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Abstract

This paper offers a method for the noun phrase recognition of Hungarian
natural language texts based on machine learning methods. The approach
learns noun phrase tree patterns described by regular expressions from an
annotated corpus. The tree patterns are completed with probability values
using error statistics. The noun phrase recognition parser tries to find the
best-fitting trees for a sentence using backtracking technique. The results are
used in an information extraction toolchain.

1 Introduction

Noun phrase (NP) recognition is the process of determining whether sequences of
words can be grouped together with nouns. NP recognition is an important part
of the field of syntactic parsing but, to date, there is no suitable syntactic parser
available for the Hungarian language.

Hungarian is an agglutinated language with a rich morphology and relatively
free word order, whose properties add difficulties to the full analysis of the Hun-
garian language compared to Indo-European languages. These difficulties mean
that the automatic NP recognition of Hungarian language is too complicated to
solve using experts’ rules only. An efficient solution for this problem might be the
application of machine learning methods, but it requires a large number of training
and test examples of annotated NPs. Since the Szeged Corpus1 [4] became avail-
able, new methods have begun to be developed for syntactically parsing Hungarian
sentences. The corpus contains texts from five different topic areas and is currently
comprised of about 1.2 million word entries, 145 thousand different word forms,
and an additional 225 thousand punctuation marks. Initially, corpus words were
manually POS tagged and disambiguated by linguistic experts. Later, texts from
the Szeged Corpus were parsed, where annotators marked noun phrase structures
and clause structures. The extensive and accurate manual annotation of the texts,
which required 124 person-months of manual work, is a good feature of the corpus.
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After the completion of the annotation work the Szeged Corpus was then used
for training and testing machine learning algorithms to retrieve NP recognition
rules. This paper introduces an application of the RGLearn [6] algorithm that
was used to learn NP tree patterns described by regular expressions. The NP
tree patterns are completed with probability values using error statistics. The NP
parser uses this grammar to build up the best series of NP trees of a sentence by
backtracking. The results look fairly promising after comparing them to related
works. This method was developed as a part of a system which extracts information
from short business news texts written in the Hungarian language.

This paper is organized as follows. Section 2 describes the difficulties of auto-
matic NP recognition in the Hungarian language. In Section 3 there is a review of
related works and a mention of efforts made by Hungarian researchers. Section 4
introduces a large annotated corpus that was used as source of training and test
data. Section 5 then presents the method used for learning grammar from an anno-
tated corpus and extending grammar with probability values using test statistics.
Section 6 introduces our method of noun phrase recognition. Section 7 presents
the test results. Lastly, conclusions and suggestions for future study are given in
Section 8.

2 Difficulties of Hungarian Noun Phrase identifi-

cation

Hungarian is customarily defined as an agglutinative, free word order language
with a rich morphology. These properties make its full analysis difficult compared
to Indo-European languages. Unambiguous marks for the automatic recognition
of NP boundaries do not exist. The right bound of NPs (NP head) could be the
nouns, but there is a possibility of replacement of NP heads with its modifiers.
Determining the left bound of NPs is harder than the NP head, because it could
be a determinant element. However, due to the possibility of a recursive insertion,
it is not easy to decide which determinant and NP head belong together. Some of
these difficulties can be illustrated in the following short sentences:

These difficulties mean that it is a hard problem to perform automatic NP
recognition with experts’ rules. In many cases the decision of annotators is based
on semantic reasons rather than syntactic or structural ones. Another approach for
automatic NP recognition is to use machine learning methods, but this requires a
large number of training examples. In the past there was no large corpus for the
Hungarian language containing annotated NPs.

3 Related works

Several authors published results of NP recognition parsers especially made for
English. Generally the performance is measured with three scores. First, with a
percentage of detected noun phrases that is correct (precision). Second, with a
percentage of noun phrases in the data that is found by the classifier (recall). And
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Free word order:

[Péter] olvas [egy könyvet]. (Peter is reading a book.)
Olvas [Péter] [egy könyvet]. (Peter is reading a book.)
[Egy könyvet] olvas [Péter]. (Peter is reading a book.)

Missing determiner:

[Péter] olvas [egy könyvet]. (Peter is reading a book.)
[Péter] [könyvet] olvas. (Peter is reading a book.)

Missing NP head:

[Péter] [a sárga könyvet] olvassa, [Mari] pedig [a pirosat].
(Peter is reading the yellow book and Mary is reading the red one.)
[a pirosat] = [a piros könyvet]

Figure 1: Examples of problems in Hungarian NP identification

third, with the Fβ=1 rate which is equal to 2*precision*recall/(precision*recall).
The latter rate has been used as the target for optimization.

