Acta Cybernetica 17 (2005) 123-151.

Synthesis of the synchronization of general
pipeline systems *

Balazs Ugron! Szabolcs Hajdara! and Laszlo Kozmal

Abstract

The pipeline systems and different subtypes of pipelines are interesting
parts of parallel systems in software engineering. That is why it seems to be
worth dealing with the possibilities of the specification of the synchronization
of these systems.

Different methods exist that can be used to synthesize the synchronization
of parallel systems based on some kind of specification, but these methods
cannot be applied directly for pipeline systems because of some special prop-
erties of the pipeline systems and the methods themselves.

The method that seems to be the most promising is the method of Attie
and Emerson, which is a synthesization method for many similar processes
based on a special temporal logic specification.

In this paper we give an extension of this method so that the extended

method will be able to handle more properties of parallel systems, especially
of pipeline systems. We will consider not only linear [8], but general pipeline
systems too. Furthermore, we give an abstract synchronization of a general
pipeline system.
Categories and Subject Descriptors: D.2.1 [Software engineering]: Re-
quirements specification; F.3.1 [Logic and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs — assertions, invariants; F.4.1
[Mathematical Logic]: Temporal logic.

Key Words and Phrases: semantic tableaux, pipeline, synthesis, parallel
systems, temporal logic.

1 Introduction

In the following, we will consider the synchronization possibilities of a special part
of parallel systems, the pipeline systems. As usual (see [1, 2]), we consider only the
synchronization part of the processes, because the real computation code usually
can be separated from the synchronization part of parallel systems.

*This research work was supported by GVOP-3.2.2-2004-07-005/3.0.

TDepartment of Software Technology and Methodology, E6tvos Lorand University, Pazmany
P. sétany 1/c, H-1117 Budapest, Hungary. E-mail: balee@elte.hu, sleet@elte.hu,
kozma@ludens.elte.hu

123

124 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

A pipeline system is a parallel system of processes, which is built in order to
solve some kind of problems. In the case of the simplest pipeline system, which
is linear, the processes are aligned in a row by the connections between them, so
every process in the system has exactly two connections, except the first and the
last processes, which have only one. The processes between the two ends work on
similar tasks, so their synchronization is obviously similar, too.

In this paper, we will consider not only linear, but much more general pipeline
systems. In paper [8] we described the synthesis of a linear pipeline system, while
in this article general pipeline systems are synthesized. We have only the following
assumptions:

1. There are some processes, which have only one connection, which is an output
connection. These processes generate the data.

2. There are some processes, which have only one connection, which is an input
connection. These processes receive the result.

3. The processes inside the pipeline (that is, which are not data generator or
receiver processes) are similar in terms of synchronization.

There are methods in the literature, which can be used to synthesize the syn-
chronization part of a system from temporal logic specification, but these methods
cannot be directly applied in this case. For example, the method of Emerson and
Clark [2] suffers from the so-called state explosion problem [1], so it cannot be ap-
plied for a large number of processes, in practice. Another example is the method
of Attie and Emerson [1], which can handle large systems, but this method can be
only used for systems consisting many similar processes, and this is not that case.

In this article, after a short description of the synchronization of many similar
processes [1], we will introduce an extension of the method, with which it will be
possible to handle the case of pipeline systems too.

2 Synthesis of many similar processes

In this section we review the parts in Attie and Emerson’s paper [1] that are most
important to understand this paper. The reader will generally find only informal
definitions in this section, the exact definitions can be found in [1].

First, Attie and Emerson’s method specifies that the processes must be similar.
In this case, similarity means that any two processes can be exchanged with each
other, except their indexes. This restriction is used many times in the method.

2.1 CTL*

The specification language is an extension of the temporal logic CTL*, which is a
propositional branching-time temporal logic. The basic modalities of CTL* consist
of a path quantifier, either A (for all paths) or E (for some path) followed by
a linear-time formula, which is built up from atomic propositions, the Boolean

Synthesis of the synchronization of general pipeline systems 125

operators A, V, =, and the linear-time modalities G (always), F' (sometime), X
(strong nexttime), Y; (weak nexttime) and U (until). CTL* formulas are built up
from atomic propositions, the Boolean operators A, V, =, and the basic modalities.

