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On the Finiteness of Picture Languages of

Synchronous Deterministic Chain Code Picture

Systems

Bianca Truthe∗

Abstract

Chain Code Picture Systems are Lindenmayer systems over a special
alphabet. The strings generated are interpreted as pictures. This leads to
Chain Code Picture Languages. In this paper, synchronous deterministic
Chain Code Picture Systems (sD0L systems) are studied with respect to the
finiteness of their picture languages.

First, a hierarchy of abstractions is developed, in which the interpretation
of a string as a picture passes through a multilevel process. Second, on the
basis of this hierarchy, an algorithm is designed which decides the finiteness
or infiniteness of any sD0L system in polynomial time.

1 Introduction

Important tasks in the area of picture processing are describing, creating, storing
and recognizing pictures. With chain codes Freeman provided, in the 1960s, a
possibility for describing line graphics [Fre74]. A picture is formed by a sequence
of drawing commands that are represented by symbols (letters). A string describes
a picture, which is built by the drawing commands of its letters. Freeman uses
an alphabet { 0, . . . , 7 }, whose elements are interpreted according to the following
sketch:
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The picture to the right, for ex-
ample, is generated by the word
1261204153445672606:
(For reconstructing start at the
tip of the nose.)
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This connection of strings and pictures suggests to search for relations between
formal languages and picture sets. For language theoretical considerations the
four directions { 0, 2, 4, 6 } are sufficient, because the additional four do not yield
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completely different results nor require different methods to prove the decidability
of finiteness [DH89].

According to plotter commands, r, u, l, d are written as the directions right,
up, left, down. With chain codes, patterns like curves, fractals or folklore patterns
can be described:

Figure 1: Applications of chain codes

Chain Code Picture Systems are Lindenmayer systems over chain codes; in this
connection, the picture languages generated are of interest.

This paper follows investigations on the decidability of the finiteness of picture
languages generated by synchronous Chain Code Picture Systems (sT0L systems)
presented by Dassow and Hromkovič in [DHr92]. That paper does not say anything
about how many pictures are generated in the case of finiteness. During the work
on this topic it turned out that synchronous deterministic Chain Code Picture
Systems with the synchronization parameter k = 1 can generate finite or infinite
picture languages, which is in contrast to a statement in [DHr92].

In this paper, conditions are obtained under which such a system generates a
finite picture language or an infinite one. For this, a hierarchy of abstractions was
developed such that the interpretation of a string as a picture passes through a
multilevel process.

On this basis, a complete system of finiteness conditions is obtained such that
one can decide, in polynomial time, for any sD0L system (with an arbitrary syn-
chronization parameter), whether the picture language generated is finite or infinite,
and how many pictures are generated in the case of finiteness.

2 Fundamentals

The finiteness investigations about picture languages of synchronous deterministic
Chain Code Picture Systems are based on a hierarchy of abstractions. The lowest
level covers the strings over the alphabet { r, l, u, d }. Graphs of different levels
of abstraction, that represent various interpretations of the strings, are associated
with the strings. Such a hierarchy exists for each Chain Code Picture System over
the alphabet { r, l, u, d }. The lowest level contains the string set generated by the
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system. The graph set of the highest level is regarded as the picture language
generated by the system.

2.1 Structures over an Alphabet

Let A = { r, l, u, d } be an alphabet. The set A∗ is the set of all strings (with
a finite length) over the alphabet A that are built by concatenating letters of A.
The empty string is symbolized by λ; the set A∗ without the empty string by
A+: A+ = A∗ \ {λ}. The free structure (A∗, ·) over the alphabet A with the
concatenation operation · is a monoid.

The length #w of a string w is the number of letters in w. The set of all strings
of length n from A∗ is denoted by An. A string w ∈ An is composed of letters
w1, . . . , wn if not stated otherwise: w = w1 · · ·wn. A substring w1 · · ·wi (0 <− i <− n)
is written as −→wi (−→w0 = λ).

For a string w ∈ An and a letter x ∈ A, #xw is the number of occurrences of x
in w. For a string w ∈ A∗, [w] is the set of all letters in w:

[w] = { x | #xw >− 1 } .

The elements w of A∗ are interpreted as mappings on Z
2:

w : Z
2 −→ Z

2 (w ∈ A∗),

which are inductively defined as follows. The atomic mappings r, l, u, d assign to
a point q ∈ Z

2 its neighbours:

r(q) = q + (1, 0) l(q) = q − (1, 0)
u(q) = q + (0, 1) d(q) = q − (0, 1) .

The translations x(q)− q of any point q ∈ Z
2 to its neighbours x(q) are designated

by vx ∈ Z
2:

vx =

⎧⎪⎪⎨⎪⎪⎩
(1, 0), if x = r
(−1, 0), if x = l
(0, 1), if x = u
(0,−1), if x = d

.

The mappings x from A are translations. Every mapping x ∈ A is surjective (the
range of values is Z

2), injective (from x(p) = x(q) always follows p = q) and,
therefore, bijective (one to one).

Two arbitrary mappings x, y are called disjoint if their function values differ for
each argument.

Proposition 1. Every two different mappings x, y ∈ A, (x �= y), never give the
same neighbour: ∀q ∈ Z

2 : x(q) �= y(q). This means that the mappings in A are
disjoint.
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The empty string corresponds to the identical mapping

λ : Z
2 −→ Z

2 with q �→ q.

A compound string vw ∈ A∗ stands for the concatenated mapping v ◦ w:

v ◦ w : Z
2 −→ Z

2 with q �→ w(v(q)).

The zero point of the Z
2 is symbolized by o: o = (0, 0).

