the disjoint ground
sets U1 and U2 respectively. The direct product of closure operations L1 × L2 is
defined as following
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(L1 × L2)(X) = L1(X ∩ U1) ∪ L2(X ∩ U2), X ⊆ U1 ∪ U2.

Then (L1 × L2)(X) is a closure operations on U1 ∪ U2.

Here we give the Generalization of above Theorem.

Generalization 3.5. Let {Li| i = 1 → n} be closure operations on the disjoint
ground sets Ui respectively. The direct product of those closure operations L1 ×
L2 × ... × Ln is defined as following

(L1 × L2 × . . . × Ln)(X) =
n⋃

i=1

Li(X ∩ Ui)

with X ⊆ U1 ∪ U2 ∪ ... ∪ Un.

Then (L1 × L2 × ... × Ln)(X) is a closure operation on U1 ∪ U2 ∪ ... ∪ Un.

Theorem 3.6. Let C1 and C2 be CFs - I on the disjoint ground sets U1 and U2

respectively. The direct product of CFs - I, C1 × C2, is defined as following

(C1 × C2)(X) = C1(X ∩ U1) ∪ C2(X ∩ U2), X ⊆ U1 ∪ U2.

Then (C1 × C2)(X) is a CF - I on U1 ∪ U2.

Proof. For all X ⊆ U1 ∪ U2, (C1 × C2)(X) = C1(X ∩ U1) ∪ C2(X ∩ U2) ⊆ (X ∩
U1) ∪ (X ∩ U2) ⊆ X ∩ (U1 ∪ U2) = X. Thus, (C1 × C2)(X) ⊆ X. For every X and
Y ⊆ U1 ∪ U2 and X ⊆ Y , then X ∩ U1 ⊆ Y ∩ U1 , and X ∩ U2 ⊆ Y ∩ U2. By
using Monotonicity Property of C1 and C2, we obtain C1(X∩U1) ⊆ C1(Y ∩U1) and
C2(X∩U2) ⊆ C2(Y ∩U2). Hence C1(X∩U1)∪C2(X∩U2) ⊆ C1(Y ∩U1)∪C2(Y ∩U2),
that is, (C1×C2)(X) ⊆ (C1×C2)(Y ) or (C1×C2) satisfies Monotonicity Property.
Now we need to show that (C1 × C2)(X) satisfies the Out Casting Property also.
That is, for every X, Y ⊆ U1 ∪U2 and (C1 ×C2)(X) = C1(X ∩U1)∪C2(X ∩U2) ⊆
Y ⊆ X , we need to show that (C1×C2)(X) = (C1×C2)(Y ). Since Y ⊆ X, we have
(C1 ×C2)(Y ) ⊆ (C1 ×C2)(X). And it is obvious that C1(X ∩U1) ⊆ C1(X ∩U1)∪
C2(X∩U2) ⊆ Y . Thus, we have C1(X∩U1)∩U1 ⊆ Y ∩U1 or C1(X∩U1) ⊆ Y ∩U1.
Using Monotonicity Property of C1, we have C1(C1(X ∩ U1)) ⊆ C1(Y ∩ U1) or
C1(X ∩U1) ⊆ C1(Y ∩U1) due to Corollary 3.2. Similarly, we obtain C2(X ∩U1) ⊆
C2(Y ∩ U1). Therefore C1(X ∩ U1) ∪ C2(X ∩ U2) ⊆ C1(Y ∩ U1) ∪ C2(Y ∩ U2) or
(C1 × C2)(X) ⊆ (C1 ×C2)(Y ). Hence (C1 ×C2)(X) = (C1 × C2)(Y ). The proof is
completed.