Let us consider the intuitive meaning of the formulas mentioned above. For-
mula Ff means that there is some maximal path for which f holds; formula Af
means that f holds of every maximal path; formula X; f means that the immediate
successor state along the maximal path under consideration is reached by executing
one step of process P;, and formula f holds in that state; formula fUg means that
there is some state along the maximal path under consideration where g holds, and
f holds at every state along this path at least the previous state.

The usual abbreviations for logical disjunction, implication and equivalence can
be introduced easily. Furthermore, some additional modalities as abbreviations can
be introduced: Y; f for - X;—f, F f for trueU f, Gf for ~F—f.

The reader can find the formal definition of the semantics of CTL* formulas in

[1].

2.2 The interconnection relation

The interconnection scheme between processes is given by the interconnection re-
lation I I C {i1,...,ix} X {i1,...,ix}, and ¢ I j iff processes ¢ and j are intercon-
nected. I is a symmetric and irreflexive relation.

Those process pairs that are in the interconnection relation will be synchronized
with each other, while the others will not. This means that the behaviour of the
system can be simply changed by the interconnection relation. For example, the
synchronization of the eating philosophers problem is the same as for the standard
mutual exclusion problem — except the interconnection relation.

2.3 MPCTL*

An MPCTL* (Many-Process CTL*) formula consists of a spatial modality followed
by a CTL* state formula. A spatial modality is of the form A, or A;;. A\; quantifies
the process index ¢, which ranges over {i1,...,ix}. /\ij quantifies the process
indexes i, j, which range over the elements of I.

The definition of truth in structure M at state s of formula g is given by M, s = ¢
ifft M,s = ¢/, where ¢’ is the CTL* formula obtained from ¢ by viewing ¢ as an
abbreviation and expanding it like

o M,s =N, fiiffVie {iy,...;ix} : M,s = [
e M,s):/\ijfij iff v(i,j) € I: M,s = fij

2.4 The method

In this section, we give an extremely short informal description of the synthesis
method of Attie and Emerson, which will be informative enough to catch the point,
though.

126 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

First, the behaviour of the system needs to be specified in the above described
temporal logic language, MPCTL*. This specification is applied to an arbitrary
process or process pair from the system.

Any known method (for example the one described in [2]) can be used to syn-
thesize the synchronization skeleton of an arbitrary process pair from the system.

In this way, the method takes advantage of the fact that the processes in the
system are similar and produces a global synchronization skeleton for the whole
system based on the skeleton synthesized for the pair system.

3 Synthesis of a pipeline system

Our main goal in this paper is to develop a method, with which the synchronization
skeleton of a pipeline system can be synthesized. The method of Attie and Emerson
which we roughly described above cannot be applied directly in the case of a pipeline
system.

The first reason is that the processes in a pipeline system are not similar. Al-
though the processes except the sender and receiver ones of the pipeline are similar,
the mentioned two processes differ from them, because they have different state sets
from the other processes.

The second reason is that the communication in a pipeline system has a direction
— from the sender to the receiver processes. This method does not permit us to
distinguish the processes even in the specification, so we cannot handle directions,
and the synthesized synchronization code will not be efficient.

First, we give an extension of the method, with which the side processes can be
handled too. We introduce one more abstraction level in the method: we separate
the processes inside the pipeline from the processes at the ends, handle them as an
embedded system, and synthesize the synchronization for them. Finally, we handle
the embedded system as a part of a new system, besides the processes at the ends
of the pipeline.

3.1 The embedded system

First we give a straightforward solution to the synchronization of the previously
mentioned embedded system in the pipeline. This is a very inefficient approach,
but in this case the method of Attie and Emerson can be applied directly. In fact,
this is the solution of the standard mutual exclusion problem.

In this case, the processes will have three states, a normal (N), a trying (7') and
a critical (C) state. A process enters its trying state, when it wants to go to the
critical state, and two interconnected processes cannot be in their critical state at
the same time. The processes do the communication (data receiving and passing)
and the real computation, too, in the critical state.

