
An addition to the methods of test determination

for fault detection in combinational circuits

Ljubomir Cvetković∗

Acta Cybernetica 16 (2004) 545–566.

Abstract

We propose a procedure for determining fault detection tests for single and
multiple fault in combinational circuits. The stuck-at-fault model is used. By
the proposed procedure all test vectors for single and multiple stuck-at-fault in
combinational circuit are determined. The path sensitization method is used
in the test signal propagation while test signals are defined on a four element
set. The procedure can also be applied to the fault detection in programmable
logic devices. We consider two-level combinational circuits which are realized
by the PAL architecture and we propose a procedure for determining a test
set which detects all single stuck-at-faults. As a mathematical tool, the cube
theory is used.

Keywords: combinational circuit, programmable logic devices, single fault, multiple
fault, fault detection, test cube

1 Introduction

In literature many approaches for fault detection in combinational circuits can be
found (see, for example, [1, 13, 14]).

Test generation problem can be considered viewed as a finite space search prob-
lem of finding appropriate logic value assignments to the primary inputs such that
the given fault is detected. Since the size of the search space is exponential in the
number of inputs, the test generation problem is proven to be NP-complete [9].

In the stuck-at-fault model it is assumed, that a faulty line of the combinational
circuit is permanently set to either the value of 0 or 1. The corresponding faults
are called stuck-at-0 and stuck-at-1 respectively. Combinational circuit lines are
understood to be all connections along which logic signals move. The fault 0 (or 1)
at the line a is denoted by a/0 (or a/1).

The procedure for the single stuck-at-fault detection in a combinational circuit
is based on the following two conditions. First, one should generate on the faulty
line a test signal whose value is opposite to the fault signal. Secondly, one should
enable the test signal propagation to the output line of the combinational circuit,

∗Ljubomir Cvetković, Trg Žitna Pijaca 3, 22000 Sremska Mitrovica, Serbia and Montenegro,
JP PTT “SERBIA”-HOLDING, Belgrade, Serbia and Montenegro. E-mail: ljubomir@ptt.yu

545

546 Ljubomir Cvetković

which means that the path from the faulty line to the output line must be active.
Such an approach to fault detection is known as the path sensitization method.
The path sensitization method is presented for the first time by Armstrong [5],
where it is applied to the single fault detection. Afterwards some new procedures
for the multiple fault detection are developed.

The D-algorithm is one of the first algorithms for automatic generation of test
vectors for single stuck-at-faults in combinational circuits. This algorithm has been
developed by Roth [17]. Test signals take five algebraic values: 0, 1, X, D̄ and D.
Logical zero and one are denoted by 0 and 1, respectively, while X belongs to
the set {0, 1, D̄, D}, where D is equal to 1 and 0 in fault free and faulty circuit,
respectively.

One has quickly realized that the D-algorithm should be improved. The reduc-
tion of the number of paths is achieved by means of the so called 9-V algorithm,
whose structure is closest to the D-algorithm [8].

In construction of the algorithms for automatic test generation for combina-
tional circuits the notions of D-boundary and P -boundary are defined [1]. The
D-boundary is the set of logic gates whose output lines are in state X , while at
least one test signal with values D and D̄ appears on the input lines of these gates.
It is necessary to choose one of the logic gates from the D-boundary, together with
determination of the signals on its input lines, in such a way that output line gets
the value D or D̄, in order to direct the test signal propagation towards the primary
output. The P -boundary is the set of logic gates, in which the state of the output
line is fully determined, while the state of values on the input lines is undetermined.

A more efficient decision making process was proposed almost 20 years ago in
the PODEM algorithm [10]. PODEM only allows assignment of values at primary
inputs (PIs) and these values are then propagated towards internal lines using
implications. After the initial assignment of values on some primary inputs, and
implication of these values, the process continues by assigning additional PI values
and checking if the fault effect has been propagated to the primary outputs. For the
combinational circuits, in which the number of paths is large, we have to enumerate
and label all the paths. The algorithms are based on the search on graphs and are
the subject of research [16].

Generally speaking, a lot of procedures for testing combinational circuits have
been developed. Most of them are designed for restricted type circuits. For fan-out
free combinational circuits the test set which detects all single stuck-at-faults, also
detects all multiple stuck-at-faults [12].

It is well known that in a two-level irredundant combinational circuit every set
of test vectors which detects all single stuck-faults detects at the same time all
multiple stuck-at-faults [7], p. 65.

The AND/OR structure of a two-level circuit corresponds naturally to sum of
products structure of disjunctive-normal-form. All single and multiple stuck-at-
faults are detectable in such circuits if all single faults at input and output lines of
the AND gates are detectable [11].

In the literature more subtle and specific types of faults have been derived for
PLAs.

An addition to the methods of test determination for fault detection . . . 547

Since PLAs can be used to implement any two-level logic expressions, we can
treat the PLA as a two-level logic gate implementation and model the typical stuck-
at-faults at input, input inverters, product lines and output lines.

A fault model, according to which incorrect logical connections in AND and
OR arrays are tested, is proposed in [18]. Since AND gate inputs and OR gate
inputs can be either improperly connected or disconnected, modeled faults can be
conveniently divided into four classes. First, if an input literal is disconnected
from AND gate, this causes the implicant to “grow” since the implicant becomes
independent of some input variable. This growth of an implicant can be seen quite
easily on a Karnaugh map. These faults are called growth faults. The set of all
single growth faults are denoted as G. If an AND gate becomes disconnected from
an OR gate, this causes an implicant to disappear from the map of the function.
Hence, this set of single faults is the set of disappearance faults D. If an input
literal becomes incorrectly connected to an AND gate, then the implicant “shrinks”.
These faults form the set of shrinkage faults S. Finally, if an AND gate becomes
incorrectly connected to an OR gate, than an implicant appears in the map of the
affected functions. Hence, these are called appearance faults A.