Generalization 3.6. Let {Ci| i = 1 → n} be CFs - I with on the disjoint ground
sets {Ui} respectively. The direct product of CFs - I, C1 ×C2 × ...×Cn, is defined
as following

(C1 × C2 × . . . × Cn)(X) =
n⋃

i=1

Ci(X ∩ Ui)

with X ⊆ U1 ∪ U2 ∪ ... ∪ Un.
Then (C1 × C2 × ... × Cn)(X) is a CF - I on U1 ∪ U2 ∪ ... ∪ Un.



498 Nghia D. Vu

Theorem 3.7. Let H1 and H2 be CFs - II on the disjoint ground sets U1 and U2

respectively. The direct product of CFs - II, H1 × H2, is defined as following

(H1 × H2)(X) = H1(X ∩ U1) ∪ H2(X ∩ U2), X ⊆ U1 ∪ U2.

Then (H1 × H2)(X) is a CF - II on U1 ∪ U2.

Proof. For all X ⊆ U1 ∪ U2, (H1 × H2)(X) = H1(X ∩ U1) ∪ H2(X ∩ U2) ⊆ (X ∩
U1) ∪ (X ∩ U2) ⊆ X ∩ (U1 ∪ U2) = X. Thus, (H1 × H2)(X) ⊆ X. For every X
and Y ⊆ U1 ∪ U2 and X ⊆ Y , we need to prove that (H1 × H2) satisfies Heredity
Property. Since X ⊆ Y , we have X ∩U1 ⊆ Y ∩U1, and X ∩U2 ⊆ Y ∩U2. By using
Heredity Property of H1 and H2, we obtain H1(Y ∩U1)∩(X∩U1) ⊆ H1(X∩U1) or
H1(Y ∩U1)∩X ⊆ H1(X ∩U1). Similarly, we have H2(Y ∩U2)∩X ⊆ H2(X ∩U2).
Hence, (H1(Y ∩ U1) ∩ X) ∪ (H2(Y ∩ U2) ∩ X) ⊆ H1(X ∩ U1) ∪ H2(X ∩ U2), then
(H1(Y ∩U1)∪H2(Y ∩U2))∩X ⊆ H1(X∩U1)∪H2(X∩U2) that is, (H1×H2)(Y )∩X ⊆
(H1 × H2)(X) or (H1 × H2) satisfies Heredity Property.

Now we need to show that (H1 × H2)(X) satisfies the Out Casting Property
also. That is, for every X and Y ⊆ U1 ∪ U2 and (H1 × H2)(X) = H1(X ∩ U1) ∪
H2(X ∩ U2) ⊆ Y ⊆ X, we need to show that (H1 × H2)(X) = (H1 × H2)(Y ).
It is obvious that H1(X ∩ U1) ⊆ H1(X ∩ U1) ∪ H2(X ∩ U2) ⊆ Y ⊆ X . Then
H1(X ∩ U1) ∩ U1 ⊆ Y ∩ U1 ⊆ X ∩ U1 or H1(X ∩ U1) ⊆ Y ∩ U1 ⊆ X ∩ U1. Using
Out Casting Property of H1, we obtain H1(X ∩ U1) = H1(Y ∩ U1). Similarly, we
attain H2(X ∩ U2) = H2(Y ∩ U2). Therefore H1(X ∩ U1) ∪ H2(X ∩ U2) = H1(Y ∩
U1) ∪ H2(Y ∩ U2) or (H1 × H2)(X) = (H1 × H2)(Y ). The proof is completed.

Generalization 3.7. Let {Hi| i = 1 → n} be CFs - II with on the disjoint ground
sets Ui respectively. The direct product of CFs - II, H1 × H2 × ...× Hn, is defined
as following

(H1 × H2 × . . . × Hn)(X) =
n⋃

i=1

Hi(X ∩ Ui)

with X ⊆ U1 ∪ U2 ∪ ... ∪ Un.
Then (H1 × H2 × . . . × Hn)(X) is a CF - II on U1 ∪ U2 ∪ ... ∪ Un.

3.3 Properties of CFs - I and - II and Closure Operations

Proposition 3.2. Let C1 and C2 be CFs-I on U , then for all X ⊆ U,

C1(X) ∪ C2(X) is a CF-I on U.