The synchronization skeleton for such a system is deduced in [1]. The resulted
automata can be seen in Figure 1.

Synthesis of the synchronization of general pipeline systems 127

®jec)T =0ISIN v C f—lskip)D ®je 16)(NIV T =00 1—skip)D
Ni p(Ty ML >®

®je iy (truel—lskip)l
n

Figure 1: Synchronization skeleton of the embedded system

As we said, this approach is extremely inefficient, because the neighbours of a
process cannot do anything, while the process is in critical state, although theoreti-
cally they would be able to do the computational part of their work simultaneously.

A much better approach will be shown later, in section 3.2.

3.2 Another approach for the embedded system

The method introduced in section 3.1 is not really applicable for pipeline systems.
In this section, the method of Attie and Emerson will be extended so that it could
handle such problems.

We realised that the main problem in the synthesization of this part of the
system is that the method does not allow us to make a distinction between processes
and we cannot express the direction of the communication, so the result will be
inefficient.

To get over this issue, we introduce a new definition for the spatial operators
defined by Attie and Emerson — or in other words, we define two new spatial
operators.

The original definition of the spatial operators can be found in section 2.3. We
add a p predicate parameter to the spatial operators:

o M,s =N\,(p)fiiffVie {i1,....ig} :p—= M,s = f;
L4 M,S 'Z/\zj(p)fl] IHV(Zvj) €IIp—>M,S ':fz]

This definition intuitively means that a connection between two processes which
are defined in the interconnection relation may be actual or non actual in different
situations and the actuality of the interconnection is driven by the predicate p.

For the sake of effectiveness, there are two critical sections for every process in
this approach: a critical section for reading the data from the previous process,
and another one for sending the data to the next process. Moreover, there will
be a sent and a received state for each process, because the communication works
through shared variables, and the flow of the communication should be driven by
the synchronization.

The processes will have many states: N (normal), T (try to read), R (read), C
(check), W (work), E (try to send), S (send) and finally A (after send). The two
critical states are R and S, and the restriction is that if a process is in its state .S,
then the following process must not be in its state R, and vice versa.

128 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

Let us see what happens in these states. State N is the start state of every
process. State T is a trying state before the R critical section, which is for reading.
State C' is a checkpoint after the reading. State W is the state in which the process
does its real computation work. State E is a trying state before the .S critical
section, which is for sending. Finally, state A is another checkpoint, now after
sending.

Let us see the extended MPCTL* specification of the synchronization of the
embedded system:

1. Initial state (every process is initially in its normal state):

AN

2. It is always the case that any move P; makes from its N state is into its T’
state, and such a move is always possible (and similarly for the states R, W
and S):

/\i AG(N; = (AY;T; N EXTy))
/\i AG(R; = (AY;C; A EX;Cy))
/\i AG(W; = (AY,E; N EX;E;))
/\i AG(S; = (AY;A; A EXA))
3. It is always the case that any move P; makes from its T state is into its R

state — but such a move is not definitely possible (and similarly for the states
C, E and A):

/\i AG(T; = AY;R;)

/\i AG(C; = AY; W)

/\i AG(E; = AY;S))

/\i AG(A; = AY;N;)

4. P; is always in exactly one state of the state set:
/\AG ~(T; VRV C; VWi VE; VS VA))

/\AG ~(N; VR;VC; VW,V E; VS VA))

/\AG —(N; VT, VO VWiV E; VSV A))

Synthesis of the synchronization of general pipeline systems 129

/\AG ~(N; VTV R VWiV E; VS, V A;))
/\AG ~(N; VTV R; VGV E; V S; V A;))
/\AG ~(N; VTV RV C; VWV SV A))
/\AG ~(N;VTiVR; VC; VWV E; V A))
/\AG S(N; VTV R VO VWiV E; V Sy))

5. Liveness: if P; is in state T', then some time it will reach state R (and similarly
for the states C, E and A):

/\i AG(T; = AFR;)
/\i AG(C; = AFW;)
/\i AG(E; = AFS;)
/\i AG(A; = AFN;)