There could be also bridging faults in the PLAs. Especially the bridging faults
could easily happen between the adjacent lines due to the regular layout style of
PLAs. The effects of the bridging could be AND or OR depend on the technology
on which PLA realizes.

In PLA and PAL, the test sets, which detects cross points faults, detect at the
same time a great number of stuck-at-faults and short faults. Cross point faults
are important in this devices and therefore several procedures for detecting these
faults have been developed (see, for example [3, 4]).

The paper [19] presents a method for obtaining a minimal set of test configura-
tions and their associated set of test patterns that completely tests re-programmable
Programmable Logic Arrays (PLAs) including EEPROM, UV-EPROM, and SRAM
based re-programmable PLAs typically found in Complex Programmable Logic De-
vices (CPLDs). The resultant set of test configurations and vectors detect all sin-
gle and multiple stuck-at-faults (including line and transistor faults) as well as all
bridging faults in the PLA.

Bridge defects also cause less obvious effects that can introduce further mod-
elling complications. If a bridge defect creates a feedback loop, a formerly stable
combinational circuit may take on oscillatory or sequential properties. Also, when
intermediate voltage levels occur, downstream logic gates with varying input volt-
age thresholds can interpret the same voltage level differently. This is known as
the Byzantine General’s Problem and can significantly complicate bridge defect
modelling issues [2].

The problem of determining a minimal number of control inputs for converting a
programmable logic array (PLA) with undetectable faults to crosspoint-irredundant
PLA for testing has been formulated as a nonstandard set covering problem. By
representing subsets of sets as cubes, this problem has been reformulated as fa-
miliar problems. It is noted that this result has significance because a crosspoint-
irredundant PLA can be converted to a completely testable PLA in a straightfor-

548 Ljubomir Cvetković

ward fashion, thus achieving very good fault coverage and easy testability [15].
A system of Boolean functions can be realized by blocks arranged in several

levels, where each block represents a PAL with a small number of inputs and
outputs. Moreover, multi-level circuits are harder tested than two-level circuits [6].

In this paper we propose the stuck-at-fault model for PLA and assume that
the programmable elements, where the faults appear, get the signal values stuck-
at-0 or stuck-at-1. The acceptance of the proposed model is motivated by the
fact that the faults in real PLA appear in programmable elements. Therefore, we
accept the following approximation of defects: PLA programmable points, where
faults appear, get the signal values permanent logic 1 or permanent logic 0. This
approximation is the main strength of the proposed model. It is well known that the
quality of defect abstraction has an influence on the relevance of the fault model.
On the other hand, the defect abstraction by faults has an influence on the testing
methodology. In our case it is appropriate to use the path sensitization method as
a testing method and to introduce a four element signal value set. We shall show
in the sequel that the fault types, appearing in the above mentioned standard fault
models for PLA, can be detected by the proposed procedure as well, thus proving
the relevance and sufficiency of our model. Details on the fault models comparison
are given in section 5.

2 Test signal propagation

The values of test signals are denoted by D and C. Test signal D has value 1 in a
fault-free combinational circuit, and it has value 0 in a faulty combinational circuit.
Test signal C has value 0 in a fault-free combinational circuit, and it has value 1
in a faulty combinational circuit. Test signals have values from the set {0, 1, C, D}
where C, D ∈ {0, 1}. It should be noted that values of C and D are not determined
at the beginning of the fault detection procedure; they are concretized during the
execution of the procedure. The set {0, 1, C, D} and operations +, • and ¯ represent
a Boolean algebra, if the operations are defined by the following tables

Table 1: Operation +

+ 0 1 C D
0 0 1 C D
1 1 1 1 1
C C 1 C 1
D D 1 1 D

Table 2: Operation •

• 0 1 C D
0 0 0 0 0
1 0 1 C D
C 0 C C 0
D 0 D 0 D

The intersection operation φ of the set {0, 1, X} is defined by Table 4. Symbol
∅ in Table 4 means that operation φ is not defined.

Of course, using a four element set in constructing test vectors is well- known
[7], p.44. The inputs can take the four values {0, 1, D̄, D} where the symbols D

An addition to the methods of test determination for fault detection . . . 549

Table 3: Operation ¯

¯ 0 1 C D
1 0 D C

Table 4: Operation φ

φ 0 1 X

0 0 ∅ 0
1 ∅ 1 1
X 0 1 X

and D̄ are used to represent respectively a signal which has the value 1 and 0 in a
well functioning circuit and 0 and 1 in a faulty circuit.

Consider now a logic gate G with n input lines and output line v (Fig.1). Gate
G can be OR, NOR, AND or NAND. Suppose that test signals of value D or C
appear on input lines u1, u2, . . . , up of gate G while propagation signal values 0 or
1 appear on the remaining lines z1, z2, . . . , zq (p + q = n).

G

.

.

.

.

.

.

propaga t ion
va lues

D(C)
D(C)

v
u p

z

z

D(C)

u
2

1

q

u1

Figure 1: Test signals have the same value

The test signal propagation to the output line v can occur in the case when
test signals of the same value (D or C) appear on input lines u1, u2, . . . , up while
signal values on the remaining lines z1, z2, . . . , zq must have value 0 for gates OR
and NOR, and value 1 for gates AND and NAND.

Let us analyze conditions under which test signals are propagated from input
lines to the output line of gates OR, NOR, AND and NAND. Logical operation
“∧“ is used in logical relations which describe the test signal propagation.