Proof. Assume C1 and C2 be CFs-I on U , then for all X ⊆ U , it is easy to obtain
that C1(X) ∪ C2(X) ⊆ X since C1(X) ⊆ X and C2(X) ⊆ X. Now, to prove the
Monotonicity Property of C1 ∪C2, for every X ⊆ Y , we have C1(X) ⊆ C1(Y ) and
C2(X) ⊆ C2(Y ). Therefore, C1(X) ∪C2(X) ⊆ C1(Y )∪C2(Y ), so C1 ∪C2 satisfies
Monotonicity Property. Then, we have to prove Out Casting Property of C1 ∪ C2.
We always have C1(X) ⊆ C1(X) ∪ C2(X) ⊆ Y ⊆ X . Using Out Casting Property
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of C1, we attain C1(X) = C1(Y ). Similarly, we attain that C2(X) = C2(Y ) from
C2(X) ⊆ C1(X) ∪ C2(X) ⊆ Y ⊆ X . Therefore, C1 ∪ C2(X) = C1 ∪ C2(Y ) . That
is, C1 ∪C2 satisfies Out Casting Property, so C1 ∪C2 is a CF-I on U . The proof is
completed.

Proposition 3.3. Let H1 and H2 be CFs-II on U , then for all X ⊆ U,

H1(X) ∪ H2(X) is a CF-II on U.

Proof. Assume H1 and H2 be CFs-II on U . Similarly to above proof, for all X ⊆ U
it is clear to obtain that H1(X) ∪ H2(X) ⊆ X since H1(X) ⊆ X and H2(X) ⊆ X .
Now, to prove the Heredity Property of H1 ∪ H2, for every X ⊆ Y , we have
H1(Y )∩X ⊆ H1(X) and H2(Y )∩X ⊆ H2(X). Therefore, X ∩ (H1(Y )∪H2(Y )) ⊆
H1(X)∪H2(X), so H1∪H2 satisfies Heredity Property. For Out Casting Property
of H1 ∪ H2 , we prove the same as the proof of Proposition 3.2. The proof is
completed.

From Proposition 3.3, we lead to the following Lemmas.

Lemma 3.6. Let L1 and L2 be closure operations on U , then for all X ⊆ U,

L1(X) ∪ L2(X) is a closure operation on U.

Proof. Assume L1 and L2 be closure operations on U , then for all X ⊆ U , we
have L1(X) = X ∪ H1(U − X), L2(X) = X ∪ H2(U − X), with H1 and H2 two
choice function-IIs corresponding to L1 and L2 respectively. Thus L1(X)∪L2(X) =
X∪H1(U−X)∪H2(U−X). However, due to Proposition 3.3, H1(U−X)∪H2(U−X)
is a CF - II, that is, there exists a choice function H3 such that H3(U − X) =
H1(U −X)∪H2(U −X). Thus, L1(X)∪L2(X) = X ∪H3(U −X) = L3(X), with
L3 a closure operation corresponding to H3. The proof is completed.

Using similar method of above proof, we can achieve two following.

Lemma 3.7. Let C1 and C2 be CFs - I on U , then for all X ⊆ U,

C1(X) ∩ C2(X) is a CF - I on U.

Proof. Assume C1 and C2 be CFs - I on U , then for all X ⊆ U , we have C1(X) =
U−L1(U−X), and C2(X) = U−L2(U−X), with L1 and L2 two closure operations
corresponding to C1 and C2 respectively. Thus C1(X) ∩ C2(X) = (U − L1(U −
X))∩(U−L2(U −X)) = U−L1(U−X)∪L2(U −X) . However, due to Lemma 3.6,
L1(U−X)∪L2(U−X) is a closure operation, that is, there exists a closure operation
L3 such that L3(U − X) = L1(U − X) ∪ L2(U − X) . Thus, C1(X) ∪ C2(X) =
U − L3(U − X) = C3(X) , with C3 a CF - I corresponding to L3. The proof is
completed.