This interpretation of strings as mappings on Z
2 is a homomorphism from the

free structure (A∗, ·) in the free structure (A∗, ◦). Hence (A∗, ◦) is also a monoid.
For each mapping w ∈ A∗, an inverse mapping w−1 ∈ A∗ exists:

– The inverse of the identical mapping is the identical mapping: λ−1 = λ.
– The inverses of the atomic mappings are r−1 = l, l−1 = r, u−1 = d, d−1 = u,

because vx = −vx−1 (x ∈ A).
– Let w = w1 ◦ · · · ◦wn (wi ∈ A, i = 1, . . . , n) be a concatenated mapping. Then

the inverse mapping is w−1 = w−1
n ◦ · · · ◦ w−1

1 .

This result is stated in the following proposition.

Proposition 2. The algebraic structure (A∗, ◦) is a group.

The operator ◦ is not written if the context shows which operation is meant.
For example, (x1x2)(o) implies that x1x2 symbolizes the concatenated mapping
x1 ◦ x2, whereas x1x2 in [x1x2] represents the compound string x1x2.

The mappings ru, ur and ld, dl assign the diagonal neighbours to a point q:

ru(q) = ur(q) = q + (1, 1); ld(q) = dl(q) = q − (1, 1).

These relations are symbolized by ¯ and ⊥: x x̄ x⊥ x̄⊥

r l u d
l r d u
u d r l
d u l r

The mappings w ∈ An are translations: w(p + q) = w(p) + q (can be proved by
induction over n). This leads to the following proposition about the correlation
between mappings of the zero point.

Proposition 3. Let v, w be two words of A∗. The mapping of the zero point by
the compound mapping v ◦ w is (v ◦ w)(o) = v(o) + w(o).

Proof. The mapping of the zero point by v ◦ w yields

(v ◦ w)(o) = w(v(o))
= w(o + v(o))
= w(o) + v(o)
= v(o) + w(o).
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2.2 Graphical Embedding

A grid graph is a graph with the following properties:

– The set of vertices is a subset of Z
2.

– Each edge connects two neighbours q ∈ Z
2 and x(q) with x ∈ A.

The position of the vertices is essential; renaming of the vertices does not yield an
isomorphic graph. For example, the graphs � � � and � �

�

should be considered as
non-identical.

For each point a ∈ Z
2, functions exist that assign, to a word w ∈ An

– the set of vertices �a(w) = { −→wi(a) | i = 0, . . . n },
– the directed grid graph (possibly with multiple edges)

ga(w) =
(
�a(w), { (−−→wi−1(a),−→wi(a)) }i=1,...,n

)
,

– the simple directed grid graph sa(w) of ga(w) (without multiple edges),
– the set of edges ‖aw of sa(w) in a different notation

‖aw = { (−−→wi−1(a), wi) | i = 1, . . . , n } ,

– the picture (the shade of sa(w))

pa(w) = (�a(w), { (−−→wi−1(a),−→wi(a)), (−→wi(a),−−→wi−1(a)) | i = 0, . . . , n }) .

If the reference point a is the zero point, the upper index will be omitted. The set
‖aw contains a pair (q, x) with q ∈ Z

2 and x ∈ A if and only if (q, x(q)) is an edge
in the graph sa(w) (if (q, q̃) is an edge then x ∈ A with x(q) = q̃ exists uniquely –
due to Prop. 1). Thus, the graph sa(w) is one to one associated with the set ‖aw.
Throughout this paper, this set is referred to as the edge set of w with respect to
a.

The following example shall demonstrate these correlations:

Example 1. Let w = ruullurddrurrulddldr be a word from A∗.

If a plotter takes this word as a sequence
of elementary commands for drawing, the
resulting picture will be:
For investigations on picture languages generated by sD0L systems, it is necessary
also to know how a picture is drawn. To show how a pictured arises, the lines are
marked by arrows indicating the drawing direction. Additionally, the grid points
are marked (the only points where the direction can change). This leads to the
following grid graph (beginning at the zero point). Note that the line from (1, 1)
upwards is drawn twice.
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The vertex set �(w) contains all grid points visited:
o, r(o) = (1, 0), ru(o) = (1, 1), ruu(o) = (1, 2), . . ., w(o) = (2, 0).

The directed grid graph ga(w) consists of the vertex set �(w) and all edges
on the ‘drawing path’: (o, (1, 0)), ((1, 0), (1, 1)), ((1, 1), (1, 2)), . . ., ((0, 1), (1, 1)),
((1, 1), (1, 2)), ((1, 2), (2, 2)), . . . , ((1, 0), (2, 0)). The edge ((1, 1), (1, 2)) occurs twice
because the underlined letters in ruullurddrurrulddldr both produce this line (be-
cause of ru(o) = (1, 1) = ruullurddr(o)). The edge set ‖w consists of all edges
passed as elements of Z

2 ×A instead of Z
2 × Z

2: (o, r), ((1, 0), u), ((1, 1), u), . . . ,
((1, 1), d), ((1, 0), r).

Since the pictures are shades of the simple directed graphs, one immediately
notices that two words having the same edge set also represent the same picture.
This result is stated in the following proposition, so it can be referred to.

Proposition 4. If the edge sets ‖v and ‖w of two words v, w ∈ A∗ coincide, so the
pictures p(v) and p(w) do as well.

The following proposition states correlations between concatenating strings and
combining graphs.

Proposition 5. The concatenation of strings is associated with a union of vertex
sets, directed graphs, edge sets, and pictures: For each point a ∈ Z

2 and any two
strings v, w ∈ A∗, one has

�a(vw) = �a(v) ∪�v(a)(w),
ga(vw) = ga(v) ∪ gv(a)(w),
‖avw = ‖av ∪ ‖v(a)w,

pa(vw) = pa(v) ∪ pv(a)(w).