The following logical relations hold:
for OR gate

(u1 = D) ∧ · · · ∧ (up = D) ∧ (z1 = 0) ∧ · · · ∧ (zq = 0) → (v = D), (1)

(u1 = C) ∧ · · · ∧ (up = C) ∧ (z1 = 0) ∧ · · · ∧ (zq = 0) → (v = C), (2)

550 Ljubomir Cvetković

for NOR gate

(u1 = D) ∧ · · · ∧ (up = D) ∧ (z1 = 0) ∧ · · · ∧ (zq = 0) → (v = C), (3)

(u1 = C) ∧ · · · ∧ (up = C) ∧ (z1 = 0) ∧ · · · ∧ (zq = 0) → (v = D), (4)

for AND gate

(u1 = D) ∧ · · · ∧ (up = D) ∧ (z1 = 1) ∧ · · · ∧ (zq = 1) → (v = D), (5)

(u1 = C) ∧ · · · ∧ (up = C) ∧ (z1 = 1) ∧ · · · ∧ (zq = 1) → (v = C), (6)

for NAND gate

(u1 = D) ∧ · · · ∧ (up = D) ∧ (z1 = 1) ∧ · · · ∧ (zq = 1) → (v = C), (7)

(u1 = C) ∧ · · · ∧ (up = C) ∧ (z1 = 1) ∧ · · · ∧ (zq = 1) → (v = D). (8)

In relations (1)-(8) test signal values D and C appear p times each. Test signal
on the output line v can be obtained also by setting some test signals on input
lines u1, u2, . . . , up to propagation signal values. This can be done with each k
(1 ≤ k ≤ p− 1) element subset of the set of input lines {u1, u2, . . . , up}. Hence the
total number of logical relations is

(
p
1

)
+

(
p
2

)
+ · · · +

(
p

p − 1

)
= 2p − 2 (9)

Consider the situation presented in Fig. 2. Test signal value D appears on r
input lines of the gate G while value C appears on s input lines. Lines z1, z2, . . . , zq

have propagation signal values for gate G. In this case no one of the relations
(1)-(8) can be applied since D · C = 0.

Suppose that gate G on Fig.2 is an OR gate.
Test signal of value D is propagated to the output line v according to the relation

(u1 = D) ∧ · · · ∧ (ur = D) ∧ (ur+1 = 0) ∧ · · · ∧ (ur+s = 0)
∧ (z1 = 0) ∧ · · · ∧ (zq = 0) → (v = D). (10)

Test signal value C appearing s times in relation (10) is replaced by 0. Hence,
test signal values D appear r times in relation (10), while the remaining s + q (r +
s + q = n) input lines of the gate OR must have values of propagation signals. For
the propagation of the test signal of value D to the output line one can write 2r −2
relations.

Test signal of value C is propagated to the output line v according to the relation

(u1 = 0) ∧ · · · ∧ (ur = 0) ∧ (ur+1 = C) ∧ · · · ∧ (ur+s = C)
∧ (z1 = 0) ∧ · · · ∧ (zq = 0) → (v = C). (11)

Analogously to the above analysis, for the propagation of the test signal of value
C to the output line v one can write 2s − 2 relations.

An addition to the methods of test determination for fault detection . . . 551

G

D

D

D

C

u1

u2

u
r

C

.

.

.

.

.

.

v
u

r+ 1

ur+ s

z1

zq

.

.

.

p ropaga t ion
va lues

Figure 2: Test signals with distinct values

The following logical relations hold:
for NOR gate

(u1 = D) ∧ · · · ∧ (ur = D) ∧ (ur+1 = 0) ∧ · · · ∧ (ur+s = 0)
∧ (z1 = 0) ∧ · · · ∧ (zq = 0) → (v = C), (12)

(u1 = 0) ∧ · · · ∧ (ur = 0) ∧ (ur+1 = C) ∧ · · · ∧ (ur+s = C)
∧ (z1 = 0) ∧ · · · ∧ (zq = 0) → (v = D), (13)

for AND gate

(u1 = D) ∧ · · · ∧ (ur = D) ∧ (ur+1 = 1) ∧ · · · ∧ (ur+s = 1)
∧ (z1 = 1) ∧ · · · ∧ (zq = 1) → (v = D), (14)

(u1 = 1) ∧ · · · ∧ (ur = 1) ∧ (ur+1 = C) ∧ · · · ∧ (ur+s = C)
∧ (z1 = 1) ∧ · · · ∧ (zq = 1) → (v = C), (15)

for NAND gate

(u1 = D) ∧ · · · ∧ (ur = D) ∧ (ur+1 = 1) ∧ · · · ∧ (ur+s = 1)
∧ (z1 = 1) ∧ · · · ∧ (zq = 1) → (v = C), (16)

(u1 = 1) ∧ · · · ∧ (ur = 1) ∧ (ur+1 = C) ∧ · · · ∧ (ur+s = C)
∧ (z1 = 1) ∧ · · · ∧ (zq = 1) → (v = D). (17)

552 Ljubomir Cvetković

3 Fault detection

In the sequel we propose a procedure for the single fault detection for fan-out free
combinational circuits.

Let a unique path (h, e1, e2, . . . , en, y) in combinational circuit go from the faulty
line h to the output line y. The first logical relation defines the conditions of the
test signal propagation from the line h of the distance d (from the output line) to
the line e1 that has a distance d − 1. Line e1 is the logic gate output line whose
input line is h. The second logical relation defines the conditions for test signal
propagation from the line e1 of the distance d−1, to the line e2 that has a distance
d − 2. The process of logical relations writing continues as far as the last logical
relation is found. It defines conditions for the test signal propagation from the line
en of the distance 1, to the output line y in combinational circuit. Uniting the d
logical relations into a single logical relation is obvious. The test signal value from
the right hand side of the first logical relation is replaced into the second relation.
Then the test signal value from the right hand side of the second logical relation is
replaced into the third relation and the process continues.