Proposition 3.4. Let H be a CF-II on U . Then for all X ⊆ U , we have

H(X) ∩ H(Y ) ⊆ H(X ∩ Y ).
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Proof. For all X and Y ⊆ U , due to Monotonicity Property of closure operations,
we easily obtain L(X) ∩ L(Y ) ⊆ L(X ∪ Y ). Therefore, L(U − X) ∩ L(U − Y ) ⊆
L((U − X) ∪ (U − Y )). Using L((U − X) ∪ (U − Y )) = L(U − X ∩ Y ), we have
L(U −X)∩L(U − Y ) ⊆ L(U −X ∩ Y ). Hence, (X ∩ Y )∩L(U −X)∩L(U −Y ) ⊆
(X∩Y )∩L((U −X∩Y ) or H(X)∩H(Y ) ⊆ H(X∩Y ). The proof is completed.

Similarly, we obtain the follow

Proposition 3.5. Let H be a CF-II on U . Then for all X ⊆ U , we have H(X ∪
Y ) ⊆ H(X) ∪ H(Y ).

Proof. For all X and Y ⊆ U , due to Monotonicity Property of closure operations,
we easily obtain L(X ∩ Y ) ⊆ L(X) ∩ L(Y ). Therefore, L((U − X) ∩ (U − Y )) ⊆
L(U − X) ∩ L(U − Y ). Using L((U − X) ∩ (U − Y )) = L(U − X ∪ Y ), we have
L(U − X ∪ Y ) ⊆ L(U − X) ∩ L(U − Y ). Hence, (X ∪ Y ) ∩ L((U − X ∪ Y ) ⊆
(X ∪ Y ) ∩ L(U − X) ∩ L(U − Y ) or H(X ∩ Y ) ⊆ (X ∩ L(U − X) ∩ L(U − Y )) ∪
(Y ∩L(U −X)∩L(U − Y )) ⊆ (X ∩L(U −X))∪ (Y ∩L(U −Y )) = H(X)∪H(Y ).
The proof is completed.

Lemma 3.8. Let H1 and H2 be CFs-II on U . Then
1) H1H2 ⊆ H2

2) H2H1 ⊆ H1

Since H1 and H2 are a CFs-II , it is obvious to have above Lemma.

Lemma 3.9. Let H1 and H2 be CFs - II on U , then
1) H1 ∩ H2 ⊆ H1H2

2) H1 ∩ H2 ⊆ H2H1

Proof. Assume H1 and H2 be CFs - II on U . Then for all X ⊆ U, H2(X) ⊆ X .
Due to Heredity Property of CFs-II, we obtain H1(X)∩H2(X) ⊆ H1(H2(X)), that
is, H1 ∩ H2 ⊆ H1H2. Similarly, we achieve H1 ∩ H2 ⊆ H2H1.

Proposition 3.6. Let H1 and H2 be CFs - II on U , then H1∩H2 = H1∩H1H2 =
H2 ∩ H2H1.

In order to prove this Proposition, we need to have the following Lemma.

Lemma 3.10. Let H1 and H2 be CFs - II on U , then H1 ∩ H2 = H1(H1 ∩ H2) =
H2(H1 ∩ H2).