Proof. Let v be an element of An and w be an element of Am. Then the union of
the vertex sets �a(v) and �v(a)(w) is

�a(v) ∪ �v(a)(w) = { −→vi (a) | i = 0, . . . , n } ∪ { −→wi(v(a)) | i = 0, . . . , m }
= { a, v1(a), . . . , v(a), w1(v(a)), . . . , vw(a) }
= �a(vw).

The union of the other sets can be shown similarly. (Note that the non-simple
graphs possibly contain multiple edges.)

The sets

– A∗ of strings,
– G =

{
ga(w) | w ∈ A∗, a ∈ Z

2
}

of directed graphs,
– S =

{
sa(w) | w ∈ A∗, a ∈ Z

2
}

of simple directed graphs, and
– P =

{
pa(w) | w ∈ A∗, a ∈ Z

2
}

of pictures
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Figure 2: Hierarchy of abstractions

form a hierarchy of different levels of abstraction. A part of this hierarchy is to be
seen in Figure 2.
A later derivation of words by a simultanous replacing of letters can be interpreted
as a derivation of graphs by replacing an edge by a graph. In deterministic systems,
one letter is always replaced by the same word. Thus, one edge is always replaced
by the same graph – a derivation of an edge is independent from the number of its
occurrences. In non-deterministic systems however, a letter at one position can be
replaced by a different word than the same letter at another position. Hence, one
occurrence of an edge can be replaced by a different graph than another occurrence
of the same edge – the number of occurrences is essential. For this reason, the
graphs with multiple edges are kept in the hierarchy, although the simple graphs
are sufficient in this paper.

A rectangle R determined by two points p = (px, py) and q = (qx, qy) is the set
of all points a = (ax, ay) between p and q:

R =
{

a ∈ Z
2

∣∣∣∣ px
<− ax

<− qx or qx
<− ax

<− px and
py

<− ay
<− qy or qy

<− ay
<− py

}
.

Such a rectangle is written as R = [p, q]. The picture area of a set S ⊂− Z
2, denoted

by RS , is the smallest rectangle that contains S. By scaling a picture area P = [p, q]
by a factor s ∈ N0, the picture area sP = { sb | b ∈ P } = [sp, sq] is obtained. The
union of two picture areas is not a rectangle in general. The extended union shall
give the rectangle covering the normal union:

RP � RQ = RP∪Q.

Let �a(w) be the vertex set of a word w with respect to a. Then, the functions
· a

w, · a
w, · a

w, · a
w give the ‘border’ of �a(w):

· a
w = min { x | (x, y) ∈ �a(w) } , · a

w = min { y | (x, y) ∈ �a(w) }
· a

w = max { x | (x, y) ∈ �a(w) } , · a
w = max { y | (x, y) ∈ �a(w) }

The symbols · a
w = ( · a

w, · a
w) and · a

w = ( · a
w, · a

w) stand for the lower-left and
upper-right corners. The picture area of �a(w) is denoted by �a(w) = [ · a

w, · a
w].
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2.3 Special Endomorphisms

Let κ, μ be two natural numbers, κ, μ ∈ N0. An endomorphism h on A∗ is called
(κ, μ)-endomorphism if the following conditions are satisfied for each x ∈ A:

1. (h(x))(o) = κvx.

2. �(h(x)) ⊂− κ[o, vx] � μ[vx⊥ , vx̄⊥ ].

The following example illustrates this.

Example 2. Let h be an endomorphism on A∗ with r �→ rdruurdr, l �→ lulddlul,
u �→ urulluru, and d �→ dldrrdld. Then one has

rdruurdr(o) = 4vr + 2vd + 2vu = 4vr,
lulddlul(o) = 4vl + 2vu + 2vd = 4vl,
urulluru(o) = 4vu + 2vr + 2vl = 4vu,
dldrrdld(o) = 4vd + 2vl + 2vr = 4vd.

Hence, the first condition is satisfied. The simple directed graphs of h(x) (x ∈ A)
are:
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All points of �(h(x)) (for each x ∈ A) lie in the rectangle covering both the lines
[o, 4vx] and [vx⊥ , vx̄⊥ ]. The picture area is �(h(x)) = 4[o, vx]� [vx⊥ , vx̄⊥ ] for x ∈ A.
Thus, h is a (4, 1)-endomorphism. The first synchronization condition says where
the end point of a drawing lies. The second one causes the pictures to lie in certain
rectangles.

The n-ary concatenation of an endomorphism h is written shortly as hn. Applied
to a string w ∈ A∗, its result is the n-th derivative of w; written as w(n) (w′, w′′,
w′′′ for the first three derivatives, w(0) = w). The parameter κ defines the length of
the derivation picture regarding the respective direction; the derivation is length-
contracting in the case of κ < 1, length-constant in the case of κ = 1, and length-
expanding in the case of κ > 1. The parameter μ is the width of the derivation
picture.
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2.4 Chain Code Picture Systems

A synchronous deterministic context free Chain Code Picture System (sD0L sy-
stem) is a triple

G = (A, h, ω)

with the alphabet A = {r, l, u, d}, a (κ, μ)-endomorphism h on A∗, and a non-empty
start string (axiom) ω ∈ A+.

The picture language PG generated by an sD0L system G is the set of all pictures
of derivatives of the axiom ω:

PG =
{

p(ω(n)) | n ∈ N0

}
.

An sD0L system is called length-contracting (-constant, -expanding) if the (κ, μ)-
endomorphism belonging to it, has this property.

3 Finiteness Investigations

Let G = (A, h, ω) be an sD0L system with a (κ, μ)-endomorphism h. The n-th
derivative (n ∈ N) of any letter x ∈ A maps the zero point o to the point κnvx:
x(n)(o) = κnvx. This can be proved by induction.

