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Varieties of Tree Languages Definable by Syntactic

Monoids

Saeed Salehi ∗

Abstract

An algebraic characterization of the families of tree languages definable
by syntactic monoids is presented. This settles a question raised by several
authors.

1 Introduction

A Variety Theorem establishing a bijective correspondence between general vari-
eties of tree languages definable by syntactic monoids and varieties of finite monoids,
is proved. This has been a relatively long-standing open problem, the most recent
references to which are made by Ésik [4] as “No variety theorem is known in the
semigroup [monoid] approach” (page 759), and by Steinby [18] as “there are no
general criteria for deciding whether or not a given GVTL [general variety of tree
languages] can or cannot be defined by syntactic monoids” (page 41). The question
was also mentioned in the last section of Wilke’s paper [21].

Most of the interesting classes of algebraic structures form varieties, and sim-
ilarly, most of the interesting families of tree or string languages studied in the
literature turn out to be varieties of some kind. The first Variety Theorem was
proved by Eilenberg [3] who established a correspondence between varieties of finite
monoids and varieties of regular (string) languages. It was motivated by charac-
terizations of several families of languages by syntactic monoids or semigroups (see
[3],[10]), above all by Schützenberger’s [15] theorem connecting star-free languages
and aperiodic monoids.

Eilenberg’s theorem has since been extended in various directions. One could
mention Pin’s [11] Variety Theorem for positive varieties of string languages and
varieties of ordered monoids, or Thérien’s [19] extension that includes also varieties
of congruences on free monoids. On the level of universal algebra, where tree
automata and tree languages are studied, a Variety Theorem was proved by Steinby
[16] for recognizable subsets of finitely generated free algebras. Both Eilenberg’s
*-varieties and +-varieties, as well as varieties of regular tree languages (which was
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worked out in [17]), are special cases of the results of [16]. The correspondence
to varieties of congruences, and some other generalizations, were added later by
Almeida [1] and Steinby [17, 18]. Another example is Ésik’s [4] Variety Theorem
between tree languages and theories (see also [5]). As Ésik observes in [4], page 758:
“The crucial concept in any ‘Variety Theorem’ is that of the ‘syntactic structure’
or ‘syntactic algebra’.” For almost all those syntactic structures associated to tree
languages in the literature, one (or some) variety theorem(s) have been proved.
The most famous ‘syntactic structure’ for which a variety theorem was not known,
is the syntactic semigroup/monoid of a tree language, introduced by Thomas [20],
and further studied by Salomaa [14]. A different formalism, based on the essentially
same concept, was brought up by Nivat and Podelski [6], [13].

To establish our correspondence between varieties of tree languages and varieties
of finite monoids, we add three more closure properties to the definition of a general
tree language variety introduced in [18]. One of them, that of being closed under
inverse tree homomorphisms, is already investigated by Ésik [4], and the other two
are stated in Theorem 24.

2 Notation and Preliminaries

Our notation is mainly based on [18]. However for understanding our results it
is not necessary to read the whole of [18]. Here, we list the terminology used
throughout the paper.

A finite set of function symbols is called a ranked alphabet. If Σ is a ranked
alphabet, for every m ≥ 0, the set of m-ary function symbols of Σ is denoted by
Σm. In particular, Σ0 is the set of constant symbols of Σ. For a ranked alphabet
Σ and a leaf alphabet X , the set of ΣX-trees T(Σ, X) is the smallest set satisfying

(1) Σ0 ∪ X ⊆ T(Σ, X), and
(2) f(t1, · · · , tm) ∈ T(Σ, X), for all f ∈ Σm (m > 0) and t1, · · · , tm ∈

T(Σ, X).

Any subset of T(Σ, X) is called a tree language.
The ΣX-term algebra T (Σ, X) = (T(Σ, X), Σ) is defined by setting

(1) cT (Σ,X) = c for each c ∈ Σ0, and
(2) fT (Σ,X)(t1, · · · , tm) = f(t1, · · · , tm) for all m > 0, f ∈ Σm, and

t1, · · · , tm ∈ T(Σ, X).

Let ξ be a (special) symbol which does not appear in any ranked alphabet or leaf
alphabet considered here. The set of ΣX-contexts, denoted by C(Σ, X), consists
of the Σ(X ∪ {ξ})-trees in which ξ appears exactly once. For P, Q ∈ C(Σ, X) and
t ∈ T(Σ, X) the context Q·P , the composite of P and Q, results from P by replacing
the special leaf ξ with Q, and the term t · P results from P by replacing ξ with t.
Note that C(Σ, X) is a monoid with composition as the operation and ξ as the unit
element, and that t · (Q ·P ) = (t ·Q) ·P holds for all P, Q ∈ C(Σ, X), t ∈ T(Σ, X).
For a tree language T ⊆ T(Σ, X) and context P , the inverse translation of T under
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P is P−1(T ) = {t ∈ T(Σ, X) | t · P ∈ T }. Also the inverse morphism of T under a
homomorphism ϕ : T(Σ, Y ) → T(Σ, X) is Tϕ−1 = {t ∈ T(Σ, Y ) | tϕ ∈ T }.

A ΣX-recognizer (A, α, F ) consists of a finite Σ-algebra A = (A, Σ), an initial
assignment α : X → A, and a set of final states F ⊆ A. The function α can
uniquely be extended to a homomorphism αA : T (Σ, X) → A, and the tree lan-
guage recognized by (A, α, F ) is {t ∈ T(Σ, X) | tαA ∈ F}. In that case we also
simply say that T is recognized by the algebra A.

All algebras considered in this paper, except for term algebras, are finite, and
the tree languages studied here are recognizable by finite algebras. A class of finite
algebras of a fixed type is called a variety of finite algebras if it is closed under
subalgebras, homomorphic images, and finite products. They are sometimes called
pseudo-varieties, to be differentiated from real varieties whose members need not
to be finite. Birkhoff’s variety theorem [2] provides a logical characterization of
those “original” varieties. In particular, a variety of finite monoids, abbreviated by
VFM, is a class of finite monoids closed under submonoids, homomorphic images,
and finite monoid products. A family V = {V (X)} of tree languages of a fixed type
Σ is a mapping which assigns to every finite leaf alphabet a collection V = {V (X)}
of recognizable ΣX-tree languages. A family V is called a variety of tree languages
if each V (X) is closed under Boolean operations and inverse translations, and the
whole collection is closed under the inverse homomorphisms between term algebras
(see [17]; below we will consider generalized varieties of tree languages).

Let A = (A, Σ) be an algebra. Every elementary context
P = f(a1, · · · , ξ, · · · , am) ∈ C(Σ, A),

where f ∈ Σm and a1, · · · , am ∈ A, induces a unary function on A defined by
PA(a) = fA(a1, · · · , a, · · · , am) for each a ∈ A. Such functions are called elemen-
tary translations of A. The functions induced by compositions of such elementary
contexts are defined by setting (Q · P )A(a) = PA(QA(a)) for any two contexts P
and Q and any a ∈ A. These functions constitute the set of translations of A de-
noted by Tr(A). Note that two different contexts may induce the same translation.

The set Tr(A) is a monoid with composition as the operation, called the transla-
tion monoid of A, which is also denoted by Tr(A). We note that Tr(A) includes the
identity translation ξA = 1A. The composition of translations p and q is denoted
by q · p, that is (q · p)(a) = p(q(a)) for all a ∈ A (cf. Section 5 of [18]).
For a tree language T ⊆ T(Σ, X), the syntactic congruence θT of T is defined by

t θT s ⇐⇒ ∀P ∈ C(Σ, X)
(
t · P ∈ T ↔ s · P ∈ T

)
,

for t, s ∈ T(Σ, X), and the syntactic algebra SA(T ) of T is the quotient Σ-algebra
T(Σ, X)/θT (see Definition 5.9 of [18]).
Also, the m-congruence μT of T on the monoid C(Σ, X) is defined by

P μT Q ⇐⇒ ∀R ∈ C(Σ, X)∀t ∈ T(Σ, X)
(
t · P · R ∈ T ↔ t · Q · R ∈ T

)
,

for P, Q ∈ C(Σ, X), and the syntactic monoid SM(T ) of T is the quotient monoid
C(Σ, X)/μT (cf. [20] or Definition 10.1 of [18]).