Obviously, when writing logical relations we go only forward, unsuccessful steps
being excluded in this case. For a single stuck-at-fault, we surely determine all test
vectors. At the and of the procedure one obtains a logical relation in which signals
on input lines appear. Based on the test signal values on the input lines one can
determine sets of test cubes and on the basis of them we determines the detecting
test set.

Example 1. Determine all test vectors detecting a single fault h/1 in the combi-
national circuit in Fig. 3.

x1

x2

x1

x3

x
4

1

2

3

4

5

h

e

f

y

Figure 3: A single fault in a combinational circuit

An addition to the methods of test determination for fault detection . . . 553

Table 5: Auxiliary data

h = 0 XX00
5=1 0XXX
e = 0 0XXX

X0XX

The unique path from the faulty line h to the output of the circuit is (h, f, y).
The signal having the value C should be generated on the faulty line h. Logical
relations defining conditions for test signal propagation from faulty line to the
output of the combinational circuit are

(h = C) ∧ (5 = 1) → (f = C), (18)

(f = C) ∧ (e = 0) → (y = C). (19)

On the basis of relations (18) and (19) the next relation is derived

(h = C) ∧ (5 = 1) ∧ (e = 0) → (y = C). (20)

Line covers for h, 5 and e are shown in Table 5.
Test cubes detecting the fault h/1 are obtained on the basis of Table 5

{XX00}φ{0XXX}φ{0XXX, X0XX} = {0X00, 0000}.

Finally, we get the set of all test vectors for the given single fault: {0000, 0100}.
The described procedure for detecting single stuck-at-faults can be applied also

for detection of multiple stuck-at-fault. Under a multiple fault we understand a
fault consisting of single faults. In order to detect a multiple fault, one should
generate test signals with values complementary to the fault signals at the faulty
lines of the combinational circuit. To describe the test signal propagation we use
logical relations described in Section 2.

In the next example a double fault is located on two paths in the combinational
circuit, the two paths having some lines in common.

Example 2. Let us detect the double fault {1/0, 3/0} in combinational circuit on
Fig. 4.

To lines 1 and 3 we associate the test signals, having values opposite to the fault
signals. We have relations

(1 = D) ∧ (2 = 1) → (e = D), (21)

(3 = D) ∧ (4 = 0) → (f = D). (22)

554 Ljubomir Cvetković

1

2

3

4

e

f

g

6

G

x1

x2

x3

x4

x5

x6

y5

Figure 4: A double fault in a combinational circuit

The propagation of the test signal from input lines e and f of gate G to its
output line is described by the relation

(e = D) ∧ (f = D) ∧ (5 = 0) → (g = D). (23)

We write a logical relation which describes the propagation of the test signal
from line g to the output line y of the combinational circuit

(g = D) ∧ (6 = 1) → (y = D). (24)

On the basis of relations (23) and (24) we have

(e = D) ∧ (f = D) ∧ (5 = 0) ∧ (6 = 1) → (y = D). (25)

Putting relations (21) and (22) into relation (25) we get

(1 = D) ∧ (2 = 1) ∧ (3 = D) ∧ (4 = 0) ∧ (5 = 0) ∧ (6 = 1) → (y = D). (26)

According to (26) we have

{1XXXXX}φ{X0XXXX} φ {XX1XXX}φ{XXX0XX}φ
φ {XXXX1X}φ{XXXXX1} = {101011}.

Test vector 101011 detects the double fault {1/0, 3/0}.
In redundant combinational circuits we can come across the effect of masking.

Masking is a phenomenon which can appear in detecting a multiple fault. If α and
β are single faults in a combinational circuit of a general structure, the following
situation can occur. The single fault α is detectable (and is detected by a certain
test set). However, the fault cannot be detected in the presence of the fault β , i.e.
in the case of double fault {α, β}. We say that the fault β masks the fault α.

An addition to the methods of test determination for fault detection . . . 555

4 Fault detection in programmable logic devices

The above described procedures for fault detection, where test signals values belong
to the set {0, 1, C, D}, can also be applied to the fault detection in programmable
logic devices.

A PLA with n input lines, m internal lines and p output lines is represented in
Fig. 5.

x1 x2
x

n

y
1

y
2

y
p

1 (1)

2 (1)

m (1)

1 (2)

2 (2)

p (2)

1 1 1 0 2 1 2 0 n 1 n 0

Figure 5: Programmable logic array

Programmable elements are denoted by symbol •. We apply the following way
of marking programmable points of PLA:

(i, j1) - crosspoint of internal line i and a bit line
j1 in AND array (i = 1, 2, . . . , m, j = 1, 2, . . . , n)

(i, j0) - crosspoint of internal line i and a bit line
j0 in AND array (i = 1, 2, . . . , m, j = 1, 2, . . . , n)

(i, j) - crosspoint between the lines i and j in OR
array (i = 1, 2, . . . , p, j = 1, 2, . . . , m)

Within the stuck-at-fault model, PLA programmable points where faults ap-
pear, get the signal values stuck-at-0 or stuck-at-1.

The fault of the type of disconnection of a programmable element at point
(i, j1) is denoted by (i, j1)/1 (stuck-at-1 fault), and the fault of the type of a short
connection at point (i, j1) is denoted by (i, j1)/0 (stuck-at-0 fault). Fault marking
at the point (i, j0) is carried out in a similar way.

The fault in the form of disconnection of the programmable element within OR
array at the point (i, j) is marked by (i, j)/1, and the fault in the form of a short
connection at the point (i, j) is marked by (i, j)/0.