Moreover, the first synchronization condition says that x′(o) = κvx. This means
x′(o) = κvx +cvx +cvx̄ +dvx⊥ +dvx̄⊥ for some natural numbers c, d. Consequently,
x⊥ and x̄⊥ have the same numbers of occurrences in the derivative x′, and x has
κ more occurrences than x̄. These observations are summarized in the following
proposition.

Proposition 6. For all x ∈ A, one has

1. x(n)(o) = κnvx for n ∈ N,

2. #xx′ = κ + #x̄x′,

3. #x⊥x′ = #x̄⊥x′.

The Chain Code Picture Systems are distiguished by their ‘length behaviour’
(represented by the parameter κ).

3.1 Length-contracting Chain Code Picture Systems

Let G = (A, h, ω) be an sD0L system with a length-contracting (κ, μ)-endomor-
phism h. Since κ < 1 and κ ∈ N0, κ must be equal to 0.

The second synchronization condition has the effect that the picture area of the
derivative x′ of a letter x ∈ A is a line: �(x′) ⊂− μ[v⊥x , vx̄⊥ ]. Hence, x and x̄ do not
occur in the string x′.

For any string w ∈ A∗, exactly one of the following three cases occurs:

1. w′ = λ. Then all further derivatives are also empty: w(n) = λ, n >− 1.
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2. w′ �= λ, w′′ = λ. Then all further derivatives are empty: w(n) = λ, n >− 2.

3. w′ �= λ, w′′ �= λ. Since w′ �= λ, some letter x ∈ A occurs in w′ and also the
same number of x̄. Hence, the letter set [w′] can be { r, l }, { u, d } or A.

Example 3. For example, let h be a (0, μ)-endomorphism with

r �→ ud, u �→ rl, d �→ λ and l �→ λ.

If w = r then [w′] = { u, d }, if w = u then [w′] = { r, l }. If w = ru then the
letter set [w′] consists of all letters: [w′] = A.

If [w′] = { r, l }, the letter set [w′′] is { u, d } (it cannot be empty because
w′′ �= λ). Similarly, [w′′] = { r, l } if [w′] = { u, d }. If [w′] = A, some letter
x ∈ A occurs in the word w together with x⊥ or x̄⊥. As these letters occur
in w′ also, w′′ consists of the same letters as w′. Summerized, one has

[w′′] =

⎧⎨⎩
{u, d} if [w′] = {r, l},
{r, l} if [w′] = {u, d},
A if [w′] = A.

An analogous argumentation leads to

[w′′′] =

⎧⎨⎩
{r, l} if [w′] = {r, l},
{u, d} if [w′] = {u, d},
A if [w′] = A,

that is [w′′′] = [w′]. Thus, the letter set of the fourth derivative coincides
with that one of the second derivative:

[w(4)] =
⋃

x∈[w′′′]

[x′] =
⋃

x∈[w′]

[x′] = [w′′].

From this case distinction one can conclude the following proposition by induction:

Proposition 7. The letter sets from the second derivative of a string w ∈ A∗ on
are either empty or alternate beginning with the first derivative:

[w′′] = ∅ =⇒ [w(n)] = ∅ (n >− 2),

[w′′] �= ∅ =⇒ [w(2n−1)] = [w′] ∧ [w(2n)] = [w′′] (n >− 2).

A similar correlation can be found for edge sets. Let w(n) be the n-th derivative
of a string w ∈ A∗:

w(n) = x1 · · ·xl (xi ∈ A, i = 1, . . . , l).

The edge set of w(n+1) is, according to Proposition 5,

‖w(n+1) = ‖x′
1 ∪ ‖x′

1(o)x′
2 ∪ · · · ∪ ‖(x′

1···x′
l−1)(o)x′

l.
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The Propositions 3 and 6 imply that (x′
1 · · ·x′

i)(o) = x′
1(o) + · · · + x′

i(o) = o for
i = 1, . . . , l. Hence, the edge set of w(n+1) is

‖w(n+1) =
l⋃

i=1

‖x′
i =

⋃
x∈[w(n)]

‖x′ (if x̂ = x̌ then x̂′ = x̌′ and ‖x̂′ = ‖x̌′).

According to Proposition 7, one obtains ‖w(n) = ∅ if w′′ = λ and, in the case that
w′′ �= λ :

‖w(2n) =
⋃

x∈[w(2n−1)]

‖x′ =
⋃

x∈[w′]

‖x′ = ‖w′′,

‖w(2n+1) =
⋃

x∈[w(2n)]

‖x′ =
⋃

x∈[w′′]

‖x′ = ‖w′′′,

for n >− 2.
Thus, if w′′ = λ then the pictures of w(n) (n >− 2) consist of the zero point only.

If w′′ �= λ then the pictures of even derivations coincide from the second derivation
on; those of odd derivations from the third one on (because of Prop. 4). After the
third derivation of a word w ∈ A∗, no new picture arises.

Theorem 1. Let G = (A, h, ω) be a length-contracting sD0L system. The picture
language generated is

PG = { p(ω), p(ω′), p(ω′′), p(ω′′′) } .

The following example shows a length-contracting sD0L system together with
its picture language.

Example 4. Let G = (A, h, r) be an sD0L system with a (0, μ)-endomorphism h
with r �→ ud, l �→ du, u �→ rl, and d �→ λ. The words generated by G are r, ud, rl,
uddu, (rl)2, (uddu)2, (rl)4, (uddu)4, etc. The corresponding pictures are

� �, �
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�, � �� , �

�

�

�

�, � �� , �

�
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�, � �� , �

�

�

�

�, etc.

Since a new picture does not occur, the picture language is

{
� �, �

�

�, �

�

�

�

�

}
.