Remark 1. It was shown in [14] that the translation monoid of the syntactic
algebra of a tree language is isomorphic to the syntactic monoid of the tree language,
i.e., Tr(SA(T )) ∼= SM(T ) for every tree language T .
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A tree homomorphism is a mapping ϕ : T(Σ, X) → T(Ω, Y ) for ranked alphabets
Σ and Ω, and leaf alphabets X and Y , determined by some mappings ϕX : X →
T(Ω, Y ), and ϕm : Σm → T(Ω, Y ∪ {ξ1, · · · , ξm}), where Σm �= ∅ and the ξi’s are
new variables, inductively as follows

(1) xϕ = ϕX(x) for x ∈ X , cϕ = ϕ0(c) for c ∈ Σ0, and
(2) f(t1, · · · , tn)ϕ = ϕn(f)[ξ1 ← t1ϕ, · · · , ξn ← tnϕ] that is ξi is replaced

with tiϕ for all i (cf. [18], page 7).

A tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is called regular if for every
f ∈ Σm (m ≥ 1), each ξ1, · · · , ξm appears exactly once in ϕm(f).

The unique extension ϕ∗ : C(Σ, X) → C(Ω, Y ) of a regular tree homomorphism
ϕ to contexts is obtained by setting ϕ∗(ξ) = ξ (cf. [18], Proposition 10.3).1 We
note that the identities (Q · P )ϕ∗ = Qϕ∗ · Pϕ∗ and (t · Q · P )ϕ = tϕ · Qϕ∗ · Pϕ∗
hold for all P, Q ∈ C(Σ, X) and t ∈ T(Σ, X).

3 Algebras Definable by Translation Monoids

The notions of subalgebra, homomorphism, and direct product are defined as
usual in Universal Algebra, whereas for their generalizations, g-subalgebra, g-
homomorphism, and generalized product, are defined for algebras which are not
necessarily of the same type. We recall the following definitions from [18] (Defini-
tions 3.1, 3.2, 3.3, 3.14).

Definition 2. Let A = (A, Σ) and B = (B, Ω) be finite algebras.
The algebra B is a g-subalgebra of A, in notation B ⊆g A, if B ⊆ A, Ωm ⊆ Σm for
all m ≥ 0, and for every g ∈ Ωm, gB is the restriction of gA to B.
An assignment is a mapping κ : Σ → Ω such that κ(Σm) ⊆ Ωm for all m ≥ 0.
A g-morphism from A to B is a pair (κ, ϕ), where κ : Σ → Ω is an assignment and
ϕ : A → B is a mapping satisfying fA(a1, · · · , am)ϕ = (fκ)B(a1ϕ, · · · , amϕ) for
any m ≥ 0, f ∈ Σm, and a1, · · · , am ∈ A. If both κ and ϕ are surjective, then (κ, ϕ)
is called a g-epimorphism, and in that case we write B ←g A (B is a g-epimorphic
image of A). When B is a g-epimorphic image of a g-subalgebra of A, we write
B ≺g A. When both κ and ϕ are bijective, (κ, ϕ) is called a g-isomorphism, and
B ∼=g A means that B and A are g-isomorphic.

Let Σ1, · · · , Σn and Γ be ranked alphabets. The product Σ1 × · · · × Σn is a
ranked alphabet such that (Σ1 × · · ·×Σn)m = Σ1

m × · · ·×Σn
m for every m ≥ 0. For

any assignment κ : Γ → Σ1 × · · · × Σn, and any algebras A1 = (A1, Σ1), · · · ,An =
(An, Σn), the κ-product of A1, · · · ,An is the Γ-algebra κ(A1, · · · ,An) = (A1×· · ·×
An, Γ) defined by

(1) cκ(A1,··· ,An) = (cA1
1 , · · · , cAn

n ) for c ∈ Γ0, where cκ = (c1, · · · , cn), and

1Indeed any tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) can be extended to eϕ : C(Σ, X) →
T(Ω, Y ∪{ξ}) by setting ξ eϕ = ξ, but if ϕ is not regular the range of eϕ may not be C(Ω, Y ). Hence
the regularity of ϕ is needed for the existence of the extension ϕ∗, see also Example 18.
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(2) fκ(A1,··· ,An)(a1, · · · ,am) = (fA1
1 (a11, · · · , am1), . . . , fAn

n (a1n, · · · , amn))
for f ∈ Γm (m > 0) and ai = (ai1, · · · , ain) ∈ A1 × · · · × An, where
fκ = (f1, · · · , fn).

Without specifying the assignment κ, such algebras are called g-products.
In the notations ⊆g,←g,≺g, and ∼=g, the subscript g is dropped when A and B are
of the same type, say Σ, and the assignment κ : Σ → Σ is the identity mapping.

The abbreviation GVFA stands for general variety of finite algebras which is a
class of finite algebras, of all finite types, closed under g-sub-algebras, g-epimorphic
images, and g-products (Definition 4.3 of [18]). It is easy to see that a class of
algebras K is a GVFA, if for any A1, · · · ,An ∈ K, any g-product κ(A1, · · · ,An),
and any algebra A, if A ≺g κ(A1, · · · ,An) then A ∈ K (cf. Corollary 4.8 of [18]).

Definition 3. For a VFM M, Ma is the class of all finite algebras whose translation
monoids are in M, i.e., A ∈ Ma ⇔ Tr(A) ∈ M for any finite algebra A.

A class of finite algebras K is said to be definable by translation monoids, if
there is a VFM M such that Ma = K.

By Proposition 10.8 of [18], a class of finite algebras definable by translation
monoids is a GVFA. In fact, any such class can be proved to be a d-variety of
finite algebras (see page 758 of [4]). An algebraic characterization of the classes
of finite algebras definable by translation monoids is given in the main theorem of
this section.

Definition 4. Let A be a finite algebra. With each translation p ∈ Tr(A) we
associate a unary function symbol p. Let ΛA = {p | p ∈ Tr(A)} be the unary
ranked alphabet formed by these symbols and let the ΛA-algebra A� = (Tr(A), ΛA)
be defined by pA

�

(q) = q · p for all p, q ∈ Tr(A).

The proof of the main theorem of this section is based on the following lemmas
(cf. [8, 9] for similar results for unary algebras).

Lemma 5. For any finite algebra A, Tr(A) ∼= Tr(A�).

Proof. The elementary translations of A� are of the form pA
�

(ξ) where p ∈ Tr(A),
and clearly qA

�

(ξ) · pA
�

(ξ) = q · pA�

(ξ) for all q, p ∈ Tr(A). For the identity
translation 1A of A the translation 1A

A�

(ξ) is the identity translation of A�. This
means that Tr(A�) = {pA�

(ξ) | p ∈ Tr(A)}. Moreover, pA
�

(ξ) �= qA
�

(ξ) whenever
p �= q, since pA

�

(ξ) = qA
�

(ξ) implies p = 1A · p = pA
�

(1A) = qA
�

(1A) = 1A · q = q.
Hence, the mapping Tr(A) → Tr(A�), p �→ pA

�

(ξ) is a monoid isomorphism.

Lemma 6. Let A = (A, Σ) and B = (B, Ω) be two finite algebras.