6. A transition by a process cannot cause a transition by another one:
/\ij AG((Ni = AY;Ni) A (Nj = AYiN;))
/\ij AG((T; = AY;T) A(T; = AY:T)))
/\ij AG((R; = AY;R;)) A (R; = AY;R;))
/\ij AG((C; = AY;C;) A (Cf = AY;C)))
/\ij AG((W; = AY; W) A (W) = AY;W))
/\ij AG((E; = AY;E;) A (E; = AY;E)))
/\ij AG((S; = AY;Si) A (Sj = AY;S;))

/\. AG((Ai = AY; A;) A (A; = AY;A;))
ij

130 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

7. Data flow control: a process in state T' waits for the previous process to reach
state A and a process in state C' waits for the previous process to leave A
(and similarly the two other rules):

/\ (] < Z)AG((Tz A —\Aj) = ~EX;true

J

N\, U < DAG((Ci n A)) = ~EXtrue

/\. (’L <])AG((Ez A C]) = -FX;true

ij

N\ (i < HAG((A; A=Cj) = ~EX;true

ij

8. Always there is a possible step:

AGFE X true

If the set of the process-indices is {1, 2} (so the processes are P; and P,), then
we get the specification of a pair-system. From this specification we can synthesize
the synchronization skeleton of the pair-system with the method of Emerson and
Clarke [2]. We implicitly applied the method on the parametric spatial operators
introduced by us. In the following, the non trivial steps of the synthesis can be
seen. Only the main cases are considered, because the other cases can be done by
the analogy of the following ones. Note that the dashed lines in the figures mean
that trivial steps are omitted there.

Figure 2 shows how the blocks of the initial node can be constructed.

In Figure 3 the construction of the titles of the result of the previous step can
be seen.

Figure 4 shows an example of the case when one of the processes has an even-
tually condition, but because of the parameters of the spatial operators none of the
processes has to be blocked.

After this there are a lot of similar steps as Figure 5 shows.

Figure 6 illustrates an example of making blocks of a node where one of the
processes has to wait for the another, and Figure 7 shows the titles of the result of
this step (only P; can execute the changing of its state).

In Figure 8 an example is shown of the case when both processes have the
possibility of blocking, but only one of them has to wait for the other. In Figure 9
the titles of the result of the previous step can be seen.

The | sign in the tableau means that the relevant branch of the tableau is
unsatisfiable, so this branch has to be eliminated.

Based on this tableau we can construct the global state transition diagram,
which can be seen in Figures 16-20 in Appendix A.

Based on the global state transition diagram, we can construct the DAGs (see
Figure 21 in Appendix B) and the fragments (see Figure 22 in Appendix B) of every

< NIN,0 >

Synthesis of the synchronization of general pipeline systems

N0
Ni=0AY, T\ANEX, T

NI=0-(T MR 0MIC, IMIW | IMIE 0MIS | IMIA)T

N

NoI=TAY, TLINEX, TH0

NoI=0(THMIR,IMIC,IMIWAIMIEIMIS,0MIA,)T

131

NiI=0AY,N D NoI=0AY NSO
N]D NZD
=N MAY, T\INEX;T,0 —=NoIMAY,THAEX, TA0
—N;IMIAY,N;0 —NLIMIAY | N0
NO(r NI N0 NI
=N, 0 =N IMIAY, TH0AD AY T \IA =N IMIAY, TH0AD
—~NMAY,NOI @ EX,T,)I EX,T{0 0 EX,T,)I
|'| —|N2D\/DAY1N2D —|N1D\/DAY2N1D —|N2D\/DAY1N2D
]
)
|
N]D NZD
AY | T\INEX,;T,0 AY,THINEX, T
AYzN 1D AY 1 NZD
N0 N
AY 1 T 1D AYZTZD
EX] T 1D EXZTZD
AYzN 1D AY 1 NZD

Figure 2: Blocks of the initial node

N0 N0

AY 1 T 1D AYZTZD

EXl T 1D EXZTZD

AYleﬂ AYINZD
1t 20

Figure 3: Titles of the result set of the blocks of the initial node that can be seen
in Figure 2

132 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

T 1[I N’_)D

AY R0 AY,T.0
AY,T 0 EX,TJ0
AFR /0 AY N
EXtruel N

10

RI[AFR N0

R INLO
1
1
|
Ri0 N,
AY,Ci0 AY,Tal
EX,Ci0 EX,Tol
AY,R 0 AY Nl
10 2L

Figure 5: There are a lot of steps similar to step one and two

node. Based on the fragments, the model can be constructed shown in Figure 23-24
in Appendix B.