556 Ljubomir Cvetković

Example 3. In the programmable logic array presented in Fig. 6, detect multiple
fault {(1, 1)/0, (1, 2)/0, (1, 3)/0, (1, 4)/0)}.

x2

1(1)

2(1)

3(1)

4(1)

1(2)

2(2)

3(2)

4(2)

x1
x3 x

4
x 5 x

6

y
1

y 2

y 3

y 4

Figure 6: A multiple fault in programmable logic array

It is necessary to generate test signals of value D at points (1,1), (1,2), (1,3) and
(1,4). The following logical relation describes the propagation of the test signals to
the output line 1(2)

(1, 1) = D ∧ (1, 2) = D ∧ (1, 3) = D ∧ (1, 4) = D → 1(2) = D. (27)

Obviously, test signals of value D exist on the input lines of the OR array on the
basis of relation (27). Tracing back, these test signals are attributed to the output
lines of the AND array, i.e. 1(1) = C, 2(1) = C, 3(1) = C and 4(1) = C. Signals of
value C or 1 are attributed to the programmable points of the AND array, where
at no pair of bit lines identical signals appear. Such an arrangement of test signals
is presented in Fig. 7.

On the basis of Fig. 7 we have

Q1 = {1X1X10}, Q2 = {XX11X0}, Q3 = {X01X1X}, Q4 = {10X1X0},

which implies
Q1 φ Q2 φ Q3 φ Q4 = {101110}.

Test vector 101110 detects the given multiple fault.
In order to obtain the remaining test vectors it is necessary to construct other

test signals arrangements in the programmable points of the AND array.
Of course, for a PLA with a great number of input lines it is necessary to

perform a special analysis (using combinatorics) for constructing optimal algorithms
assigning test signals to the programmable points of an AND array. Obviously, one

An addition to the methods of test determination for fault detection . . . 557

C

C

C

1(1)

2 (1)

3 (1)

4 (1)

1 C 1 C

1 1 C

C 1

C 1 C 1

C

x1 x2
x3

x
4 x5 x

6

C

Figure 7: A test signals arrangement in the AND array

or several test vectors correspond to a given test signals arrangement in the AND
array. In any case, the problem described is very complex and requires further
research.

For Boolean function, a primary and irredundant cover is represented by a
two-level combinational circuit for which a test set for all single faults can be
found. Obviously, each minimal disjunctive form is irredundant. It is well-known,
that a test set, which detects all single stuck-at-faults in irredundant two-level
combinational circuits, detects also all multiple stuck-at-faults.

In this paper we assume that the PAL architecture (Fig.8) is used for the re-
alization of two-level irredundant combinational circuits. The output lines of the
decoder, in which the minterms of the function y are realized, are connected to the
input lines of the OR gate.

Function y is irredundant in the sense that no one of its minterms can be deleted
without changing its value. It is well known that irredundant logic can be tested.

In what follows we propose a procedure for constructing a test set which detects
all single stuck-at-faults for the PAL architecture in Fig. 8.

In order to construct a procedure for finding the test set for all single stuck-
at-faults, we represent the PAL architecture of Fig. 8 by the equivalent two-level
combinational circuit with AND/OR gates (Fig. 9).

We apply signals S1={100 . . .0, 010 . . .0, . . . , 000 . . .1} and S0={000 . . .0} to
input lines of the OR gate in the combinational circuit of Fig.9. Test Signals from
S1∪S0 detect 2q+2 single faults of the OR gate if this gate is considered separately.

Definition 4. A fault α dominates a fault β if for the set of tests Tα which detect
α, and the set of tests Tβ which detect β, we have Tβ ⊂Tα.

Let T = {X} be the set of input vectors X = x1x2 . . . xn which act on input

558 Ljubomir Cvetković

1

2

m

x1 x2 xn
. . .

1 1 1 0 2 1 2 0 n 1 n 0

2

q

k.
.
.

1

.

.

.

y

Figure 8: Implementation of Boolean function

x1
x

x
n

2 .
.
.

x1
x

xn

2 .
.
.

x1

x

x
n

2 .
.
.

.

.

.

(AND)
q

1

2
q

O R

k
y

(AND) 2

(AND) 1

Figure 9: Equivalent combinational circuit

lines of the combinational circuit, i.e. before possible negations, with the property
of producing a vector from S = S1 ∪ S0 at the input lines of the OR gate.

Theorem 5. The set T detects all single stuck-at-faults.

Proof. Signal values at the output line k in the combinational circuit depend only
on the signal values from the set S1 ∪ S0, which act at input lines of the OR gate.
The corresponding vectors from T will detect 2q+2 single stuck-at-faults of the OR

An addition to the methods of test determination for fault detection . . . 559

gate. Since signals from S1 ∪ S0 are dominant with respect to signals at the input
lines in the combinational circuit, the set T will detect also all single stuck-at-faults
of the input lines of the combinational circuit. Hence, the set T detects all single
stuck-at-faults in the combinational circuit of Fig. 9.

A cube which generates signal values 0 or 1 at a given line in the combinational
circuit, is called 0-cover or 1-cover respectively.

A cube generates a signal s ∈ {0, 1} at any line in combinational circuit which
will be denoted by i = s. We shall say that the cube satisfies relation i = s.

Consider arbitrary lines i and j in the combinational circuit. Let si, sj ∈ {0, 1}
be the signals at i and j, respectively. Then the following lemmas hold:

Lemma 6. If cubes A and B satisfy relations i = si and j = sj respectively, then
the cube C = AφB satisfies relation (i = si) ∧ (j = sj).

Lemma 7. Let Si, Sj be sets of cubes satisfying i = si, j = sj, respectively, then
all cubes of the set Si ∪ Sj satisfy relation (i = si)∨ (j = sj), while all cubes of the
set SiφSj satisfy relation (i = si) ∧ (j = sj).