Abney [1] proposed an approach which starts by finding correlated chunks of
words. Ramshaw and Marcus [11] built a chunker by applying transformation-
based learning (Fβ=1=92.0). They applied their method to two segments of the
Penn Treebank [8] and these are still being used as benchmark data sets. Arg-
amon [3] uses memory-based sequence learning (Fβ=1=91.6) for recognizing both
NP chunks and VP chunks. Tjong Kim Sang and Veenstra [13] introduced cas-
caded chunking (Fβ=1=92.37). The novel approaches attain good accuracies using
a system combination. Tjong Kim Sang [14] utilized a combination of five classifiers
(Fβ=1=93.26).

So far, there is no good-quality NP parser published for Hungarian. The first
report on the ongoing work of a Hungarian NP recognition parser [16] is based
on the idea of Abney [2] using a cascaded regular grammar. The input to the
grammar was a morpho-syntactically annotated text using a scaled-down version
of the annotation scheme developed for the Hungarian National Corpus [15]. The
grammar was developed by linguistic experts with the help of the CLaRK [12]
corpus development system on a text of 928 sentences containing 23991 tokens.
These samples were taken from a quality weekly economics journal concentrating
on short business news items, which were suitable for an information extraction
project. The rules of grammar contain context free patterns of NPs described by
regular expressions. The patterns may refer to patterns of morpho-syntactic codes,
words or previously recognized NPs. The rules were grouped together by linguistic
experts into distinct stages which were applied cyclically by the CLaRK system
using a bottom-up tree building technique. A 100-sentence text chunk containing
2537 tokens was produced by manual annotation to serve as the gold standard
containing 488 NPs. The system parsing the test set found 611 NPs, of which 323
NPs were correct (Fβ=1=58.78).
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4 Training data

In order to perform well and learn from the various Natural Language Processing
(NLP) tasks and achieve a sufficient standard of Information Extraction (IE), an
adequately large corpus had to be collected that serves as the training database.
During the setting-up of the various NLP projects a relatively large corpus of dif-
ferent types of texts was collected, called the Szeged Corpus [4]. For demonstration
purposes in the above-mentioned NKFP project, the authors chose a collection of
short business news items issued by the Hungarian News Agency2. The selected
6453 articles form part of the Szeged Corpus and relate to Hungarian or joint com-
panies’ financial and business life. The Szeged Corpus contains 1.2 million text
words, 225 thousand punctuation marks, and comes in an XML format using the
TEIXLite DTD (Document Type Definition). The first version of the corpus con-
tains texts from five topic areas, roughly 200 thousand words each, meaning a text
database of some 1 million words. The second version was extended with a sam-
ple of texts of business news totalling another 200 thousand words. The texts are
divided into sections, paragraphs, sentences and word entries.

Initially, corpus words were morpho-syntactically analysed with the help of the
HuMor3 automatic preprocessor and then manually POS tagged by linguistic ex-
perts. The Hungarian version of the internationally acknowledged MSD (Morpho-
Syntactic Description) scheme [5] was used for the encoding of the words. Due to the
fact that the MSD encoding scheme is extremely detailed (one label can store mor-
phological information on up to 17 positions), there is a large number of ambiguous
cases, i.e. roughly every second word of the corpus is ambiguous. Disambiguation
therefore required accurate and detailed work. It required 64 person-months of
manual annotation. Currently all possible labels as well as the selected ones are
stored in the corpus. About 1800 different MSD labels are used in the annotated
corpus. The MSD label corresponds to the part-of-speech determined attribute,
and specific characters in each position indicate the value for that attribute.

For example, the MSD label Nc-pa can be understood as

POS: Noun,
Type: common,
Gender: - (not applicable to Hungarian),
Number: plural,
Case: accusative.

In general, the NP building process of a sentence produces detailed NP trees
much like Figure 2. These general NP trees must be simplified because, of course,
simpler trees more readily support information extraction. This simplification was
done by linguistic experts in the manual annotation phase. Hence the training
corpus contains simplified NP trees. However the morpho-syntactic labels of corpus
for POS tagging are more informal using the MSD encoding. The sentences of the
corpus are stored like in Figure 3.

2MTI, Magyar Távirati Iroda (http://www.mti.hu), ”Eco” service.
3The HuMor morpho-syntactic analyser is a product of MorphoLogic (Budapest) Ltd..
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Figure 2: NP trees of a Hungarian sentence (with its English equivalent) from a
short business news item.