From the model we can construct the final deterministic automata for all pro-
cesses. If the first process (P;) is in its state N7 then the second process (Pz) can
be in all of its states except state Ro, and P; has the possibility to step in all of
this states. So the condition of the transition of P; from state N; to state T is
—Rs. The conditions of the transitions in states Ty, Ry, Cy, Wi are the same. If
P isin state E; and P is in state Co, then P; cannot step, so the condition of the
transition from state F to state Sy is =Ry A—C5. The conditions of the other tran-
sitions can be determined similarly. Figure 10 shows the result, the synchronization
skeleton for P; and Ps.

Note that it cannot happen that Pj is in state Ny and P; is in state Ra, so the

Synthesis of the synchronization of general pipeline systems

< NUITL0 >

N0
NiI=0AY TIOAIEX, T0
N, 0=0-(T, MR, 0MIC, MW, IMIE, 0VIS MIA YD

T,0
T I=0AY R0
T0=0(NLMIR,IMIC,IMIWIMIEIMIS ,0MIA)

NI=0AY,N 0 TI=0AY To0
1 TI=0AFR0
TI=0(A IVILE X true)d
n
1
1
|
N0 T,
AY,T0 AY,R 0
EX|T\0 AY,TA0
AY,N,0 AFR0
n AIM—EXotruel
N0 T, N0 T,
AY,T0 AY,R,0 AY,T0 AY,R 0
EX|T\0 AY,TJ0 EX|T\0 AY,TJ0
AY,N,0 AFR0 AY,N,0 AFR0
1 \L[A 0 —EXstruell
N n EXtruel
N0 T, N T,
AY | T0 AY R, AY,Ti0 AYR,l
EX|T\0 AY T EX|T\0 AY T
AY,NjO AFRll AY,NjO AFR;ll
0 —EXstruel 0 —EXstruel
EXstruel \L[EXtruel

133

Figure 6: Example of generating blocks of a node where the processes has to wait

=Ry in condition of the transition from Nj to 77 can be eliminated. Similarly, we
can do this with all of the transitions. The simplified synchronization skeletons can

be seen in Figure 11.

From this synchronization skeleton we can generate the synchronization code for
every process with the method of Attie and Emerson [1]. The finite deterministic
automata resulted by the method can be seen in Figure 12.

Note that in the case of this synchronization, nothing keeps a process from
working — that is, stepping in its state W — while the neighbours are working, so
the processes can really work in parallel in this case.

134 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

N0 TJO

AY | T0 AY,R,0

EXT0 AYTJ0

AY,N 0 AFR0
—|EX'_>IVM€D
EXtruel

1C

V%
T,0AFR,IT 0

Figure 7: Titles of the result of the previous step can be seen in Figure 6

3.3 The new three-process system

As we said, there are special processes at the two ends of the pipeline, which only
send and receive data. For the sake of simplicity, let us assume that the sender
processes only produce the data and pass them on to the proper process in the
embedded system, and similarly, the receiver processes only pick up the processed
data from the proper process in the embedded system, and than work with that.
These special processes must be handled in a special way.

The sender and receiver processes are similar in the sense that they are con-
nected with only one another process, which they receive data from, or which they
send data to. It is enough to consider only one sender and one receiver process
when we generate the synchronization skeleton of the whole system, because the
synchronization code of the selected sender and receiver process will naturally be
suitable for the other sender and receiver processes, and respectively, the synchro-
nization for the processes that are connected to the sender and receiver processes
will be reusable, too. That is why from this point on we will consider only one
sender and one receiver process in the system.