Our procedure for constructing a test set for all single stuck-at-faults consists
of the following steps.

1. We construct covers for signals S1 ∪ S0. To do this it is necessary to write
q + 1 logical relations for the test signal transfer from input lines of the OR
gate to the output line k (Fig. 9).

(1 = D) ∧ (2 = 0)∧ . . . ∧(q = 0) → (y = D),
(1 = 0) ∧ (2 = D)∧ . . . ∧(q = 0) → (y = D),

(28)
(1 = 0) ∧ (2 = 0)∧ . . . ∧(q = D) → (y = D),

(1 = C) ∧ (2 = C)∧ . . . ∧(q = C) → (y = C).

2. For each relation (i), i = 1, 2, . . . , q + 1, construct the covers Pi1, Pi2, . . . Piq

for the output lines of the gate (AND)i (i = 1, 2, . . . , q).

3. Define cubes

Qi = Pi1φPi2φ . . .φPiq (i = 1, 2, . . . , q + 1)

Since the combinational circuit of Fig. 9 is irredundant, it cannot happen that
any of the cube sets Qi (i = 1, 2, . . . , q + 1) is empty.

4. By developing the test set Qi we obtain a set Ti of test vectors. A test set
for all single-stuck-at-faults is given by

T = T1 ∪ T2 ∪ . . . ∪ Tq ∪ Tq+1.

560 Ljubomir Cvetković

The statement made in 3. is obvious. Namely, if a test set Qi were empty, a
certain combination of signals from S1 ∪ S0 could not appear at the input lines
of the OR gate. On the basis of Theorem 1, the single stuck-at-fault (1 or 0) at
the corresponding input line of the OR gate cannot be detected, as well as the
stuck-at-fault (1 or 0) of the output line of the OR gate. This would mean that
some single faults in the combinational circuit of Fig.9 are undetectable.

The sum of products of a Boolean function can be realized by a two-level com-
binational circuit in NAND-NAND implementation. Obviously, the proposed pro-
cedure can be applied to these cases, as the following example shows.

Example 8. Let us determine a test set for all single stuck-at-faults for the com-
binational circuit of Fig. 10.

x2

x1

x3

x 4

y

a

b

Figure 10: NAND-NAND implementation

Cascade NAND-NAND connection realizes an AND/OR function. Signals from
the set S1 ∪ S0 (S1 = {C1, 1C}, S0 = {DD}) are applied to the input lines of the
NAND gate of the second level.

The following relations hold

(a = C) ∧ (b = 1) → (y = D), (29)

(a = 1) ∧ (b = C) → (y = D), (30)

(a = D) ∧ (b = D) → (y = C). (31)

The corresponding cube sets are

Q1 = {11XX}φ{XX0X, XXX0} = {110X, 11X0},
Q2 = {0XXX, X0XX}φ{XX11} = {OX11, X011},
Q3 = {0XXX, X0XX}φ{XX0X, XXX0} =

= {0X0X, 0XX0, X00X, X0X0}.

An addition to the methods of test determination for fault detection . . . 561

Cubes determined by Q1 ∪ Q2 ∪ Q3 are

110X

11X0

0X11

X011

0X0X

0XX0

X00X

X0X0.

We adopt X = 1, which gives the following vector sequence

1101

1110

0111

1011

0101

0110

1001

1010.

It is interesting that this vector sequence can be reordered in such way that
each vector switches from 0-1 and from 1-0 during the test sequence. The obtained
test set is minimal.

It should be pointed out here that in some combinational circuits, the detecting
test set for single stuck-at-faults, detects at the same time all multiple stuck-at-
faults. For example, this happens in fan-out free combinational circuits.

Combinational circuit of Fig. 9, which is considered in this paper, is a two-level
irredundant combinational circuit. In the introduction we have already pointed out
that any set of tests which detects all single stuck-at-faults also detects all multiple
stuck-at-faults [7].

Of course, the length of the test set for all single stuck-at-faults in a combina-
tional circuit, realized by the PAL architecture, depends on the Boolean function
which is implemented.

We use the PAL architecture in constructing parity bit generators. The even
parity bit P is a function of input variables x1, x2, . . . , xn defined by

f(x1, x2, . . . , xn) =
{

1, if the number of 1’ is odd in (x1, x2, . . . , xn)
0, otherwise.

562 Ljubomir Cvetković

This function can be represented in the form

P = f(x1, x2, . . . , xn) =
∑
α∈N

xα1
1 xα2

2 . . . xαn
n (32)

where α = (α1α2, . . . , αn) ∈ {0, 1}n, N = {α | f(α) = 1} and x0 = x̄, x1 = x.
The odd parity bit is defined as f(x1, x2, . . . , xn) and can be treated similarly.
As is known, function P has only one sum-of-product expression and it is just

the quoted canonical sum-of-product expression. It has 2n/2 minterms. Length
of test set for all single stuck-at-faults is 2n, what means that we have exhaustive
testing, (see, for example, [1]).

5 Comparing fault models

We shall discuss now the relevance of the proposed fault model by comparing it with
existing models. In fact, we shall show that, by the use of the proposed procedure,
one can detect also the faults appearing in most frequently used PLA fault models:
stuck-at-faults, crosspoint faults and bridging faults.

First, we shall show that a number of classical stuck-at-faults can be detected
using the proposed procedure for the detection a multiple fault appearing in pro-
grammable points of PLA.

Within the classical stuck-at-fault model we can treat the PLA as a two-level
circuit implementation and the typical stuck-at faults appear at input, input in-
verters, product lines and output lines. We shall show that in our model these
faults are detected as well.