Proof. Assume H1 and H2 be CFs - II on U . Then for all X ⊆ U , we always
have H1(X) ∩ H2(X) ⊆ H2(X). Due to Heredity Property of CF-IIs, we obtain
H1(H2(X))∩H1(X)∩H2(X) ⊆ H1(H1(X)∩H2(X)). According to Lemma 3.9, we
obtain H1(X) ∩ H2(X) ⊆ H1(H1(X) ∩ H2(X)). However, H1(H1(X) ∩ H2(X)) ⊆
H1(X) ∩ H2(X). Hence, H1(H1(X) ∩ H2(X)) = H1(X) ∩ H2(X), that is, H1 ∩
H2 = H1(H1 ∩ H2). Similarly, we achieve H1 ∩ H2 = H2(H1 ∩ H2). The proof is
completed.
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Proof of Proposition 3.6. Assume H1 and H2 be CFs - II on U . For all X ⊆
U due to Proposition 3.4 and Corollary 3.1, we obtain H1(X) ∩ H1(H2(X)) ⊆
H1(H1(X)∩H2(X)). However, H1 ∩H2 = H1(H1 ∩H2) according to Lemma 3.10,
and H1 ∩ H2 ⊆ H1H2 due to Lemma 3.9. Therefore, H1(X) ∩ H1(X) ∩ H2(X) ⊆
H1(X) ∩ H1(H2(X)) ⊆ H1(X) ∩ H2(X). Then, H1(X) ∩ H1(H2(X)) = H1(X) ∩
H2(X), that is, H1∩H2 = H1∩H1H2. Similarly, we obtain H1∩H2 = H2∩H2H1.
The proof is completed.

From Proposition 3.6, it is clear to obtain the follow.

Corollary 3.3. Let H1 and H2 be CFs - II on U , then H1∩H2 = H1∩H2(H1∩H2).

3.4 Interaction between Closure Operations and CFs - I

Let L be a closure and Σ a corresponding full family of FDs. We recall that an FD
X → Z ∈ Σ iff Z ⊆ L(X). In this section, we consider the closures for which CF -
I and -II defined in section 0 satisfy some additional properties. We are now going
to give some properties.

Proposition 3.7. Let L and C be a closure operation and a CF-I corresponding
to Lrespectively on U . The following are equivalent:

1) C(X ∪ Y ) = C(X) ∪ C(Y ),
2) L(X ∩ Y ) = L(X) ∩ L(Y ),
3) X → Z and Y → Z are FDs from Σ iff X ∩ Y → Z.

Proof. (1 → 2). Let C satisfies 1). Then for all X, Y ⊆ U : L(X ∩ Y ) = U −
C(U − X ∩ Y ) = U − C((U − X) ∪ (U − Y )) = U − C(U − X) ∪ C(U − Y ) =
(U − C(U − X)) ∩ (U − C(U − Y )) = L(X) ∩ L(Y ). That is, L satisfies 2).

(2 → 1) Let L satisfies 2). Then for all X, Y ⊆ U : C(X∪Y ) = U −L(U−X∪Y ) =
U −L((U −X)∩ (U − Y )) = U −L(U −X)∩L(U − Y ) = (U −L(U −X))∪ (U −
L(U − Y )) = C(X) ∪ C(Y ). That is, C satisfies 1).

(2 ↔ 3) Let L satisfies 2). Then for all X, Y ⊆ U : L(X ∩ Y ) = L(X) ∩ L(Y ). For
Z ∈ L(X ∩ Y ) iff X ∩ Y → Z. And Z ∈ L(X) ∩ L(Y ), that means Z ∈ L(X) and
Z ∈ L(Y ) iff X → Z and Y → Z.

Proposition 3.8. Let L and C be a closure operation and a CF-I corresponding
to L respectively on U . The following are equivalent:

1) C(X ∩ Y ) = C(X) ∩ C(Y ),
2) L(X ∪ Y ) = L(X) ∪ L(Y ).

Proof. (1 → 2). Let C satisfies 1). Then for all X, Y ⊆ U : L(X ∪ Y ) = U −
C(U − X ∪ Y ) = U − C((U − X) ∩ (U − Y )) = U − C(U − X) ∩ C(U − Y ) =
(U − C(U − X)) ∪ (U − C(U − Y )) = L(X) ∪ L(Y ). That is, L satisfies 2).