Now we can look at our process system as a system composed of three processes.
The first process is the selected sender, the second is the embedded system and the
third is the selected receiver process. We have to build the synchronization skeleton
of this system. This system has only three processes, so we can handle it with
the method of Emerson and Clarke [2], without running into the state explosion
problem.

There is still one more subject that we have to discuss. The middle process
in this system is a system of processes itself, which makes the specification of our
three-process system quite difficult. We should not just say, for example, that
the pseudo process has a state for reading data, because this means that the first

< E(TL0 >

Synthesis of the synchronization of general pipeline systems

n

E\I=0(—Co0vi-EX true)l

TI=0(A IVILE X true)d

n

Eil Tl

E\I=0AY, S0 TAI=TAY,R,0

B 1= (N IMIT VIR IMIC IVIW IVES IMIA)0 T (NLIMIRIMIC,IVIW VB, IVIS,IMIA)
E\I=0AY,E D TI=IAY, Tl

E|I=0AFS, 0 TLI=IAFR,0

Eil T,0

AY S0 AY R0

AY,El AY,TA0

AFS;0 AFR,0

—|C2D\/D —|EX2[}"M€D

—EXtruel EXtruel
EiD TJ0 ED To0
AY S0 AY,R,0 AY S0 AY R0
AY,El AY T,0 AY,El AY T,0
AFS;0 AFR,0 AFS;0 AFR,0
—C,0 —EXstruell —EXtruell —EXotruell
EXtruel EXtruel n \L EXtrued
Eil T,0 Eil T,0
AY;S0 AY,R;00 AY;S0 AY;R,0
AY,E 0 AY, T AY,E 0 AY, T
AFS,0 AFR,0 AFS,0 AFR,0
—|C2[] —|EX2[}"M€[] —|C2[] —|EX2[}"M€[]
EXtruel EXtruel EXstruel \L EXtruel

135

Figure 8: Example of generating blocks of a node where both processes have the
possibility to be blocked, but only one of them has to wait

process of the pseudo process reads the data, and at the same time, the last process
theoretically can send data, which means that the whole pseudo process sends data
to the receiver process, too. As a result, the pseudo process would be in two states
at the same time, which is not allowed.

We give two solutions to this issue.

The first solution is that we handle the pseudo process as two processes — in
this case, we have a four-process system instead of a three-process one —, which
are independent in the four-process system; one of them is connected to the sender

136 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

E]D T'_)D
AY;S0 AY,R,0
AY,E 0 AYTJ0
AFS0 AFR0
—|C'_>[| —|EX'_>IVL£€[|
EX\truell EXtruell

1C

A 4

< SiIAFS|IAFR.T,@ >

Figure 9: Titles of the result of the previous step can be seen in Figure 7

Figure 10: The synchronization skeletons

process, and the other is connected to the receiver. This is a reasonable approach,
because there is a hidden connection between the two pseudo processes, and this
connection is handled by the synchronization of the embedded system.

The second approach is to define the states of the embedded system as pairs, so
we will have state pairs like (N, N), (N, 5), (R, S) and so on. For example, (N, N)
means that the embedded system does not read or send data, while (IV,.S) means
that the system does not read, but sends data and (R, S) means that the system
reads and sends data at the same time. With such a type of set of states, we can
express the behaviour of the system in a quite efficient way.

The second approach is more complicated than the first one (because of the
large number of the states of the system), so we chose the first approach for the

Synthesis of the synchronization of general pipeline systems 137

trueg

< (5:)4 (5)
truey N4 truey _/

Figure 11: Simplified synchronization skeletons

®/E 1(,-)(trueﬂ—>ﬂskip)ﬂ ®/’€ 1(i,j<i)(A/D—>ﬂS‘kip)D ®/E I(i)(true%mkip)ﬂ
p{(Ty H »{ Ry M
Bje 1.1 C-skip)l ®je 1j<if(—AI—skip)
n
Si|:| 1 EiD 4
®,‘E 1(,')(IFMKD—>[LS‘kip)D ®/’€ 1(i,i</')(—| C,D—»[Lsklp)l] ®/E 1(,’)(fi‘ll€ﬂ->ﬂ§‘kip>ﬂ
n n n

Figure 12: Improved synchronization skeleton of the embedded system

solution. We show only the connection between the sender process and the embed-
ded system. The synchronization of the embedded system and the receiver process
can be deduced similarly.