1. If Tr(A) ≺ Tr(B), then A� ≺g B�.

2. Tr(A) × Tr(B) ∼= Tr(κ(A�,B�)) for some g-product κ(A�,B�).
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Proof. 1. Suppose Tr(A) ← M ⊆ Tr(B) for some monoid M . Let ΛM = {p ∈ ΛB |
p ∈ M}. Then clearly M = (M, ΛM ) ⊆g B�, where M is defined by pM(q) = q · p
(p, q ∈ M). Let ϕ : M → Tr(A) be a monoid epimorphism. Define the assignment
κ : ΛM → ΛA by qκ = qϕ for all q ∈ M . It is clear that κ is surjective and for all
q, r ∈ M ⊆ Tr(B),

(
qB

�

(r)
)
ϕ = (r · q)ϕ = rϕ · qϕ = qϕA�

(rϕ) = (qκ)A
�

(rϕ). Hence
(κ, ϕ) : M → A� is a g-epimorphism. Thus A� ←g M ⊆g B�.
2. Let Γ = {〈p, q〉 | p ∈ Tr(A), q ∈ Tr(B)} be a set of unary function symbols, and
define the assignment κ : Γ → ΛA × ΛB by 〈p, q〉κ = (p, q). Let P = κ(A�,B�) be

the corresponding g-product of A� and B�. We show that Tr(P) = {〈p, q〉P(ξ) | p ∈
Tr(A), q ∈ Tr(B)}. Firstly, we note that if 1A and 1B are the identity translations of

A and B respectively, then 〈1A, 1B〉
P

(ξ) is the identity translation of P . Secondly,
by the definition of κ-products, for all p, p′ ∈ Tr(A), q, q′ ∈ Tr(B),

〈p, q〉P(p′, q′) = (pA
�

(p′), qB
�

(q′)) = (p′ · p, q′ · q).

Hence, if 〈p, q〉P(ξ) = 〈p′, q′〉P(ξ), then (p, q) = (1A · p, 1B · q) = 〈p, q〉P(1A, 1B)

= 〈p′, q′〉P(1A, 1B) = (1A · p′, 1B · q′) = (p′, q′). So, 〈p, q〉P(ξ) �= 〈p′, q′〉P(ξ), when

p �= p′ or q �= q′. Finally, we show that the set {〈p, q〉P(ξ) | p ∈ Tr(A), q ∈ Tr(B)}
is closed under the composition of translations.

For all p, p′, p′′ ∈ Tr(A), q, q′, q′′ ∈ Tr(B),

〈p′, q′〉P · 〈p, q〉P(p′′, q′′) = 〈p, q〉P(p′′ · p′, q′′ · q′)
=

(
(p′′ · p′) · p, (q′′ · q′) · q

)
=

(
p′′ · (p′ · p), q′′ · (q′ · q)

)
= 〈p′ · p, q′ · q〉P(p′′, q′′).

Hence, 〈p′, q′〉P(ξ) · 〈p, q〉P(ξ) = 〈p′ · p, q′ · q〉P(ξ). It follows that the mapping

Tr(A) × Tr(B) → Tr(P), (p, q) �→ 〈p, q〉P(ξ), is a monoid isomorphism.

Since g-products of g-products are g-isomorphic to a g-product of the original
algebras (Lemma 4.2 of [18]), Lemma 6(2) can be generalized as follows.

Lemma 7. For any n ≥ 1 and any algebras A1, · · · ,An there is a g-product
κ(A�

1, · · · ,A�
n) such that Tr(A1) × · · · × Tr(An) ∼= Tr(κ(A�

1, · · · ,A�
n)).

Now we are ready to prove the main theorem.

Theorem 8. Any class of finite algebras K is definable by translation monoids iff
it is a GVFA such that A ∈ K iff A� ∈ K, for any A.

Proof. Suppose K = Ma for a VFM M. Then by Lemma 5, Tr(A) ∼= Tr(A�), so
A ∈ K ⇔ Tr(A) ∈ M ⇔ Tr(A�) ∈ M ⇔ A� ∈ K. For the converse, suppose the
GVFA K satisfies the equivalence A ∈ K ⇔ A� ∈ K for any finite algebra A. Let
M be the VFM generated by {Tr(A) | A ∈ K}. We show that K = Ma. Obviously
K ⊆ Ma. For the opposite inclusion, let B ∈ Ma. So, there are A1, · · · ,Am ∈ K
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such that Tr(B) ≺ Tr(A1)×· · ·×Tr(Am). By Lemma 7, Tr(B) ≺ Tr(P) for some g-
product P of A�

1, · · · ,A�
m. By the property of K, A�

1, · · · ,A�
m ∈ K, and so P ∈ K,

hence P� ∈ K. By Lemma 6 (1) from Tr(B) ≺ Tr(P) we get B� ≺g P�, and since
P� ∈ K, also B� ∈ K, which implies that B ∈ K. Thus Ma ⊆ K.

Remark 9. The proof of Theorem 8 also yields the fact that for any GVFA K
definable by translation monoids, the class {Tr(A) | A ∈ K} is a variety of finite
monoids.

Another characterization of the classes of finite algebras definable by translation
monoids which follows from Lemmas 5 and 6 is the following.

Theorem 10. Any class of finite algebras K is definable by translation monoids
iff it is a GVFA such that for all finite algebras A and B, if Tr(A) ∼= Tr(B) and
A ∈ K, then B ∈ K.

4 Families of Tree Languages Definable by Syn-
tactic Monoids

A general variety of tree languages (GVTL) is a family V = {V (Σ, X)} which as-
signs to every ranked alphabet Σ and leaf alphabet X , a set V (Σ, X) of recognizable
ΣX-tree languages, and is closed under all Boolean operations, inverse translations,
and inverse g-morphisms. That is to say, for any ranked alphabets Σ, Ω, leaf al-
phabets X, Y , context P ∈ C(Σ, X), and g-morphism ϕ : T(Ω, Y ) → T(Σ, X) (see
Definition 2), if T, T ′ ∈ V (Σ, X), then T(Σ, X)\T, T ∩T ′, P−1(T ) ∈ V (Σ, X), and
Tϕ−1 ∈ V (Ω, Y ) (Definition 7.1 of [18]).

For a family of recognizable tree languages V , V a is the GVFA generated by
the class {SA(T ) | T ∈ V (Σ, X), for some Σ, X}.

Remark 11. The General Variety Theorem in [18], Proposition 9.15, implies that:

(1) For any GVTL V , the class V a satisfies the following equivalence for any
tree language T ⊆ T(Σ, X): T ∈ V (Σ, X) ⇔ SA(T ) ∈ V a.

(2) For any GVFA K there is a unique GVTL V such that V a = K.

Definition 12. For a VFM M, let Mt be the family of all recognizable tree
languages whose syntactic monoids are in M, that is to say for any tree language
T ⊆ T(Σ, X), T ∈ Mt(Σ, X) ⇔ SM(T ) ∈ M holds.

A family of recognizable tree languages V is said to be definable by syntactic
monoids if there is a VFM M such that Mt = V .

Steinby has shown that for any VFM M, Mt is a GVTL ([18], Proposition 10.3).
His proof can be applied to show that Mt is also closed under inverse of regular
tree homomorphisms. The general varieties of tree languages closed under inverse
(arbitrary) tree homomorphisms are studied by Ésik [4] who characterized them by
their syntactic theories. Theorem 14.2 of [4] establishes a correspondence between
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d-varieties of finite algebras and general tree language varieties closed under inverse
tree homomorphisms. However, those varieties may not be definable by syntactic
monoids, as the following example shows.

Example 13. Let Def1 = {Def1(Σ, X)} be the family of 1-definite tree languages,
i.e., T ∈ Def1(Σ, X) iff for all ΣX-trees t and s, root(t) = root(s) and t ∈ T
imply s ∈ T , where root(t) is the root symbol of t. It is a GVTL ([18]) which
can be shown to be closed under inverse strict regular tree homomorphisms (see
[4] Subsection 11.1 and Section 5 below). Let Σ = Σ2 = {f, g}, X = {x, y}, and
T = {x} ∪ {f(t1, t2) | t1, t2 ∈ T(Σ, X)}. Clearly T ∈ Def1(Σ, X). It can be easily
shown that the syntactic monoid of T consists of an identity element and two right
zeros. This is also the syntactic monoid of the language T ′ of the ΣX-trees whose
leftmost leaves are x, by Example 10.4 of [18]. Since T ′ �∈ Def1(Σ, X), then Def1
is not definable by syntactic monoids.

This actually shows that the GVTL of all definite tree languages is not definable
by syntactic monoids, since T ′ is not k-definite for any k ≥ 1.