(2 → 1) Let L satisfies 2). Then for all X, Y ⊆ U : C(X∩Y ) = U −L(U−X∩Y ) =
U −L((U −X)∪ (U − Y )) = U −L(U −X)∪L(U − Y ) = (U −L(U −X))∩ (U −
L(U − Y )) = C(X) ∩ C(Y ). That is, C satisfies 1).
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Proposition 3.9. Let L1 and L2 be closure operations and C1 and C2 be CF-Is
corresponding to L1 and L2 respectively on U . The following are equivalent:

1) C1(X) ∩ C2(X) ⊆ C1C2(X)
2) L1L2(X) ⊆ L1(X) ∪ L2(X)

Proof. (1 → 2). Let C1 and C2 satisfy 1). Then for all X ⊆ U : L1L2(X) = U −
C1C2(U−X) ⊆ U−C1(U−X)∩C2(U−X) = (U−C1(U−X))∪(U−C2(U−X)) =
L1(X) ∪ L2(X). That is, L1 and L2 satisfy 2).

(2 → 1). Let L1 and L2 satisfy 2). Then for all X ⊆ U : C1(X) ∩ C2(X) =
(U−L1(U−X))∩(U−L2(U−X)) = U−L1(U−X)∪L2(U−X) ⊆ U−L1L2(U−X) =
C1C2(X). That is, C1 and C2 satisfy 1).

3.5 Special cases of Choice Function-Is and -IIs

Theorem 3.8. Let consider a partition V : {V1, V2, V3, ..., Vn}, that is, Vi ∩Vj = ∅,
with i 	= j. Let construct a set

W (A) = A ∩
n⋃

i=1

Vi

for all A ⊆ U . Then, W (A) is a CF-I on U.

Proof. For all A ⊆ U , it is clear that W (A) ⊆ A. Now we need to prove that W
satisfies Monotonicity and Out Casting Property. We have

W (A) = A ∩
n⋃

i=1

Vi =
n⋃

i=1

(A ∩ Vi)

⇒ W (W (A)) =
n⋃

j=1

(A ∩
n⋃

i=1

Vi)∩Vj =
n⋃

j=1

(
n⋃

i=1

(A ∩ Vi∩Vj))

=
n⋃

i=1

(A ∩ Vi) = W (A),

since Vi ∩ Vj = ∅, for i 	= j. For A ⊆ B, it is obvious that A ∩ Vi ⊆ B ∩ Vi, then

n⋃
i=1

(A ∩ Vi) ⊆
n⋃

i=1

(B ∩ Vi).

Thus, W (A) ⊆ W (B), so W satisfies Monotonicity Property.
To prove Out Casting Property of W , let assume W (A) ⊆ B ⊆ A, we have show

that W (A) = W (B). Using Monotonicity Property of W , we attain W (W (A)) ⊆
W (B) ⊆ W (A). However, W (W (A)) = W (A), we lead to that W (A) = W (B).
The proof is completed.
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We can illustrate W (A) as the sum of all intersections of A and Vi , for i = 1 →
n. Here is a property of W.

Proposition 3.10. Let consider partition of V : {V1, V2, V3..., Vn}, that is, Vi∩Vj =
∅, with i 	= j, and partition of T : {T1, T2, T3..., Tm}, that is, Ti∩Tj = ∅, with i 	= j.
For all A ⊆ U , let construct two CF-I as the following:

C1(A) = A ∩
n⋃

i=1

Vi,

C2(A) = A ∩
m⋃

j=1

Tj .

Then, C1(A) ∩ C2(A) = C1C2(A), and both also are CF-Is.

Proof. For all A ⊆ U , we have

C1(A) ∩ C2(A) = (A ∩
n⋃

i=1

Vi) ∩ (A ∩
m⋃

j=1

Tj) = A ∩ (
n⋃

i=1

Vi ∩
m⋃

j=1

Tj)

= (A ∩
m⋃

j=1

Tj) ∩
n⋃

i=1

Vj = C1C2(A).