3.2 Length-expanding Chain Code Picture Systems

Let G = (A, h, ω) be a length-expanding sD0L system. Since the (κ, μ)-endomor-
phism h is length-expanding, κ is greater than 1.

Let x ∈ A be the initial letter of ω (since ω ∈ A+ it has at least one letter):
ω = xw (w ∈ A∗). The n-th derivative is ω(n) = x(n)w(n), and x(n)(o) is a vertex
of every graph of ω(n):

x(n)(o) ∈ �(ω(n)), n ∈ N0.
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Furthermore, let Xω be the set of all points x(n)(o), Vω the union of the vertex sets
�(ω(n)), and Pω the set of all pictures p(ω(n)), n ∈ N0:

Xω =
{

x(n)(o) | n ∈ N0

}
= { knvx | n ∈ N0 } (Prop. 6),

Vω =
⋃

n∈N0

�(ω(n)),

Pω =
{

p(ω(n)) | n ∈ N0

}
.

The set Xω is infinite because κ > 1 and vx �= o. Every point of Xω also occurs in
Vω: Xω

⊂− Vω ; thus the set Vω is also infinite. Each vertex set �(ω(n)), n ∈ N0, is
finite; hence, there are infinitely many different ones in the union Vω . If the vertex
sets of two strings u, v ∈ A∗ differ, so the pictures do as well. Hence, among the
pictures p(ω(n)) with n ∈ N0, there are infinitely many different ones: |Pω | = ∞.

Theorem 2. For every length-expanding sD0L system G = (A, h, ω), the picture
language PG generated by G is infinite.

The following example shows a length-expanding sD0L system.

Example 5. Let G = (A, h, ruld) be a length-expanding sD0L system with the
(4, 1)-endomorphism h given in Example 2. The first pictures generated are drawn
below (up to the third derivation).

, , ,
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3.3 Length-constant Chain Code Picture Languages

In contrast to the previous situations, among the length-constant sD0L systems,
there are those with a finite picture language as well as those with an infinite one.
The following example shows an sD0L system with a finite picture language and a
similar sD0L system with an infinite picture language.

Example 6. Let h be a (1, μ)-endomorphism with r �→ rud, u �→ uldru, d �→ d,
and l �→ l. Then G = (A, h, r) is a length-constant sD0L system. The simple

directed graph of the axiom is � , of the first derivative ���, and of the second

derivative ����


����. The graphs of the later derivatives are the same: ����



����. Hence, the

picture language generated is finite: PG =
{

, ,
}
. Now, change h such

that l �→ lrl. Then, the simple directed graph of the third derivative is not the

same as that one of the second derivative, but ����


�����


���

�

�����


����. A new r-edge arose that will

be replaced (in the next step) by its derivative; thus, the fourth derivative has the

graph ����


�����


���

�

�����


�����


���

�

�����


���

�
���
�

�����


�����


���

�

�����


����. A new r-edge occurs in every third derivative (6th, 9th, etc.). Hence,

the picture sizes increase; the picture language is infinite.

The example above shows that, in the case of κ = 1, further investigations are
needed to find out when an sD0L system generates a finite picture language and
when it does not.

Several examples lead to the supposition that the difference between the edge
sets of the second and third derivatives indicates the finiteness of the picture lan-
guage: If they do not differ, the picture language is finite; if there is a difference,
then the language is infinite. This supposition will be confirmed and proved.

Let G = (A, h, ω) be a length-constant sD0L system. The next proposition
extends the first statement of Proposition 6 to words.

Proposition 8. If h is a (1, μ)-endomorphism, then w(n)(o) = w(o) for every
string w ∈ A∗ and every derivation step n ∈ N0.

Proof. Let w ∈ Al be a word w1 · · ·wl. Then, one can conclude the following
equations:

w(n)(o) = (w(n)
1 · · ·w(n)

l )(o)

= w
(n)
1 (o) . . . w

(n)
l (o) (Prop. 3)

= vw1 + · · · + vwl
(Prop. 6)

= w1(o) + · · · + wl(o)
= w(o).

This proves the proposition.
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Let w ∈ A∗ be a word. The operator ‖· gives the edge set ‖w of w. Applying the
(1, μ)-endomorphism h for n times produces the n-th derivative w(n); its edge set
is ‖w(n). The following proposition shows how the edge set ‖w(n) can be obtained
from the edge set ‖w.

w
‖·−→ ‖w

↓ h ⇓ ?

w(n)
‖·−→ ‖w(n)

Proposition 9. The edge set ‖w(n) of the n-th derivative of a string w ∈ A∗ is the
union of the n-th derivatives of all edges in ‖w:

‖w(n) =
⋃

(q,x)∈‖w

‖qx(n) w ∈ A∗, n ∈ N0.

Proof. Let w ∈ Al be the string w1 · · ·wl. Then the n-th derivative of w is

w(n) = w
(n)
1 · · ·w(n)

l .

The edge set of w is

‖w = ‖w1 ∪ ‖−→w1(o)w2 ∪ . . . ∪ ‖−−−→wl−1(o)wl (Prop. 5)
= { (o, w1) } ∪ { (−→w1(o), w2) } ∪ · · · ∪ { (−−→wl−1(o), wl) }
= { (o, w1), (−→w1(o), w2), . . . (−−→wl−1(o), wl) } ,

the edge set of w(n) is

‖w(n) = ‖w(n)
1 ∪ ‖−→w1

(n)(o)w
(n)
2 ∪ · · · ∪ ‖−−−→wl−1

(n)(o)w
(n)
l (Prop. 5)

= ‖w(n)
1 ∪ ‖−→w1(o)w

(n)
2 ∪ · · · ∪ ‖−−−→wl−1(o)w

(n)
l (Prop. 8)

=
⋃

(q,x)∈‖w

‖qx(n),

which proves the proposition.