Remark 14. In [7] it is claimed that the variety of definite tree languages can
be characterized by the property that all the non-identity idempotents of their
syntactic monoids are right zeros (left zeros in the formalism of [7]). This clearly
stands in conflict with the above Example 13.

Indeed, it can be shown that Theorem 1 of [7] does not hold. When the syntactic
semigroup of a tree language is defined as the syntactic monoid with the identity
element removed, the authors clearly overlook the possibility that the identity ele-
ment may be obtained also as the product of some non-identity elements, and the
proof of the theorem of [7] holds in just one direction. A concrete example showing
that the equality between lines 9 and 10 on page 189 does not necessarily hold, can
be obtained by considering the tree language T ′ of our Example 13.
It can also be noted that finite monoids whose non-identity idempotents are right
zeros, do not form a VFM. Finally, in Section 5 we shall see that a more appropriate
definition of the syntactic semigroup and omitting trees that in a sense correspond
to the empty word, does not save the result of [7].

We shall characterize the general varieties of tree languages that are definable
by syntactic monoids by requiring them to satisfy two more conditions in addition
to being closed under inverse regular tree homomorphisms.

Definition 15. A regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is said to
be full with respect to a tree language T ⊆ T(Ω, Y ), if for every Q ∈ C(Ω, Y ) and
every s ∈ T(Ω, Y ), there are P ∈ C(Σ, X) and t ∈ T(Σ, X), such that Q μT Pϕ∗
and s θT tϕ hold.

Remark 16. At first glance it seems that verifying fullness of ϕ with respect to
T requires checking the existence of P ∈ C(Σ, X) and t ∈ T(Σ, X) for all (in-
finitely many) Q ∈ C(Ω, Y ) and s ∈ T(Ω, Y ) such that Q μT Pϕ∗ and s θT tϕ
hold. In fact it is decidable for a recognizable T to check whether or not ϕ
is full with respect to T : let ϕT : T(Ω, Y ) → T(Ω, Y )/θT , tϕT = t/θT and
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λT : C(Ω, Y ) → C(Ω, Y )/μT , PλT = P/μT be the natural morphisms. Then
the tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is full with respect to T iff both
the mappings ϕϕT : T(Σ, X) → T(Ω, Y )/θT and ϕ∗λ

T : C(Σ, X) → C(Ω, Y )/μT

are surjective.

Recall that for an equivalence relation θ on a set A, the quotient set of A under θ
is denoted by A/θ, and aθ is the equivalence θ-class containing a ∈ A.

Lemma 17. If ϕ : T(Σ, X) → T(Ω, Y ) is a regular tree homomorphism and
T ⊆ T(Ω, Y ), then SM(Tϕ−1) ≺ SM(T ), and if ϕ is full with respect to T , then
SM(Tϕ−1) ∼= SM(T ).

Proof. We note that ϕ∗ : C(Σ, X) → C(Ω, Y ) is a monoid homomorphism. Let
S ⊆ C(Ω, Y ) be the image of ϕ∗, and let μ be the restriction of μT to S. Then S/μ
is a submonoid of C(Ω, Y )/μT . We show that Pϕ∗ μ Qϕ∗ implies P μTϕ−1 Q for all
P, Q ∈ C(Σ, X).
Suppose Pϕ∗ μ Qϕ∗ and take arbitrary t ∈ T(Ω, Y ) and R ∈ C(Ω, Y ). Then

t · P · R ∈ Tϕ−1 ⇔ tϕ · Pϕ∗ · Rϕ∗ ∈ T
⇔ tϕ · Qϕ∗ · Rϕ∗ ∈ T
⇔ t · Q · R ∈ Tϕ−1,

that is P μTϕ−1 Q. So the mapping ψ : S/μ → C(Σ, X)/μTϕ−1 defined by
((Pϕ∗)μ)ψ = PμTϕ−1 is well-defined and surjective. It is also a monoid ho-
momorphism, since ((Pϕ∗)μ · (Qϕ∗)μ)ψ = ((P · Q)ϕ∗μ)ψ = (P · Q)μTϕ−1 =
PμTϕ−1 · QμTϕ−1 = ((Pϕ∗)μ)ψ · ((Qϕ∗)μ)ψ for all P, Q ∈ C(Σ, X). Hence
SM(Tϕ−1) ← S/μ ⊆ SM(T ), so SM(Tϕ−1) ≺ SM(T ).
Now, suppose ϕ is full with respect to T . We show P μTϕ−1 Q iff Pϕ∗ μT Qϕ∗ for
any P, Q ∈ C(Σ, X). Clearly, Pϕ∗ μT Qϕ∗ implies P μTϕ−1 Q. For the converse,
suppose P μTϕ−1 Q, and take arbitrary R′ ∈ C(Ω, Y ), and t′ ∈ T(Ω, Y ). There are
R ∈ C(Σ, X) and t ∈ T(Σ, X) such that Rϕ∗ μT R′ and tϕ θT t′. Hence

t′ · Pϕ∗ · R′ ∈ T ⇔ tϕ · Pϕ∗ · Rϕ∗ ∈ T
⇔ (t · P · R)ϕ ∈ T
⇔ t · P · R ∈ Tϕ−1

⇔ t · Q · R ∈ Tϕ−1

⇔ tϕ · Qϕ∗ · Rϕ∗ ∈ T
⇔ t′ · Qϕ∗ · R′ ∈ T,

which shows that Pϕ∗ μT Qϕ∗. Hence P μTϕ−1 Q iff Pϕ∗ μT Qϕ∗, and since the
function ϕ∗ : C(Σ, X) → C(Ω, Y ) is a monoid homomorphism, the mapping
C(Σ, X)/μTϕ−1 → C(Ω, Y )/μT , P μTϕ−1 �→ (Pϕ∗)μT is a monoid isomorphism
between SM(Tϕ−1) and SM(T ).

In the following example we show that the regularity condition on ϕ in the
previous lemma can not be relaxed.



30 Saeed Salehi

Example 18. Define the ranked alphabets Ω = Ω2 = {f} and Σ = Σ1 = {g, h},
and the leaf alphabet X = {u, v, w}. Let (Z3, +) be the cyclic group of order
3. Define χ : T(Ω, X) → Z3 inductively by uχ = 0, vχ = 1, wχ = 2, and
f(t, s)χ = tχ + sχ. Let T = {0}χ−1. It is easy to see that the syntactic monoid of
T consists of the μT -classes of the elementary contexts f(u, ξ), f(v, ξ), f(w, ξ), and
in fact SM(T ) � (Z3, +).

Define the tree homomorphisms ϕ, ψ : T(Σ, X) → T(Ω, X) by ϕX(x) =
ψX(x) = x for x ∈ X , and ϕ1(g) = ψ1(g) = f(v, ξ), ϕ1(h) = f(ξ, ξ), and ψ1(h) = u.
These tree homomorphisms are not regular: ξ appears twice in ϕ1(h) and does not
appear at all in ψ1(h).

We show that neither SM(Tϕ−1) nor SM(Tψ−1) can divide SM(T ). The fol-
lowing identities can be verified by straightforward computations:

– (v · h(ξ) · g(ξ))ϕχ = 0, (v · g(ξ) · h(ξ))ϕχ = 1, and
– (v · h(ξ) · g(ξ))ψχ = 1, (v · g(ξ) · h(ξ))ψχ = 0.

So, (h(ξ) · g(ξ), g(ξ) · h(ξ)) �∈ μTϕ−1 , μTψ−1 which proves that SM(Tϕ−1) and
SM(Tψ−1) are not commutative.

Remark 19. Let C be the variety of finite commutative monoids. By Example
18, the GVTL Ct is not closed under inverse non-regular tree homomorphisms;
cf. Theorem 24. So, Ct is not definable by syntactic theories in the sense of [4].
On the other hand, by Example 13, the family of definite tree languages is not
definable by syntactic monoids, even though it is definable by syntactic theories,
cf. [4] Subsection 11.1.