However,

C1(A) ∩ C2(A) = A ∩ (
n⋃

i=1

Vi ∩
m⋃

j=1

Tj) = A ∩
n⋃

i=1

(
m⋃

j=1

Tj ∩ Vi).

It is easy to see that, for every x 	= y,

(
m⋃

j=1

Tj ∩ Vx) ∩ (
m⋃

j=1

Tj ∩ Vy) = ∅.

That is, {(⋃ Tj ∩ Vi)|i = 1 → n, j = 1 → m} is a partition. Due to Theorem
3.10, we conclude that C1(A) ∩ C2(A) as well as C1C2(A) is a CF-I. The proof is
completed.

Let us define Wc(A), the complementary set of W (A), as Wc(A) = A − W (A),
that is

Wc(A) = A − A ∩
n⋃

i=1

Vi = (A − A) ∪ (A −
n⋃

i=1

Vi) = A −
n⋃

i=1

Vi =
n⋂

i=1

(A − Vi).

Since W (A) is a CF-I, and CF-I and CF-II of A form a partition of A, for every
A ⊆ U , we lead to the following Theorem.
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Theorem 3.9. Let consider partition of V : {V1, V2, V3..., Vn}, that is, Vi ∩Vj = ∅,
with i 	= j. Let construct a set

Wc(A) =
n⋂

i=1

(A − Vi)

for all A ⊆ U . Then, Wc(A) is a CF-II on U .

3.6 Discussion and Open Problems

Given a set of F of functional dependencies over U and the attribute set X ⊆ U , so
the functional dependencies closure of X, L(X), is the set {A ⊆ U |X → A ∈ F}. It
turns out that this set is independent of the underlying attribute set U . We have
known that two types of choice function -I and -II associated with L as follows:

C(A) = U − L(U − A), andH(A) = A ∩ L(U − A).

Thus, given a set of F of functional dependencies, we define, X ⊆ U , choice-I and
-II of X as follows:

HF (X) = X ∩ {A ⊆ U |(U − X) → A ∈ F} (1)

CF (X) = U − {A ⊆ U |(U − X) → A ∈ F} (2)

It can be seen the following Propositions.

Proposition 3.11. Let F be a set of functional dependencies and X → Y an
functional dependency. Then X → Y ∈ F iff Y 	⊂ CF (U − X).

Proposition 3.12. Let F be a set of functional dependencies and X → Y an
functional dependency. Then X → Y ∈ F and Y /∈ X iff Y ⊆ HF (U − X).

Now we move to compute CF (X) and HF (X). First of all, we now mention
about the Algorithm of computing a closure from a set of functional dependencies
and X a set of attributes.

In [BB], we were known the Algorithm to computing closure operation, by
using relation between choice functions and closure operation, we can easily build
Algorithm to compute choice functions.

Even though we already have an algorithm to compute closure of X , from the
Theorem 3.4 above as follows: Let L1 and L2 be closure operations on U . A
composite function of L1 and L2, denoted as L1L2, is a closure operation if and
only if

L1L2L1 = L1L2.

Open problems are set up as following:
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Open Problem 1. Let s =< U, F > and t =< U, V > two relation schemes, where
U is a set of attributes and F and V are two different sets of FDs over U . We define
F+ and V + be a set of all FDs that can be derived from F and V respectively.

1) Is it possible build a closure L1 and a closure L2 from F+ and V + respectively
such that L1L2 = L1L2L1?

2) If so, how can we design L1L2 ? In other word, how can we design a relation
scheme w =< U, H > from which we can build H+ , from which we can
design the closure L1L2 = L1L2L1?

3) If so, is it possible to generalize this design for more than two closure opera-
tions?

Open Problem 2. A similar problem as above, but for choice -I and -II of X.

Open Problem 3. Algorithm problems related to union and intersection for choice
-I and -II and closures.

Open Problem 4. Generalize those theories presented in this paper to mutilvalued
dependencies.
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