The states of the sender process are:

J: normal (working) state,
K: try to send state,

L: sending state,

M: after sending state.

Using these states we can give the temporal logic specification of the system —
see Appendix C. For the specification, CTL* was used. Based on this specification,
we are able to generate the synchronization skeleton of the system. We used the
synthesization method of Emerson and Clarke. The synchronization skeleton for
the sender process and the first pseudo process of the embedded system can be

138 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

a truel—Uskipy @ Ti—0skip, Q truel—Uskip, @
Mn Mn Mn

Q-[skipg

0

@ truel>lskipy T Mi-Uskipy ‘/Ru\ trueD—»ﬂskip[‘@
; ") >
i n

—Mi—Uskip

0

Figure 13: Synchronization skeleton for the sender process and the embedded sys-
tem

®jg I(i)(trueD—>Elskip)EI MD/\E@I‘E 1(,-,j<,-)(A,D—>Elskip)EI ®j€ I(i)(trueD—>El¥kip)EI

»{ T »{ Ry HL
®je161,i<)(CA—-Uskip) —MINI®je (i j<i(—A I—-0skip)T
®jg I(i)(trueD—>Elskip)EI ®jg 1(,‘1,'<j)(—| C,D—»Elskzp)[l ®je I(i)(trueD—ﬂskip)El
n n n

Figure 14: The modified synchronization skeleton for the first process of the em-
bedded system

seen in Figure 13. Finally, the synchronization skeleton of the first and the last
processes of the embedded system must be modified properly based on the result
in Figure 13 — the transition conditions of the first process of the embedded system
will be the conjunction of the original conditions, and the conditions in the proper
transitions of the synchronization of the sender process and the pseudo embedded
system — see in Figure 14. The new transition conditions for the last process of the
embedded system can be deduced similarly.

4 An application

Where could this method be used? There are many complicated processor networks,
which can be used for computational purposes; for example, the so-called butterfly
network (see [7]). An n-level butterfly network can be constructed in a recursive
way, which can be seen in Figure 15. The reason why these processor networks
are interesting is that there are many parallel algorithms that can be computed on
them, such as the Fast Fourier Transformation on a butterfly network (see [7]).

If we apply our result to an n-level butterfly, then we will have n generator
processes, which are connected to the nodes at the left side of the butterfly, and
we have n receiver processes, which are connected to the nodes at the right side

Synthesis of the synchronization of general pipeline systems 139

of the butterfly; the connections between the other processes can be defined in the
relation I, in a proper way for the FFT working on a butterfly network. A proper
I relation will be described in the following.

The number of the processes in B,, = n2" L.

Let the numbering of the processes in Bs be like in Figure 15.

Then the numbering of the processes in B, 1 comes from the following rules:

e The numbering of the first B,, component in B, is the same as of B,, (i.e.:
processes 1 — 4 of Bs in Figure 15).

e The numbering of the second B,, component in B,,; is the numbering of B,
shifted by n2"~! (i.e.: processes 5 — 8 of Bs in Figure 15).

e The numbering of the remainder processes (the right side column) is n2™ + 1
—n2™ + 2™ (i.e.: processes 9 — 12 of Bj in Figure 15).

As a result, the relation I consists of the following pairs:

e The pairs in the two B,, components.

e Vie[l...277 1] : (n—1)2" "t +i,n2" +i) € I (ie: (3,9) and (4,10) of Bs
in Figure 15).

e Vie[l...207 1 (n—1)2" "1+ n2"+27" 1 +4) € I (ie.: (3,11) and (4,12)
of Bs in Figure 15).

o Vie[0...27 1 —1]: (n2" —i,n2" + 2"~ —4) € I (i.e.: (7,9) and (8,10) of
Bs in Figure 15).

e Vic[0...27 7 —1]: (n2" —i,n2"+2" —4) € I (i.e.: (7,11) and (8,12) of Bs
in Figure 15).