Thus, the concepts of “definability by syntactic theories” and of “definability by
syntactic monoids” are not comparable to each other, though they are both weaker
than “definability by syntactic algebras”.

Lemma 20. Let A = (A, Σ) be a finite algebra, and X be a leaf alphabet disjoint
from A. For any tree language L ⊆ T(ΛA, X) recognized by A�, there exists a
regular tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A), and a tree language
T ⊆ T(Σ, X ∪ A) such that L = Tϕ−1, and T can be recognized by a finite power
An where n = |A|.

Proof. Let α : X → Tr(A) be an initial assignment for A� and F ⊆ Tr(A) be a
subset such that L = {t ∈ T(ΛA, X) | tαA� ∈ F}. Define the tree homomorphism
ϕ : T(ΛA, X) → T(Σ, X ∪A) by ϕX(x) = x for all x ∈ X , and for every p ∈ Tr(A)
choose a ϕ1(p) ∈ C(Σ, A) such that ϕ1(p)A = p. Obviously ϕ is a regular tree
homomorphism. Suppose that A = {a1, · · · , an}. Let F ′ = {(p(a1), · · · , p(an)) ∈
An | p ∈ F}, and define the initial assignment β : X ∪ A → An for An by
xβ =

(
(xα)(a1), · · · , (xα)(an)

)
for all x ∈ X , and aβ = (a, · · · , a) ∈ An for all

a ∈ A. Let T be the subset of T(Σ, X ∪ A) recognized by (An, β, F ′). We show
that L = Tϕ−1. Every tree w in T(ΛA, X) is of the form w = p1

(
p2

(
· · · pk(x) · · ·

))
for some p1, · · · , pk ∈ Tr(A) (k ≥ 0) and x ∈ X . For such a tree w,

wαA�

= xα · pk · . . . · p2 · p1, and
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(wϕ)βAn

= (xα · pk · . . . · p2 · p1(a1), · · · , xα · pk · . . . · p2 · p1(an)). So,

wϕ ∈ T ⇔ (wϕ)βAn ∈ F ′

⇔ for some p ∈ F, p(a) = xα · pk · . . . · p2 · p1(a) for all a ∈ A
⇔ xα · pk · . . . · p2 · p1 ∈ F
⇔ wαA� ∈ F
⇔ w ∈ L.

Lemma 21. Let A = (A, Σ) be a finite algebra and X be a leaf alphabet disjoint
from A∪Σ. For any tree language T ⊆ T(Σ, X) recognized by A there exists a unary
ranked alphabet Λ, and a regular tree homomorphism ϕ : T(Λ, X ∪Σ0) → T(Σ, X)
such that ϕ is full with respect to T , and for every z ∈ X ∪ Σ0, Tϕ−1 ∩ T(Λ, {z})
can be recognized as a subset of T(Λ, {z}) by A�.

Proof. Let B = (B, Σ) be the syntactic algebra of T . Then B ≺ A. Suppose
T = {t ∈ T(Σ, X) | tβB ∈ F}, where β : X → B is an initial assignment for
B and F ⊆ B. Since B is the minimal tree automaton recognizing T , the set B
is generated by β(X). The mapping β : X → B can be uniquely extended to a
monoid homomorphism βc : C(Σ, X) → C(Σ, B). Since B is generated by β(X),
the mapping βB

c : C(Σ, X) → Tr(B), βB
c (Q) = βc(Q)B is surjective. Define the tree

homomorphism ϕ : T(ΛB, X∪Σ0) → T(Σ, X) by ϕX(x) = x for all x ∈ X∪Σ0, and
for every q ∈ Tr(B) choose a ϕ1(q) = Q ∈ C(Σ, X) such that βc(Q)B = q. Note that
ϕ is a regular tree homomorphism. It remains to show that ϕ is full with respect
to T and that for every z ∈ X ∪ Σ0, Lz = Tϕ−1 ∩ T(Λ, {z}) can be recognized as
a subset of T(Λ, {z}) by B�. This will finish the proof since Tr(B) ≺ Tr(A) follows
from B ≺ A by Lemma 10.7 of [18], and so B� ≺ A� by Lemma 6, which implies
that Lz can also be recognized by A�.
Firstly, we show that ϕ is full with respect to T . Let Q ∈ C(Σ, X) be a context.
For q = βc(Q)B ∈ Tr(B), q(ξ)ϕ∗ μT Q holds. By induction on the height of t we
show that for any t ∈ T(Σ, X) there is an s ∈ T(ΛB, X ∪ Σ0) such that t θT sϕ. If
t = x ∈ X ∪ Σ0, then sϕ θT t for s = t. If t = t′ · P for some P ∈ C(Σ, X) and
t′ ∈ T(Σ, X) such that the height of t′ is less than the height of t, then by the
induction hypothesis there is an s′ ∈ T(ΛB, X ∪ Σ0) such that t′ θT s′ϕ. Also, for
some p ∈ Tr(B), p(ξ)ϕ∗ μT P holds. Let s = p(s′). Then

sϕ = s′ϕ · p(ξ)ϕ∗ θT t′ · P = t.
Secondly, we show that Lz can be recognized by B� for a fixed z ∈ X ∪ Σ0. Let
1B be the identity translation of B. Define the initial assignment α : {z} → Tr(B)
for B� by zα = 1B, and let Fz = {q ∈ Tr(B) | q(zβB) ∈ F}. We show that Lz is
recognized by (B�, α, Fz). Every w ∈ T(ΛB, {z}) can be written in the form

w = q1

(
q2

(
· · · qh(z) · · ·

))
for some q1, · · · , qh ∈ Tr(B) (h ≥ 0). For such a tree w,
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wαB�

= 1B · qh · . . . · q2 · q1, and (wϕ)βB = qh · . . . · q2 · q1(zβB). Thus,

w ∈ Lz ⇔ wϕ ∈ T ⇔ (wϕ)βB ∈ F
⇔ qh · . . . · q2 · q1(zβB) ∈ F
⇔ qh · . . . · q2 · q1 ∈ Fz

⇔ wαB� ∈ Fz .

So, Lz = {w ∈ T(Λ, {z}) | wαB� ∈ Fz}.

We end the section by proving a Variety Theorem for tree languages and syn-
tactic monoids, and presenting some examples that justify the theorem (another
interesting example is presented in [12]).

Before presenting the main theorem we note two remarks.

Remark 22. Let Λ be a unary ranked alphabet. For every leaf alphabet X and
every subset Y ⊆ X , C(Λ, Y ) = C(Λ, X), and the relation μT for a tree language
T ⊆ T(Λ, Y ) on C(Λ, Y ) is the same relation μT on C(Λ, X) when T is viewed as
a subset of T(Λ, X).

So, if a family of tree languages V = {V (Σ, X)} is definable by syntactic
monoids, then for every unary ranked alphabet Λ, and any leaf alphabets X and
Y , if Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).

Recall the notion of V a at the beginning of the section.

Remark 23. By Propositions 6.13 and 5.8(b) of [18] it follows that every finite
algebra can be represented as a subdirect product of the syntactic algebras of some
tree languages that are recognizable by the algebra. This implies that for any GVTL
V and any finite algebra A, if every tree language recognizable by A belongs to V ,
then A ∈ V a.

Theorem 24. A family of recognizable tree languages V is definable by syntactic
monoids iff V is a GVTL that is closed under inverse regular tree homomorphisms
and satisfies the following conditions:

(1) For every unary ranked alphabet Λ, and any leaf alphabets X and Y , if Y ⊆ X
then V (Λ, Y ) ⊆ V (Λ, X).

(2) For any regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) which is full with
respect to a tree language T ⊆ T(Ω, Y ), if Tϕ−1 ∈ V (Σ, X) then T ∈ V (Ω, Y ).