In order to simplify the analysis but without the loss of generality, let us consider
in our model the detectable fault αi (i = 1, 2, . . . , m) which consists of stuck-at-
faults located at r programmable points of the horizontal line i(1), i = 1, 2, . . . , m
(we assume that the multiple fault ai consists of single stuck-at faults at the first r
programmable point). In these points test signal of values C and D (depending of
the fault type) are generated. Obviously, test cubes detecting fault αi on the line
i(1), have rank r, i.e. they have r coordinates of value 0 or 1, while in the last n− r
coordinates we have variable X (X ∈ {0, 1}).

Obviously, the cube which detects the fault αi will detect also the stuck-at-fault
i(1)/s, s ∈ {0, 1}, i = 1, 2, . . . , m, since we get i(1) = C and i(1) = D. The fault
i(1)/s is a dominant fault w.r.t. classical stuck-at-faults located at first r inputs of
PLA. The cube which detects the fault αi will detect also the stuck-at-faults at r
inputs of PLA.

Since the fault αi is detectable, the test signals of value C or D are propagated
from line i(1), i = 1, 2, . . . , m, to the output line h(2), h = 1, 2, . . . , p during testing.
Suppose that the horizontal line i(1), i = 1, 2, . . . , m in the AND array crosses the
output line of PLA h(2), h = 1, 2, . . . , p in the OR array, which means that this lines
have a crossing point with coordinates (h, i). Obviously, test vectors detecting the
fault αi on the output line i(1) in the AND array, detect this fault at each output
line h(2), h = 1, 2, . . . , p, as well.

An addition to the methods of test determination for fault detection . . . 563

This analysis can be carried out for other distributions of a multiple fault in
PLA, located in programmable points. Of course, the set of stuck-at-faults, ap-
pearing in the classical stuck-at-fault model and detected by the use of our model
for a multiple fault, depends on the distribution (configuration) of that fault, in
particular, on whether the fault is located in the AND or in the OR array or in
both. In this analysis we can use properties of dominant and equivalent faults.

By a similar analysis we can conclude that the test vectors, detecting a multiple
fault in PLA following the proposed procedure, detect also a number of bridging
faults.

In the sequel we shall show that also a number of cross points faults are detected
by the proposed procedure for detection of a multiple fault.

Faults of types G, D, S and A for the AND/OR implementation of PLA have
been defined in the introduction. The AND gates of the AND array will be denoted
by (AND)i, i = 1, 2, . . . , m, while the OR gates of the OR array will be denoted by
(OR)i, i = 1, 2, . . . , p.

The fault of type G (growth fault) appears in the case when the line j (j =
1, 2, . . . , n) for the gate (AND)i , i = 1, 2, . . . , m, is broken. The brake of this input
line causes that the implicant realizing the gate (AND)i does not contain the input
variable xj corresponding to the broken line j.

As already described, when applying the procedure for detecting the fault αi

located at r programmable points of the horizontal line i(1), i = 1, 2, . . . , m, at
output line i(1) of the gate (AND)i, i = 1, 2, . . . , m, we get test signals of the value
C or D. Signals i(1) = C and i(1) = D are dominant w.r.t. the signals at r input
lines 1, 2, . . . , r of the gate (AND)i. Test vectors detecting the fault αi detect also
r faults of type G 1/1, 2/1, . . . , r/1.

The fault of type D (disappearance fault) appears in the case when an output
line of the gate (AND)i is broken. If this line represents the input of the gate
(OR)i, i = 1, 2, . . . , p, then the function fi, realizing this gate, does not contain the
implicant corresponding to the broken line. The fault of the broken line i(1) will
be denoted by i(1)/1.

When detecting the fault αi test signals of values C and D are propagated from
the line i(1) i = 1, 2, . . . , m to the corresponding output line i(2), i = 1, 2, . . . , p
of PLA. Single fault of type D will be detected in the case when the proposed
procedure generates the test signal value C at the line i(1).

A similar analysis can be carried out for the faults of types S and A.

6 Conclusion

In the proposed fault detection procedure for combinational circuits, test signals
have values from the set {0, 1, C, D}, while no line in the combinational circuit can
be in state X . Obviously, this fact simplifies the testing procedure. In applying the
proposed procedure we go only forward, thus avoiding the problem of unsuccessful
steps, which appear in structural testing methods. Writing logical relations for the
test signal propagation is easier, since one uses only operation ”∧”. Unlikely to

564 Ljubomir Cvetković

the method for combinational circuit testing mentioned in the introductory part,
the variable X can have only two values (X ∈ {0, 1}). If, for a given single or
multiple fault, only a part of the test vector set is determined, the computation
can be considerably reduced.

In the proposed fault detecting procedure test signals also get values from the
set {0, 1, C, D}. Test signals are assigned to faulty programmable elements, which
form a multiple fault. Logical relations describing the test signal propagation from
the source points to the output lines of PLA are constructed. While executing
the testing procedure no programmable point of PLA can have an undefined signal
value, i.e. to be in state X , which makes the procedure smoother to a great extent.
One should point out that the proposed procedure is related to multiple fault
detection, which leaves the space for its development in direction of getting a test
set which detects all multiple faults which can appear in PLA.

We shall mention some standard fault models which are used to describe faulty
PLA. The typical models used in PLA testing are: stuck-at-faults, crosspoint faults
and bridging faults. The fault model, proposed in this paper, differs from the above
mentioned models. It enables a PLA testing procedure having some advantages in
relation to standard testing methods.