The simple directed graph of the n-th derivative of a word w ∈ A∗ arises from
the simple directed graph of w by replacing each x-edge (q, x) ∈ ‖w by the simple
directed graph of the n-th derivative of x, beginning at the point q.

Example 7. Let h be a (1, μ)-endomorphism with r �→ dru, u �→ rul, l �→ uld, and
d �→ ldr. The simple directed graphs of the second atomic derivatives are shown
below (those of the first derivatives are inserted grey coloured):

o


��

���
��




���

,

o

���
��


�



�

��



, o ��

�




�


�� �



� , and

o
�




�


��

���




��

.
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Let w be the first derivative of r. Its edge set ‖dru is

{ (o, d), ((0,−1), r), ((1,−1), u)) } .

The edge set of the second derivative of w consists of all edges of the edge sets of
the second derivatives of d with respect to o, of r with respect to (0,−1), and of
u with respect to (1,−1): ‖w′′ = ‖od′′ ∪ ‖(0,−1)r′′ ∪ ‖(1,−1)u′′. These edge sets are
(shown as simple directed graphs):

o
(0,-1)

�



�


��

��� ,

(0,-1)

(1,-1)



��

���
��




, and

(1,-1)

���
��


�



�

.

Hence, the the simple directed graph of w′′ is
o

(0,-1)

�



�


��

���



��

���
��


(1,-1)

���
��


�



�

.
Since w is the first derivative of r, this graph should be the same as that one of the
third derivative of r – and is as the following sequence of derivative graphs shows.

0: � , 1:
���

, 2: 


��

���
��


 , 3: �



�


��

���



��

���
��




���
��


�



� , 4: ��

�




�


���



�


��

���



��

���
��


�



�


��

���



��

���
��




���
��


�



�


��

���
��




���
��


�



���

�




�


��

With the help of the proposition above, the following proposition about the
stability of edge sets can be proved.

Proposition 10. If the edge set of a string w ∈ A∗ coincides with that of its
derivative w′, then it coincides with the edge set of every higher derivative:

‖w = ‖w′ =⇒ ‖w = ‖w(n), w ∈ A∗, n ∈ N.

Proof. The proof is carried out by induction. Suppose, that ‖w = ‖w(i) for
1 <− i <− n. Then the edge set ‖w(n+1) is

‖w(n+1) =
⋃

(q,x)∈‖w(n)

‖qx′ (Prop. 9)

=
⋃

(q,x)∈‖w

‖qx′ (inductional assumption)

= ‖w′ (Prop. 9)
= ‖w (inductional assumption)

from which the proposition follows.
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With the Propositions 10 and 4, the first supposition (see page 65) is proved.
So, it is stated in a lemma.

Lemma 1. Let G = (A, h, ω) be a length-constant sD0L system. If the edge sets of
the second and third derivatives of the axiom ω coincide, then the picture language
generated consists of the pictures up to the second derivative at most. That is
shortly written as

‖ω′′ = ‖ω′′′ =⇒ PG = { p(ω), p(ω′), p(ω′′) } .

In the first example of this section (p. 65), one can observe that if the edge sets
of the second and third derivatives of the axiom ω do not coincide, then at least
one x-edge exists in the second derivative which is later replaced by a graph that
contains another x-edge. The next propostion gives an even stronger restriction.

Proposition 11. If the edge sets of the second and third derivatives of the axiom
ω do not coincide, then there exists a letter x ∈ [ω′′] such that one of the first three
derivation edge sets ‖x′, ‖x′′ or ‖x′′′ contains an edge different from (o, x).

Proof. The statement of the proposition is equivalent to the following statement.
If, for each letter x ∈ [ω′′], the edge sets of the first three derivatives of x do not
contain any x-edge different from (o, x) then the edge sets of ω′′ and ω′′′ coincide:

(∀x ∈ [ω′′] : ‖xx = ‖xx′ = ‖xx′′ = ‖xx′′′) =⇒ ‖ω′′ = ‖ω′′′.

This statement will be proved now.
For all letters x ∈ [ω′′], let ‖xx = ‖xx′ = ‖xx′′ = ‖xx′′′. If (q, y) is an edge of

any ‖x(i), then (q, y) is also an edge of ‖x(i+1) (because of ‖yy = ‖yy
′). Hence,

each edge set includes those of lower derivatives, that is ‖x ⊂− ‖x′ ⊂− ‖x′′ ⊂− ‖x′′′.
In order to conclude that ‖ω′′ = ‖ω′′′, the inclusion ‖x′′ ⊂− ‖x′′′ must be an

equation. In the sequel, the inverted inclusion (‖x′′′ ⊂− ‖x′′) will be shown. The
case distinction used follows from Proposition 6.

1. [x′] = { x }, hence [x(n)] = { x } for all natural numbers n. Especially, x′′ is
equal to x′′′, and also ‖x′′ = ‖x′′′.

2. [x′] = { x, x̄ }.
(a) [x′′] = [x′], hence [x(n)] = [x′] for all natural numbers n. Because of

the second synchronization condition, the letters x and x̄ alternate in x′′

and in x′′′. That means for the edge sets

‖x′′ = ‖x ∪ ‖x(o)x̄ ∪ ‖x ∪ ‖x(o)x̄ ∪ · · · ‖x (Prop. 5)
= ‖x′′′.