Figure 3: Simplified NP trees with MSD encoding from the sentence in Figure 2.

5 Learning tree patterns

In this section the learning task of noun phrases will be described which contains the
preprocessing of training data, unification of tree patterns, searching for repetition
of POS tag labels in tree patterns, handling of equivalent sub-trees and, finally, the
complete unification algorithm. An application of RGLearn [6] is used as an NP tree
learner. RGLearn is a rule generalization method based on a previous algorithm
called RAPIER [9]. The RAPIER (Robust Automated Production of Information
Extraction Rules) system learns rules by using a combined bottom-up and top-down
learning algorithm. RAPIER is a modified version of the GOLEM [10] machine
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[ Tf Afp-sn Np-sn ]
[ [Tf Afp-sn Np-sn ] Afp-sn Nc-pa ]

Figure 4: Patterns from the sentence in Figure 3.

learning method. GOLEM uses the LGG (Least General Generalization) method
for compression, i.e. it always compresses two examples, whereas RAPIER always
generalizes two randomly selected rules.

5.1 Preprocessing of training data

The initial step for generating training data is to collect every complete NP tree
from an annotated training corpus.

Complete NP tree means: the NP tree can contain other NPs but cannot be
contained in another NP.

The collected training examples are complete context-free NP trees without
words. For example, the sentence in Figure 3 has three NPs and two complete NP
trees. The description of NP trees contains only lexical codes and NP begin and
end marks ([, ]), like the examples in Figure 4.

5.2 Unification of tree patterns

The collected NP tree patterns provide useful rules for NP recognition. With the
help of these rules the NP parser is able to reconstruct the NP structures of training
sentences. But, in order to perform the NP recognition of an unknown text to a
fair accuracy, the collected NP tree patterns must be generalized. Generalization
means the compacting of the rule set and expanding its coverage to include similar
cases that do not occur in training examples. Various methods are used in the
generalization learning phase. One of these methods is the most general unification
of the rule set, which is the unification process of every possible similar rule one
step at a time until similar rules exist in the rule set.

The meaning of similarity between rules is given by the following definition:
rules Ri and Rj are similar if

• Ri and Rj contain the same number of tags,

• the first letters of the tags are the same in each rule position, which means
NP start and end tags ([, ]) and POS codes of words are the same,

•
(∑T

t=1 Dif (Rit, Rjt)
)
≤ threshold

where Rit is the t’th tag of rule Ri, T is the number of tags in the rules, Dif
is the number of different letters of two tags, and finally threshold is a predefined
value for the maximum difference. In general the threshold value is 1 or 2. The
unification of similar rules means its replacement with a new, more general rule.
Different parts in similar rules are changed to macro characters (’?’, ’*’) in new
rules, like the example in Figure 5. The symbol ’?’ in a pattern covers any letter.
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Similar patterns:

[ [ Tf Afp-sn Nc-sn ] Afp-sn Nc-sn ]
[ [ Tf Afp-sn Nc-pn ] Afp-sn Nc-sn ]

Unified pattern:

[ [ Tf Afp-sn Nc-?n ] Afp-sn Nc-sn ]

Figure 5: The unification of similar patterns. The POS codes of Tf, Afp-sn and
Nc-sn correspond to Det, Adj and Noun.

5.3 Repetition of POS tag labels in tree patterns

The next possible step in compacting the rule set is to reduce repetitions using
the following generalization assumption for these cases: if some part of the pattern
is repeated twice, it may be repeated infinite times in similar patterns of other
examples taken from the training or test data. A simple repetition is a group of
similar POS tags. The compacted pattern for this group is a label - the most
general unification of similar POS tag labels. The regular operator ’+’ indicates
that this tag can be repeated an indefinite number of times. Complex repetitions
are when more than one similar POS tag label can be placed into the part of
the tree pattern with free word order. To detect complex repetitions, examples of
similar tree patterns are needed with a different POS tag label. In unified patterns
the operator ’|’ (logical or) indicates that the set of POS tags can be used at that
position of the tree pattern. Simple and complex repetitions can also be combined
which are based on similar tree patterns as well. Examples of simple, complex and
combined repetitions and their compacted versions are shown in Figure 6.