The stuck-at-faults model is a classical model for describing a faulty PLA. We
have noted in the introduction that the following faults appear at lines of PLA:
input inverters stuck-at-1 and 0, AND gate inputs and outputs stuck-at-1 and 0,
OR gate inputs and outputs stuck-at-1 and 0 and output inverters stuck-at-1 and 0.
It is well-known that while using the stuck-at-fault model a number of crosspoint
faults as well as a number of bridging faults is detected. The starting point of
the proposed procedure for detecting a multiple fault is the fact that the fault
appears in programmable points of PLA, while the produced PLA corresponds to
the designed one with the hypothesis that no mistakes in designing PLA can occur.
Such a model reflects to a greater extent a real PLA. One should also point out
that by the proposed procedure for detecting a multiple fault also a number of
stuck-at-faults and bridging faults are detected as well. The number of detected
stuck-at-faults, mentioned above, depends on the arrangement of the multiple fault
in PLA.

The proposed procedure differs from the one used in the crosspoint faults model
in which the faults of types G, D, S and A appear, where we test for incorrect logical
connection in the AND and OR arrays. Obviously, the model involving the faults
of types G, D, S and A is rather complicated one, while in our model we have only
the faults of the type of disconnection of a programmable element or the faults
of the type of a short connection of a programmable element. This means that
crosspoints, in which faulty elements are located, obtain logical values 1 and 0.

With proposed procedure for multiple fault detection in the PLA, all test vectors
are determined. In determining test vectors for a single or multiple fault, the
quantity of work depends on the structure of the fault, and its disposition in PLA.

In this paper the stress is laid on the detection of a multiple stuck-at-fault for
PLA circuits. The proposed procedure is also applied to some specific circuits, such
as the PAL architecture realizing a irreduntant Boolean function. In this paper we

An addition to the methods of test determination for fault detection . . . 565

have shown that the test set which detects all single stuck-at-faults detects at the
same time all multiple stuck-at-faults.

The proposed procedure for detecting multiple fault in PLA is very simple since
the signal propagation is described by simple logical relations. Let us also point out
that no extra hardware is necessary. Proposed procedure for fault detection can
be applied to fault detection in integrated circuits implementing Boolean functions
which may appear in realization of a computer architecture.

References

[1] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems Testing and
Testable Design, IEEE Press, 1995.

[2] J.M. Acken, S.D. Millman, Fault model evolution for diagnosis: accuracy
vs. precision, Proc. IEEE Custom Integrated Circuits Conference, 1992, pp.
13.4.1–13.4.4.

[3] V. Agarwal, Easily Testable PLA Design, in Advances in CAD for VLSI, vol.
5, VLSI Testing, T. Wiliams (ed.), Elsevier Science Publishers, Amsterdam,
1986.

[4] V.Agraval, C.Kime, K.Saluja, A Tutorial on Built-in-Self-Test, IEEE Design
& Test of Computers, March 1993, pp. 73-80, June 1993, pp. 69–77, IEEE CS
Press.

[5] D.B. Armstrong, On Finding a Nearly Minimal Set on Fault Detection Tests
for Combinational Logic Nets, IEEE Trans. Electronic Computers EC-15, 1966,
pp. 66–73.

[6] P. Bibilo, N. Kirienko, Block Synthesis of Combinational Circuits in the Basis
of PLA and Library Gates, The International Workshop on Discrete-Event
System Design, June 27-29, 2001, Poland.

[7] M.A.Breuer, A.D. Friedman, Diagnosis & Reliable Design of Digital Systems,
Computer Science Press, Inc., p. 68, 1976.

[8] C.W. Cha, W.E. Donath, F. Ozguner, 9-V Algorithm for Test Pattern Gen-
eration of Combinational Digital Circuits, IEEE Trans. on Computers, Vol.
C-27, No. 3, March 1978, pp. 193–200.

[9] H.Fujiwara, S.Tolda, The Complexity of Faults Detection Problems for Com-
binational Logic Circuits, IEEE Trans. Comput., pp. 550–560 , June 1982.

[10] P. Goel, An Implicit Enumeration Algorithm to Generate Tests for Combina-
tional Logic Circuits, IEEE Trans. on Computers, Vol. C-30, No. 3, March
1981, pp. 215–221.

566 Ljubomir Cvetković

[11] I. Kohavi, Z.Kohavi, Detection of Multiple Faults in Combinational Logic Net-
works, IEEE Transactions on Computers, pp. 556–568, June 1972.

[12] K. Lai, P.K. Lala, Multiple Fault Detection in Fan-Out Free Circuits Using
Minimal Single Fault Test Set, IEEE Trans. Comput. June 1996, pp. 763–765.

[13] P.K. Lala, Digital Circuits Testing and Testability, Academic Press, London
1997.

[14] S. Mourad, Y. Zorian, Principles of Testing Electronic Systems, John Wiley
& Sons, 2000.

[15] K.S. Ramanatha, N.N. Biswas, Design of Crosspoint-Irredundant PLAs Using
Minimal Number of Control Inputs, IEEE Trans. of Comp., Vol. 37, No. 9,
September 1988, pp. 1130–1134.

[16] R.K. Ranjan, Dynamic Reordering in a Bredth-First Manipulation Based BDD
Package: Chalanges and solution Proc. Of the 1997 IEEE Int. Conf. on Com-
puter Design: VLSI in Computers & processors, ICCD’97, Austin, Texas,
October 1977, pp. 17–26.

[17] J.P. Roth, Diagnosis of Automata Failures: A Calculus and a Method, IBM
Journal, 1966, pp. 278–291.

[18] J.E. Smith, Detection of Faults in Programmable Logic Arrays, IEEE Trans.
on Computers., vol.C-28, No 11. November 1979, pp. 845–853.

[19] C.E. Stroud, J.R. Bailey, J.R. Emmert, A New Method for Testing Repro-
grammable PLAs, Journal of Electronic Testing, December 2000, pp.635–640.

Received April, 2003