Proof. That for any VFM M, Mt satisfies the conditions of Theorem 24 follows
from Lemma 17, Remark 22, and the facts mentioned at the beginning of the
section. For the converse, suppose the GVTL V satisfies the conditions presented
in the theorem. We complete the proof of the theorem by showing that V a satisfies
the condition of Theorem 8. Indeed, Theorem 8 implies then that there is a VFM
M such that V a = Ma, and

T ∈ V ⇔ SA(T ) ∈ V a ⇔ Tr(SA(T )) ∈ M ⇔ SM(T ) ∈ M
holds for every tree language T by Remarks 11 and 1, which proves that V = Mt.
So, all we have to show is that A ∈ V a iff A� ∈ V a for any A.
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Let A = (A, Σ) be a finite algebra in V a. By Lemma 20, any tree language L ⊆
T(ΛA, X) recognized by A� can be written as L = Tϕ−1, where ϕ : T(ΛA, X) →
T(Σ, X ∪ A) is a regular tree homomorphism, and T is a tree language recognized
by some power An of A. Then An ∈ V a implies that T ∈ V (Σ, X ∪A), and hence
L = Tϕ−1 ∈ V (ΛA, X). This holds for every tree language L recognizable by A�,
so A� ∈ V a by Remark 23.

Now, suppose A� ∈ V a for a finite algebra A = (A, Σ). Let T ⊆ T(Σ, X) be a
tree language recognizable by A. By Lemma 21, there is a unary ranked alphabet
Λ and a regular tree homomorphism ϕ : T(Λ, X ∪Σ0) → T(Σ, X) full with respect
to T such that for every z ∈ X ∪ Σ0, Lz = Tϕ−1 ∩ T(Λ, {z}) can be recognized
by A� as a subset of T(Λ, {z}). So, Lz ∈ V (Λ, {z}), thus Lz ∈ V (Λ, X ∪ Σ0).
Hence Tϕ−1 =

⋃
z∈X∪Σ0

Lz ∈ V (Λ, X ∪ Σ0). Since ϕ is full with respect to T ,
then T ∈ V (Σ, X). This holds for every tree language T recognizable by A, hence
A ∈ V a by Remark 23.

Example 25. It was shown in Example 13 that Def1 is not definable by syntactic
monoids. Here we show that it does not satisfy condition (2) of Theorem 24.
Let Σ, X, T, T ′ be as in Example 13. Define the regular tree homomorphism ϕ :
T(Σ, X) → T(Σ, X), by ϕX(x) = x, ϕX(y) = y, and ϕ2(f) = f(x, f(ξ1, ξ2)),
ϕ2(g) = g(y, g(ξ1, ξ2)). Now ϕ is full with respect to T ′ since for any t ∈ T(Σ, X),
if t ∈ T ′ then f(y, x)ϕθT ′ t, and if t �∈ T ′ then g(y, x)ϕθT ′ t. Similarly, for P ∈
C(Σ, X), if the leftmost leaf of P is x then f(y, ξ)ϕ∗ μT ′ P , if the leftmost leaf of P
is y then g(y, ξ)ϕ∗ μT ′ P , and if the leftmost leaf of P is ξ then ξϕ∗ μT ′ P . Clearly
T ′ϕ−1 = T , since for any t ∈ T(Σ, X), the leftmost leaf of tϕ is x iff either t = x
or the root of t is f . By Example 13, T ′ϕ−1 = T ∈ Def1, but T ′ �∈ Def1.

Example 26. Let Ap = {Ap(Σ, X)} be the family of aperiodic tree languages.
It was shown to be a GVTL in Example 7.8 of [18]. It is also known that Ap is
definable by the variety of aperiodic (syntactic) monoids, see [20]. The argument
of Example 7.8 in [18] showing that Ap is closed under inverse g-morphisms can be
applied to show that Ap is in fact closed under inverse regular tree homomorphisms.
It is also straightforward to see that Ap satisfies condition (1) of Theorem 24. We
show that it also satisfies condition (2). Suppose ϕ : T(Σ, X) → T(Ω, Y ) is a regular
tree homomorphism full with respect to T ⊆ T(Ω, Y ), and Tϕ−1 ∈ Ap(Σ, X).
There is an n such that for all t ∈ T(Σ, X) and all P, Q ∈ C(Σ, X), t · Pn · Q ∈
Tϕ−1 ⇔ t · Pn+1 · Q ∈ Tϕ−1. For any s ∈ T(Ω, Y ) and any R, U ∈ C(Ω, Y ), there
are t ∈ T(Σ, X) and P, Q ∈ C(Σ, X) such that tϕ θT s, Pϕ∗ μT R, and Qϕ∗ μT U .
So, s · Rn · U ∈ T ⇔ tϕ · Pnϕ∗ · Qϕ∗ ∈ T ⇔ t · Pn · Q ∈ Tϕ−1 ⇔

t · Pn+1 · Q ∈ Tϕ−1 ⇔ tϕ · Pn+1ϕ∗ · Qϕ∗ ∈ T ⇔ s · Rn+1 · U ∈ T,

which shows that T ∈ Ap(Ω, Y ).

Example 27. The family of nilpotent tree languages Nil = {Nil(Σ, X)} which
consists of finite and cofinite tree languages is a GVFA (see [18], Example 7.5). Let
Λ = Λ1 = {α} be a unary ranked alphabet and X = {x, y} be a leaf alphabet. Let
T = {α(y), α(α(y)), α(α(α(y))), · · · }. Clearly T ∈ Nil(Λ, {y}), but T �∈ Nil(Λ, X).
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Hence, Nil does not satisfy the condition (1) of Theorem 24, so it is not definable
by syntactic monoids.

5 Definability by Semigroups

In this section, we show how to modify the above results as to yield characterizations
of varieties of finite algebras definable by translation semigroups and of varieties of
tree languages definable by syntactic semigroups.

5.1 Algebras Definable by Translation Semigroups

The difference between the translation monoid and the translation semigroup of an
algebra is that the latter does not automatically contain the identity translation,
although it may be included as an elementary translation or as a composition of
some elementary translations.

Denote the translation semigroup of an algebra A = (A, Σ) by TrS(A) and let
ΛA be as in Definition 4 except that Tr(A) is replaced with TrS(A). We associate
with A a new symbol IA that does not appear in A ∪ Σ ∪ TrS(A). Define the
ΛA-algebra Aς = (TrS(A) ∪ {IA}, ΛA) by pA

ς

(q) = q · p and pA
ς

(IA) = p for all
p, q ∈ TrS(A).

Lemma 28. For any finite algebras A = (A, Σ) and B = (B, Ω),
(1) TrS(A) ∼= TrS(Aς);
(2) If TrS(A) ≺ TrS(B), then Aς ≺g Bς ; and
(3) TrS(A) × TrS(B) ∼= Tr(κ(Aς ,Bς)) for some g-product κ(Aς ,Bς).
Moreover, for any k ≥ 1, and algebras A1, · · · ,Ak, there is a g-product P of

Aς
1, · · · ,Aς

k such that TrS(A1) × · · · × TrS(Ak) ∼= TrS(P).

Proof. The statements (1) and (3) can be proved similarly as their counterparts in
Lemmas 5, 6, and 7 just by replacing the identity translation 1A (and 1B) with IA
(with IB). We prove (2):

For a semigroup S that satisfies TrS(A) ← S ⊆ TrS(B), let ΛS = {p ∈ ΛB | p ∈
S}. Then clearly S = (S ∪ {IB}, ΛM ) ⊆g Bς where the interpretation of p ∈ ΛS in
S is defined by pS(q) = q · p and pS(IB) = p for p, q ∈ S. Suppose ϕ : S → TrS(A)
is a semigroup epimorphism. Define the assignment κ : ΛS → ΛA by qκ = qϕ for
all q ∈ S. It is clear that κ is surjective and for all q, r ∈ S ⊆ TrS(B),

(
qB

ς

(r)
)
ϕ =

(r · q)ϕ = rϕ · qϕ = qϕAς

(rϕ) = (qκ)A
ς

(rϕ). Hence (κ, ϕ̃) : S → Aς defined by
sϕ̃ = sϕ for s ∈ S and IBϕ̃ = IA, is a g-epimorphism. Thus A� ←g S ⊆g B�.

The following characterization of the class of finite algebras definable by trans-
lation semigroups can be proved similarly as Theorem 8.