(b) [x′′] = A. The edge set ‖x′ consists of the edges (o, x) and (x(o), x̄)
(due to the second synchronization condition). The edge set ‖x′′ does
not contain any other x-edge nor x̄-edge (the edge (o, x) can produce



Finiteness of Picture Languages 69

the edges of ‖x′ only; the edge (x(o), x̄) can produce (o, x) – due to
‖xx = ‖xx′′ – and (x(o), x̄) – due to ‖x̄x̄ = ‖x̄x̄′ – only). Hence, the x⊥-
and x̄⊥-edges occur pairwise (between the same points):

(q, x⊥) ∈ ‖x′′ ⇐⇒ (x⊥(q), x̄⊥) ∈ ‖x′′.

The set ‖xx′′′ consists of (o, x) only. The set ‖x̄x′′′ consists of (x(o), x̄)
only (due to ‖x̄x̄ = ‖x̄x̄′′). The x⊥- and x̄⊥-edges do not produce new
x-, x̄-edges (because of the same reasons), thus, the x⊥- and x̄⊥-edges
occur pairwise in ‖x′′′; x⊥ does not produce a new x⊥-edge, hence, nor
a new x̄⊥-edge. Because of the same reason for x̄⊥, there is not an edge
in ‖x′′′ which is not in ‖x′′.

3. [x′] =
{

x, x⊥, x̄⊥ }
.

(a) [x′′] = [x′], hence [x(n)] = [x′] for all natural numbers n. As there
are no x̄-edges in the edge sets of any derivative, the edge set does not
change from the first to the second derivative: ‖x′ = ‖x′′. Because of
Proposition 10, it follows ‖x′′ = ‖x′′′.

(b) [x′′] = A. This means, x̄ occurs in the derivative of x⊥ or x̄⊥. As above,
the x⊥- and x̄⊥-edges occur pairwise in ‖x′. With each x̄-edge, also
an x-edge is produced. If there are more than one x⊥- and x̄⊥-edges,
then they have different positions with respect to the edge (o, x) and
then another x-edge will appear. This is a contradiction. Hence, there
are one x⊥- and one x̄⊥-edge only. The following cases are the only
possibilities (the graphs given to the right shall illustrate the case of
x = r):

i. ‖x′ =
{

(o, x⊥), (x⊥(o), x̄⊥), (o, x)
}

���

ii. ‖x′ =
{

(o, x), (x(o), x⊥), ((xx⊥)(o), x̄⊥)
}

���

iii. ‖x′ =
{

(o, x̄⊥), (x̄⊥(o), x⊥), (o, x)
}

��
�

iv. ‖x′ =
{

(o, x), (x(o), x̄⊥), ((xx̄⊥)(o), x⊥)
} �

��

In ‖x′′, there are not any new x-, x⊥-, x̄⊥-edges. Hence, the new x̄-edge
is (x(o), x̄) (but then ‖x′′′ is the same as ‖x′′, because it does not get
any new edge), or the new x̄-edge is ((xx⊥)(o), x̄) (in the cases i. and ii.)
or ((xx̄⊥)(o), x̄) (in the cases iii. and iv.). Then a new vertex e appears:

i. e = (xx⊥)(o)


����

ii. e = x⊥(o) ����



iii. e = (xx̄⊥)(o) 
���
�

iv. e = x̄⊥(o)
�

���


Since e is neither o nor x(o), there is another edge in ‖x′′ that is not in
the set ‖x′:
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i. (x(o), x⊥) ∈ ‖x′′ ��


��

ii. (x⊥(o), x̄⊥) ∈ ‖x′′ ����


�

iii. (x(o), x̄⊥) ∈ ‖x′′
�

�
��

iv. (x̄⊥(o), x⊥) ∈ ‖x′′
�

���
�

This implies that the x̄-edge is produced by x̄⊥ in the cases i. and iv.,
and by x⊥ in the other cases. Both do not produce further x̄-edges
(otherwise they would produce a new x-edge or new x⊥-, x̄⊥-edges). As
the x̄-edge cannot produce any new edge, the set ‖x′′′ has no additional
edges: ‖x′′′ ⊂− ‖x′′.

4. [x′] = A. Let v, w, y be different letters of the set A\{x}. The x- and v-edges
produced by deriving v in x′ are not new (they are in ‖x′ already). Possibly,
a new w-edge occurs. The x-, v-, and w-edges produced by deriving w in x′′

are in ‖x′′ already. Similar to the previous case, also all arising y-edges are
in ‖x′′. Hence, all edges of ‖x′′′ are elements of ‖x′′.

There are no other cases (s. Prop. 6). Every case yields that ‖x′′′ ⊂− ‖x′′. Together
with the inclusion ‖x′′ ⊂− ‖x′′′, one obtains that ‖x′′ = ‖x′′′. Hence, the edge sets,
with respect to any point a ∈ Z

2, coincide: ‖ax′′ = ‖ax′′′. Let w1, . . . , wn be the
letters of ω: ω = w1 · · ·wn. For the edge set of the second derivative of ω, the
considerations above yield

‖ω′′ = ‖w′′
1 ∪ ‖w′′

1 (o)w′′
2 ∪ · · · ∪ ‖−−−→wn−1

′′(o)w′′
n (Prop. 5)

= ‖w′′
1 ∪ ‖w′′′

1 (o)w′′
2 ∪ · · · ∪ ‖−−−→wn−1

′′′(o)w′′
n (Prop. 8)

= ‖w′′′
1 ∪ ‖w′′′

1 (o)w′′′
2 ∪ · · · ∪ ‖−−−→wn−1

′′′(o)w′′′
n (‖ax′′ = ‖ax′′′)

= ‖ω′′′ (Prop. 5).

This proves the proposition.