Kind Repetition in patterns Unified patterns

the greatest Hungarian insurance
Simple company [ Tf (Af?-sn)+ Nc-sn ]

[ Tf Afc-sn Afp-sn Afp-sn Nc-sn ]

the great and famous company
Complex [ Tf Afp-sn Ccsw Afp-sn Nc-sn ] [ Tf Af?-sn (Afp-sn|Ccsw)

[ Tf Afc-sn Afp-sn Afp-sn Nc-sn ] Afp-sn Nc-sn ]

[ Tf (Af?-sn)+ Nc-sn ] [ Tf (Af?-sn|Ccsw)+
Combined [ Tf Af?-sn (Afp-sn|Ccsw) Afp-sn Nc-sn ]

Nc-sn ]

Figure 6: The unification of repetition using similar patterns.
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5.4 Equivalent sub-trees, sub-tree classes

Repetitions like those described previously do not contain NP bound marks (’[’, ’]’)
because preserving the NP tree structure is very important. NP bound marks are
not elements of patterns because their function is the separation (and recognition)
of trees and sub-trees. The usage of sub-trees for NP tree building requires that
NP identification distinguish one NP from another. NP tree building without NP
identification often gives rise to overgeneration, i.e. the generation of impossible
tree structures for a given natural language. Hence it cannot be assumed that each
NP is equivalent. But there are equivalent sub-trees when the context of two sub-
trees is the same in their bigger trees (see Figure 7). Using the above notation the
unification for sub-trees is given by the following process:

• Selecting rules that contain equivalent sub-trees, as in Figure 7.

• Collecting equivalent sub-trees to equivalence classes.

• The replacement of equivalent sub-trees with its equivalence class identifica-
tion code. This means that bigger trees will be practically identical, so the
unnecessary rules can be deleted from the rule set.

Example:

Similar patterns Unified patterns

[ [Tf Np-sn ] Afp-sn Nc-pa ] [ CLASS.1 Afp-sn Nc-pa ]
[ [Tf Afp-sn Np-sn ] Afp-sn Nc-pa ] CLASS.1:

ID.1 - [Tf Np-sn ]
ID.2 - [Tf Afp-sn Np-sn ]

Figure 7: The unification of similar patterns that contain different sub-trees and
an example of unification.
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5.5 The most general unification of the rule set

Bringing together the unification methods discussed in previous sections, the algo-
rithm of the most general unification is quite simple: repeating unification methods
one after another until something changes in the rule set. Expressed in formal terms,
the procedure is the following:

repeat
unification of similar tree patterns
unification of repetitions
unification of equivalent sub-trees

until (something changes in the rule set)

5.6 Analysis of the grammar

The most general unification of the rule set allows the parser to be able to recognize
every possible NP in an unknown text as well. But the cost of increasing gener-
alization is decreasing accuracy. The accuracy for various rules is quite different:
there are a lot of rules with very good (>95%)and very poor (<5%) accuracies. It
seems obvious that bad rules ought to be dropped from the rule set (e.g. a rule with
an accuracy of below 50% produces more errors than good recognition). But the
strategy of an NP tagger is to find the best possible NP tree series for a sentence,
so the rule with a poor accuracy (and low frequency) does not make so many errors
because it is generally not chosen. For optimization the accuracy of NP recognition
can be found experimentally. Which is the best threshold value for dropping rules
because of its poor accuracy? According to the results shown in Figure 8, we should
choose a rule accuracy threshold for dropping rules of about 5%-10%.

Figure 8: Where is the better threshold for dropping rules?
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The main task of the analysis phase is to determine the probabilistic worth
of rules and drop weak rules from the rule set using previous optimizations. The
probabilistic value of a tree pattern is the accuracy normalized by the frequency.
Summarizing the results of the learning and analysis phase is a context-free proba-
bilistic grammar described with regular expressions for the recognition of NP trees.

6 Building of NP trees

The main task of the NP tagger is to find the best series of NP trees for input
sen-tences. Input data contains disambiguated POS tag labels and it may come
from the Szeged corpus at the testing phase of the method or it may be provided by
a POS tagger tool [7] as a practical application of method. The following natural
language processing (NLP) modules are used to determine linguistic features for
NP recognition, as shown in Figure 9. They consist of tokenization, sentence seg-
mentation, morpho-syntactic analysis and part-of-speech (POS) tagging.