Theorem 29. A class of finite algebras K is definable by translation semigroups
iff it is a GVFA such that the equivalence A ∈ K iff Aς ∈ K holds for any finite
algebra A.
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5.2 Tree Languages Definable by Syntactic Semigroups

Let X be a leaf alphabet and Σ be a ranked alphabet such that Σ �= Σ0. A trivial
tree language T consists of constant or leaf symbols only, i.e., T ⊆ Σ0∪X . For such
a tree language T , the syntactic semigroup of T is the trivial semigroup consisting of
a zero element, while its syntactic monoid consists of a zero element and an identity
element. Since the trivial semigroup belongs to every variety of finite semigroups,
any family of tree languages definable by syntactic semigroups should contain all
these trivial tree languages. So, it is reasonable to consider +–varieties of tree
languages (cf. [4] Section 11).

The sets of non-trivial ΣX-trees and non-trivial ΣX-contexts are defined by
T+(Σ, X) = T(Σ, X) \ (Σ0 ∪X) and C+(Σ, X) = C(Σ, X) \ {ξ}, respectively. Any
subset of T+(Σ, X) is called a trivial-free tree language.

For a trivial-free tree language T ⊆ T+(Σ, X) the syntactic semigroup of T is
the quotient semigroup C+(Σ, X)/μT where μT is restricted to C+(Σ, X).

A regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is called strict, if ϕm(f) is
not trivial for any f ∈ Σm with m > 0, and ϕX(X), ϕ0(Σ0) ⊆ Y ∪Ω0 (cf. Definition
11.1 of [4]). We note that if ϕ is strict and regular, then T+(Σ, X)ϕ−1 = T+(Ω, Y ).
A family of regular trivial-free tree languages {V (Σ, X)} ⊆ {T+(Σ, X)} is called a
+–GVTL if it is closed under Boolean operations, inverse translations and inverse
strict regular tree homomorphisms, and moreover satisfies the following conditions:
(1) For every unary ranked alphabet Λ, and any leaf alphabets X and Y , if Y ⊆ X
then V (Λ, Y ) ⊆ V (Λ, X).
(2) For any strict regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) full with
respect to T ⊆ T+(Ω, Y ), if Tϕ−1 ∈ V (Σ, X) then T ∈ V (Ω, Y ).

That any variety of trivial-free tree languages definable by syntactic semigroups
is a +–GVTL can be proved analogously to that of the monoid case. We claim the
converse in the following theorem.

Theorem 30. A family of trivial-free tree languages is definable by syntactic semi-
groups iff it is a +–GVTL of tree languages.

The proof, once we have proved the following semigroup counterparts of Lemmas
20 and 21, is very similar to that of Theorem 24.

Lemma 31. Let A = (A, Σ) be a finite algebra, and X be a leaf alphabet disjoint
from A ∪ Σ.

(1) For any trivial-free tree language L ⊆ T+(ΛA, X) recognized by Aς , there
exists a strict regular tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A), and a
trivial-free tree language T ⊆ T+(Σ, X ∪ A), such that L = Tϕ−1, and T can be
recognized by a finite power of A.

(2) For any trivial-free tree language T ⊆ T+(Σ, X) recognized by A there
exists a unary ranked alphabet Λ and a strict regular tree homomorphism ϕ :
T(Λ, X ∪ Σ0) → T(Σ, X) such that ϕ is full with respect to T , and for every
z ∈ X ∪ Σ0, Tϕ−1 ∩ T(Λ, {z}) can be recognized by Aς as a subset of T(Λ, {z}).
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Proof. (1) Suppose for an initial assignment α : X → Tr(A) ∪ {IA} and a subset
F ⊆ Tr(A) ∪ {IA}, L = {t ∈ T(ΛA, X) | tαA� ∈ F} holds. Since L is trivial-
free, we can assume that IA �∈ F , or equivalently F ⊆ Tr(A). Let Y = {x ∈
X | xα = IA}. Define the tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A) by
ϕX(x) = x for all x ∈ X , and for every p ∈ Tr(A) choose a ϕ1(p) ∈ C(Σ, A) such
that ϕ1(p)A = p. Obviously ϕ is a strict regular tree homomorphism. Suppose
that A = {a1, · · · , am}. Let F ′ = {(p(a1), · · · , p(am)) ∈ Am | p ∈ F}, and define
the initial assignment β : X ∪ A → Am by xβ =

(
(xα)(a1), · · · , (xα)(am)

)
for

all x ∈ X \ Y , yβ =
(
a1, · · · , am

)
for all y ∈ Y , and aβ = (a, · · · , a) ∈ Am

for all a ∈ A. Let T be the subset of T(Σ, X ∪ A) recognized by (Am, β, F ′).
We show L = Tϕ−1. Every trivial-free tree w in T+(ΛA, X) is of the form w =
p1

(
p2

(
· · · pk(x) · · ·

))
for some p1, · · · , pk ∈ Tr(A) (k > 0) and x ∈ X . For such

a tree w, wαA�

= xα · pk · . . . · p2 · p1 if x ∈ X \ Y , and wαA�

= pk · . . . · p2 · p1

if x ∈ Y ; also (wϕ)βAm

= (xα · pk · . . . · p2 · p1(a1), · · · , xα · pk · . . . · p2 · p1(am))
holds. So, for x ∈ X \ Y we have wϕ ∈ T iff (wϕ)βAm ∈ F ′ iff “for some p ∈ F ,
p(a) = xα · pk · . . . · p2 · p1(a), for all a ∈ A” iff xα · pk · . . . · p2 · p1 ∈ F iff wαA� ∈ F
iff w ∈ L. Similarly, for x ∈ Y we have wϕ ∈ T iff (wϕ)βAm ∈ F ′ iff “for some
p ∈ F , p(a) = pk · . . . · p2 · p1(a), for all a ∈ A” iff pk · . . . · p2 · p1 ∈ F iff wαA� ∈ F
iff w ∈ L.
(2) The proof is almost identical to that of Lemma 21, only 1A is replaced with IA.

It was shown in Example 13 that the variety of 1-definite tree languages is
not definable by syntactic monoids. In the following example we show that its
trivial-free counterpart is not definable by syntactic semigroups.

Example 32. The syntactic semigroup of the trivial-free 1-definite tree language
T \ {x} where T is defined in Example 13, consists of two elements both of which
are right zeros. Let Λ = Λ1 = {α, β} and X = {x, y}. Let T ′′ be the set of all
ΛX-trees which either have root label α and leaf label x or have root label β and
leaf label y, i.e., T ′′ = {α(p(x)) | p ∈ C(Λ, X)} ∪ {β(p(y)) | p ∈ C(Λ, X)}. It is
easy to see that the syntactic semigroup of T ′′ consists of two right zero elements,
but clearly T ′′ is not 1-definite. So, the trivial-free 1-definite tree languages are not
definable by syntactic semigroups.

Indeed, T ′′ is not k-definite for any k ≥ 1, thus the trivial-free definite tree
languages are not definable by syntactic semigroups.

5.3 Monoids vs. Semigroups

In this subsection we show that the concepts of “definability by semigroups” and
“definability by monoids” are not comparable to each other.

The abbreviation VFS stands for variety of finite semigroups. For a VFS S,
let Sa be the class of all finite algebras whose translation semigroups are in S,
and St be the family of all recognizable trivial-free tree languages whose syntactic
semigroups are in S (cf. Definitions 3 and 12).
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We recall Proposition 10.9 of [18] which can be extended to VFS’s.

Theorem 33. For any VFM M and VFS S, the identities Mat = Mt, Mta = Ma,
Sat = St and Sta = Sa hold.

Theorem 34. (1) There is a VFM M for which no VFS S, satisfies Ma = Sa or
Mt = St.
(2) There is a VFS S such that for no VFM M, Ma = Sa or Mt = St holds.