In the sequel, consider ω such that ‖xx �= ‖xx(l) for a letter x ∈ [ω′′] and a
derivation step l ∈ { 1, 2, 3 }. The edge set ‖x consists of the edge (o, x). Another
x-edge is in the graph of the l-th derivative of x: (q, x) ∈ ‖x(l) with q �= o. According
to Proposition 9, one obtains that ‖qx(l) ⊂− ‖x(2l), which means that all edges of
the l-th derivative are in the 2l-th derivative displaced by the point q. Thus, it is
especially (q + q, x) ∈ ‖x(2l). Induction leads to (nq, x) ∈ ‖x(nl) in general.

Consider ω′′ = vxṽ, then the edge sets of every l-th derivative of ω′′ are

‖ω(nl+2) = ‖v(nl) ∪ ‖v(nl)(o)x(nl) ∪ ‖(vx)(nl)(o)ṽ(nl)

= ‖v(nl) ∪ ‖v(o)x(nl) ∪ ‖(vx)(o)ṽ(nl) (Prop. 8).

The edge (nq + v(o), x) occurs in every set ‖v(o)x(nl) with n ∈ N0. Hence, for each
n ∈ N0, the edge (nq + v(o), x) is also an element of the set ‖ω(nl+2). Thus, the
vertex nq + v(o) is an element of the vertex set �(ω(nl+2)).
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Let Xω be the set of all vertices nq + v(o), Vω the union of the vertex sets
�(ω(nl+2)), and Pω the set of all pictures p(ω(nl+2)) over all n ∈ N0:

Xω = { nq + v(o) | n ∈ N0 } ,

Vω =
⋃

n∈N0

�(ω(nl+2)),

Pω =
{

p(ω(nl+2)) | n ∈ N0

}
.

The set Xω is infinite because q �= o. Each point in Xω also occurs in Vω; thus
Vω is also infinite. Every vertex set �(ω(nl+2)) with n ∈ N0 is finite; hence, there
are infinitely many different ones in the union Vω. If the vertex sets of two strings
x, y ∈ A∗ differ, then the pictures are also different. Hence, Pω contains infinitely
many different pictures. This result is summerized in the next proposition.

Proposition 12. If there exists a letter x ∈ [ω′′] such that one of the first three
derivation edge sets ‖x′, ‖x′′ or ‖x′′′ contains an edge different from (o, x), then
the picture language generated is infinite.

Together with the Proposition 11, this leads immediately to the following
lemma.

Lemma 2. Let G = (A, h, ω) be a length-constant sD0L system. If the edge sets
of the second and third derivatives of the axiom ω do not coincide, then the picture
language generated is infinite.

Hence, the second supposition on page 65 is confirmed and proved. The Lem-
mas 1 and 2 together state that the difference of the edge sets of the second and
third derivatives of the axiom is a necessary and sufficient criterion of the finiteness.
This result is summarized in the next theorem.

Theorem 3. Let G = (A, h, ω) be a length-constant sD0L system. The picture
language PG generated by G is finite if and only if the edge sets of the second and
third derivatives of the axiom ω coincide.

From an algorithmic point of view, the case μ = 0 must be emphasized.
According to the second synchronization condition, the edge set ‖ax(n) of each

derivative of any letter x ∈ A with respect to the point a ∈ Z
2 consists of the edge

(a, a + vx). Hence, the pictures of all derivatives of ω coincide (Prop. 4).

Theorem 4. Let G = (A, h, ω) be an sD0L system with a (1, 0)-endomorphism h.
Then the picture language PG generated by G is a singleton set, that is

PG = { p(ω) } .

This means that the finiteness can be stated immediately in the case μ = 0
(without further investigation of the system).
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4 Conclusion and Future Work

The paper investigates synchronous deterministic Chain Code Picture Systems with
respect to the finiteness of their picture languages.

Let G = (A, h, ω) be an sD0L system with a (κ, μ)-endomorphism h. The
synchronization parameter κ defines a division of the sD0L systems in length-
contracting (κ < 1), length-constant (κ = 1), and length-expanding (κ > 1) sys-
tems.

The following table summarizes the results:

κ < 1: PG = { p(ω), p(ω′), p(ω′′), p(ω′′′) }
κ > 1: |PG| = ∞
k = 1: μ = 0 =⇒ PG = { p(ω) }

s(ω′′) = s(ω′′′) =⇒ PG = { p(ω), p(ω′), p(ω′′) }
s(ω′′) �= s(ω′′′) =⇒ |PG| = ∞

If the picture language generated by an sD0L system is finite, then it consists
of four elements at most. In addition, an algorithm is given that decides for any
sD0L system G, whether the picture language PG generated is finite or not.

The decision about the finiteness of the picture language of a given sD0L sy-
stem G = (A, h, ω) can be made immediately (without further investigation of the
system) if the (κ, μ)-endomorphism h is length-contracting or length-expanding or
length-constant with μ = 0. Otherwise, the start string must be derived three
times, and the edge sets of the second and third derivatives must be checked for
equality. This time effort is cubic in the lengths of the replacement strings.

For synchronous deterministic Chain Code Picture Systems G = (A, h, ω), the
finiteness and infiniteness are decidable in time O(pn3), where p = #ω is the length
of the start string ω and n = max { #h(x) | x ∈ A } is the maximum length of the
replacement strings.

Future work will address the finiteness of picture languages generated by non-
deterministic s0L systems and tabled systems such as sDT0L systems and sT0L
systems. The deterministic systems generate four pictures at most in the case of
finiteness. For applications however, system are desirable that generate a large but
a finite picture language.

Acknowledgements

The author would like to thank Prof. Hollatz for many stimulating discussions and
recommendations, Prof. Dassow for his support and the anonymous referees for
their critical remarks and helpful suggestions.



Finiteness of Picture Languages 73

References

[DH89] Dassow, J.; Hinz, F.: Kettenkode-Bildsprachen. Theorie und Anwendun-
gen. Wiss. Zeitschrift d. Techn. Univ. Magdeburg, 33, 1989.
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