Morphological

Processing
Segmentation

Sentence
Tokenization &

POS tagger
Identification

Noun PhraseFree text

Figure 9: The system architecture of natural language processing pipeline

The NP processing is performed sentence by sentence, but sentences can be
divided into smaller parts between verbs and the border of clauses. The usage of
this division makes NP processing faster. The initial phase of tagging a sentence
is to label all possible trees in every word position of a sentence. Naturally there
is some overlap-ping among the labeled NP trees and a word position can be the
beginning of many NP trees. The preferred attributes for evaluating NP trees are
the probability, phrase length (number of word positions in NP) and depth of the
NP tree. There is a back-tracking algorithm that searches for the best (or best of n)
NP tree series. After finding the best series of NP tree patterns, the actual NP tree
structure of a given sentence can be reconstructed (built up) from tree patterns.
The NP recognition algorithm of a sentence involves the following:

BEST = nil
Labeling of each word position with possible matching tree patterns
repeat

CURRENT = next combination of tree patterns
if (probability of CURRENT > probability of BEST)

then BEST = CURRENT
until (not computed each possible combination of tree patterns)
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Text category Precision Recall Fβ=1

Corpus version 1.0 75.72% 81.69% 78.59%

Business news extension 79.86% 86.63% 83.11%

Business news extension 79.86% 86.63% 83.11%

Figure 10: Test results on the two corpus domains.

7 Results

The method presented for learning and recognizing NP trees was applied on two
cor-pus domains: the first version of the corpus containing texts from five different
topic areas and the second domain from the business news extension. The sentences
of domains were randomly divided into train (90%) and test (10%) sets. The
preprocess-ing phase collected from the first domain had 297,077 complete NP
trees and the unification learner produced 7,476 NP tree patterns. The second
domain contains 51,112 complete NP trees and 1,856 acquired NP tree patterns.
The training phase associated probability values with the patterns. The evaluating
of the grammar was performed on 10% of the test set. A summary of test results
is shown in Figure 10.

So far, the results seem encouraging. Based on experiments, this NP tagger as
an element of a natural language processing pipeline provided enough information
for information extraction. There are some differences in the results of the two
corpus domains because of their various characteristics. The business news part
contains relatively homogeneous texts with often repeated idioms. The first domain
is more heterogeneous in its five topics. After analyzing the reasons for errors it
was found that, in many cases, extra semantic information was needed to select
the proper NP tree structure. Overall, the recognizing of large (long and deep) NP
trees seems to be quite a hard problem.

8 Summary and future work

In the current paper, the author presented a general learning method for NP
recogni-tion that has been applied to learning and recognizing NP trees. The NP
tree learning method was applied to a previous machine learning method RGLearn.
The NP recog-nizing method, as an element of a natural language processing
pipeline, provides suf-ficiently rich information to support information extraction.

The NP tree learner method id based on rule generalization that includes unifica-
tion algorithms. The generated grammar is a set of NP tree pattern that is described
with regular expressions. After the unification phase probabilistic values are added
to the grammar using error statistic analysis of the training examples. The NP tree
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tagger uses pattern matching and backtrack algorithm to search for the best-fitting
NP tree sets. The NP tree structure of given sentence is reconstructed from tree
patterns.

In the future, running parallel to the development of the Szeged corpus, the
author intends to develop learning and recognizing method for constructing the
syntax tree of sentences. The usage of ontological information that can be the
extension of a mor-pho-syntactic description is also planned. The system will be
primarily applied to the business news domain. In the 6th Framework Programme,
an international research consortium is planning to develop a multilingual IE system
to be applied to above-mentioned two domains.
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[7] Kuba, A., Bakota, T., Hócza, A., Oravecz, Cs. (2003) Comparing different
POS-tagging tech-niques for Hungarian in Proceedings of the MSZNY 2003,
Szeged, Hungary, pp. 16-23

[8] Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993) Building a large
annotated corpus of English: the Penn Treebank, Association for Computa-
tional Linguistics.



Noun Phrase Recognition with Tree Patterns 623

[9] Muggleton, S. and Feng, C. (1992) Efficient Induction of Logic Programs, in
Inductive Logic Programming (ed.: S. Muggleton), Academic Press, New York,
pp. 281-297.

[10] Plotkin, G.D (1970) A note on inductive generalization, Machine Intelligence
(eds: B. Meltzer and D. Michie), Vol 5.

[11] Ramshaw, L. A., and Marcus, M. P. (1995) Text Chunking Using
Transformational-Based Learning, in Proceedings of the Third ACL Workshop
on Very Large Corpora, Association for Computational Linguistics.

[12] Simov K. (2001) CLaRK - an XML-based System for Corpora Development,
in Proceedings of the Corpus Linguistics 2001 Conference, Lancaster, pp. 553-
560.

[13] Tjong Kim Sang, E. F., and Veenstra, J. (1999) Representing text chunks, in
Proceedings of EACL ’99, Association for Computational Linguistics.

[14] Tjong Kim Sang, E. F. (2000) Noun Phrase Recognition by System Combina-
tion, in Proceed-ings of the first conference on North American chapter of the
Association for Computational Linguistics, Seattle, pp. 50-55.
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