Proof. (1) Let M be the class of all finite monoids which satisfy the equation
y · x · x = y. Obviously, M is a VFM. Let Σ = Σ1 = {f} and put the algebras
A = (A, Σ) and B = (B, Σ) be defined by A = {a}, fA(a) = a, and B = {a, b},
fB(a) = fB = a. Then Tr(A) ∼= TrS(A) ∼= TrS(B) is the trivial semigroup, but the
monoid Tr(B) consists of a zero element (0) and a unit (1). Now, A ∈ Ma, but
B �∈ Ma since Tr(B) does not satisfy the equation y · x · x = y: 1 · 0 · 0 = 0 �= 1.
Hence, Ma is not definable by translation semigroups. Now if Mt = St hold for a
VFS S, then by Theorem 33 we would have Ma = Mta = Sta = Sa, contradiction.

(2) Let S be the variety of finite right zero semigroups, i.e., the class of all
semigroups that satisfy the equation y ·x = x. It can be easily seen that if T and T ′

are the tree languages of Example 13, then T \ {x} ∈ St(Σ, X) since the syntactic
semigroup of T \ {x} has two elements both of which are right zeros. On the other
hand, the syntactic semigroup of T ′ consists of an identity element and two right
zeros (like its syntactic monoid). Thus T ′ �∈ St(Σ, X). This shows that St is not
definable by syntactic monoids (since T \ {x} and T ′ have isomorphic syntactic
monoids) whence Mt = St does not hold for any VFM M. On the other hand, if
Ma = Sa holds for some VFM M, then by Theorem 33, Mt = Mat = Sat = St,
contradiction.

Theorems 34 justifies the task of studying the definability by semigroup sepa-
rately from the monoid case.

6 String languages definable by translation
monoids

In this final section, we present for strings the results corresponding to those of
the previous sections. Familiarity with the basic notions of string languages and
automata are presumed.

Let X be a finite alphabet, and X∗ be the set of words over X . A string
language over X is any subset of X∗. In the literature the syntactic monoid SM(L)
of a string language L ⊆ X∗ is defined to be the quotient monoid X∗/θL where
w θL w′ ⇐⇒ ∀u, v ∈ X∗(uwv ∈ L ↔ uw′v ∈ L).

For a monoid M = (M, ·) the translations of M are the unary functions on
M defined by x �→ m · x · m′ for some m, m′ ∈ M . Denote the composition of the
translations p and q by p◦q, that is p◦q(m) = p(q(m)) for all m ∈ M . We note that
the set of translations of M is a monoid with respect to composition operation.
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Denote the translation monoid of M by Tr(M). For a string language L, let the
translation monoid TM(L) of L be the translation monoid of the syntactic monoid
of L, i.e., TM(L) = Tr(SM(L)).

Note that by necessity the terms ‘syntactic monoid’ and ‘translation monoid’
have different meanings and interpretations in this section.

Eilenberg’s [3] variety theorem establishes a correspondence between a variety
of finite monoids M and a variety of string languages L = {L (X)} such that for
any L ⊆ X∗, L ∈ L (X) ⇐⇒ SM(L) ∈ M.

A variety of string languages V = {V (X)} is definable by translation monoids if
there exists a variety of finite monoids M such that for any L ⊆ X∗, L ∈ V (X) ⇐⇒
TM(L) ∈ M. We shall characterize these varieties of string languages in Theorem
40 below.

It is known that not any variety of string languages can be defined by translation
monoids (one example is the class of reverse definite, or frontier testable, string
languages, cf. [21]).

For a monoid M = (M, ·), the reverse of M is the monoid MR = (M, ·R) where
m ·R m′ = m′ ·m for m, m′ ∈ M . Clearly (MR)R = M. We show that a variety of
finite monoids is definable by translation monoids (see Definition 3) iff it is closed
under the reversing operation.

First, we show that the reverse of a monoid and the original monoid have iso-
morphic translation monoids.

Lemma 35. For a monoid M = (M, ·), Tr(M) ∼= Tr(MR).

Proof. For any translation p(x) = m ·x·m′ (m, m′ ∈ M) of M let pR(x) = m′ ·x·m.
The mapping Tr(M) → Tr(MR), p �→ pR is an isomorphism.

Next, we present some connections between the translation monoid of a monoid
and the original monoid.

Lemma 36. For any monoid M, (1) M ⊆ Tr(M), and (2) Tr(M) ← M×MR.

Proof. Let M = (M, ·). (1) For any m ∈ M , let pm be the translation defined by
pm(x) = m · x on M . It is easy to see that the mapping m �→ pm is a monoid
monomorphism that embeds M into Tr(M). (2) For any m, n ∈ M , let q(m,n) be
the translation of M defined by q(m,n)(x) = m · x · n. It can be easily seen that
(m, n) �→ m · x · n yields an epimorphism M×MR → Tr(M).

Finally, we characterize the varieties of finite monoids definable by translation
monoids.

Theorem 37. A variety of finite monoids M is definable by translation monoids
iff it is closed under the reversing operation, i.e., M ∈ M ⇒ MR ∈ M for any
monoid M.

Proof. By Lemma 35, every variety of finite monoids definable by translation
monoids is closed under the reversing operation. Now suppose a variety of finite
monoids M is closed under the reversing operation. We show that M ∈ M ⇐⇒
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Tr(M) ∈ M for any monoid M. The implication Tr(M) ∈ M ⇒ M ∈ M follows
from Lemma 36(1). For the converse, let M ∈ M. Then also MR ∈ M, and hence
Tr(M) ∈ M by Lemma 36(2).

The proof also implies that:

Corollary 38. If a variety of finite monoids M is definable by translation monoids,
then M is generated by the translation monoids of its members.

In the sequel we characterize the varieties of string languages definable by trans-
lation monoids.

For a string w = x1x2 . . . xn ∈ X∗ define the reverse of w as wR = xn . . . x2x1.
We note that uRvR = (vu)R holds for all u, v ∈ X∗. For a string language L ⊆ X∗,
LR = {wR ∈ X∗ | w ∈ L}.

The following lemma is a known fact (see e.g. [3]).

Lemma 39. For any string language L ⊆ X∗, SM(LR) ∼= SM(L)R.

Our characterization of the varieties of string languages definable by translation
monoids is the following.

Theorem 40. A class of string languages V is definable by translation monoids
iff it is a variety of string languages closed under the reversing operation, i.e.,
L ∈ V (X) ⇒ LR ∈ V (X) for any string language L ⊆ X∗.

Proof. Since Lemmas 39 and 35 imply that TM(L) ∼= TM(LR) for any string
language L, any variety of string languages definable by translation monoids is
closed under the reversing operation. Now, suppose V is a variety of string lan-
guages closed under the reversing operation. By Eilenberger’s variety theorem
there is a variety of finite monoids M such that for any string language L ⊆ X∗,
L ∈ V (X) ⇔ SM(L) ∈ M. We show that the class M also defines the translation
monoids of V , that is to say, for any L ⊆ X∗, L ∈ V (X) ⇔ TM(L) ∈ M.
First, suppose L is in V (X). Then also LR ∈ V (X), so SM(L) ∈ M and
SM(LR) ∈ M. By Lemma 39, SM(L)R ∈ M, and since TM(L) is an epimorphic im-
age of SM(L) × SM(L)R by Lemma 36, TM(L) ∈ M. Next, suppose TM(L) ∈ M
for a string language L ⊆ X∗. Since by Lemma 36, SM(L) is isomorphic to a
submonoid of TM(L), then SM(L) ∈ M, and hence L ∈ V (X).

Corollary 41. Let V be a variety of string languages definable by translation
monoids. Then the variety generated by the translation monoids of V is equal to
the variety generated by the syntactic monoids of V .

An analogue of Theorem 40 can be proved for translation semigroups.
Unlike Theorems 24 and 30 for tree languages, by Theorem 40 checking whether

or not a variety of string languages is definable by translation monoids or semigroups
is rather easy. For example the variety of definite string languages and the variety of
reverse definite string languages are not definable by translation semigroups, while
the variety of aperiodic string languages and the variety of commutative string
languages (i.e., having commutative syntactic monoids) are definable by translation
monoids.
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[4] Ésik Z., A variety theorem for trees and theories, Automata and formal lan-
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