The synchronization of the communication between the processes are defined
in this way, and we do not have to bother with the “business logic” of how the
processes compute the data they send to the connected processes.

5 Conclusion

This paper introduced a general pipeline tool, by which a complex application, such
as the parallel FFT, can be solved in a short and simple way.

Most of the programs that are working on some kind of data channels (see
[5]) can be handled by the method described above. If some modification is still
needed, the modification can be restricted to the temporal logic specifications and
the relation I, so the above method can be processed by the analogy of the above;
moreover, there are different tools exist that can help the process — for instance, the
method of Emerson and Clarke [2]; namely, the finite deterministic automata for
the pair-system can be generated from the CTL specification automatically, or even

140 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

1l 3l 1l 3l o R

B0 Bs:l Bl B ‘ a
[

2 4] 2l 4 100 g

3l 7 mn ‘ \
B.l '

ol 8l 120)

Figure 15: The structure of butterfly processor networks

concrete Java code can be generated with an object-oriented extension (see [4]) of
[1] (though a straightforward modification is needed because of the parameterized
spatial operators introduced in this paper) etc.

Note, that in the case of FFT no modification was needed, only the proper
relation I had to be defined.

6 Future work

The idea of synthesizing the synchronization of pipeline systems comes from the
hardware designing of graphics cards. We will work on to meet these demands.

The correctness of the algorithm should be proofed.

An effective tool for deadline checking should be developed.

During the communication, now it is possible that a process has received data
but it has to wait until the other processes that receive data from the same sender
process receive the data. Theoretically, it would be possible for a data receiver
process to step forward in this situation. That is, the data flow control may be
improved.

References

[1] P. C. Attie, E. A. Emerson: Synthesis of Concurrent Systems with Many Similar
Processes, ACM TOPLAS Vol. 20, No. 1, (January 1998) pp. 51-115

[2] E. A. Emerson, E. M. Clarke: Using branching time temporal logic to synthesize
synchronization skeletons, Science of Computer Programming, 2 (1982), pp. 241
- 266

[3] Sz. Hajdara, L. Kozma, B. Ugron: Synthesis of a system composed by many
similar objects, Annales Univ. Sci. Budapest., Sect. Comp. 22 (2003)

Synthesis of the synchronization of general pipeline systems 141

[4] Sz. Hajdara, B. Ugron: An example of generating the synchronization code of a
system composed by many similar objects, 17th European Conference on Object-
Oriented Programming (ECOOP), The 13th Workshop for PhD Students in
Object-Oriented Systems (2003)

[5] Z. Hernyak, Z. Horvath, V. Zsok: Clean-CORBA Interface Supporting Skele-
tons, 6t Tnternational Conference on Applied Informatics, Eger 2004

[6] L. Kozma: A transformation of strongly correct concurrent programs, Proc. of
the Third Hungarian Computer Science Conference 1981, 157-170

[7] F. T. Leighton: Introduction to Parallel Algorithms and Architectures, 1992

[8] B. Ugron, Sz. Hajdara: Synthesis of the synchronization of pipeline systems,
6t Tnternational Conference on Applied Informatics, Eger 2004

142 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

Appendix A

The following figures (16 — 20) describe the global state transition diagram of the
two-process system of the embedded system.

Since the global state diagram of the system is too large, we had to split it into
five figures. So we used the following notation: the bold box elements mark those
elements that can be continued but they are continued in an other figure. Dotted
box elements show boxes which can be found in a previous figure, so in the global
state transition diagram there is an edge to such boxes.

N,0T-0
EXtruell

R{[AFR|IN,0
1

EXtruel

10

A 4
< E|IN,0 > WILAFW,IAFR,T,0

Figure 16: The global state transition diagram (part 1)

Synthesis of the synchronization of general pipeline systems 143

EXtruel

v
< SIAFS;NA >
1
v

S1IN,0

AIN,O
EXstruel EXtrued

20 10
h 4 A 4

< AUAFNTO > < ADAFRyT0 >

EX,truell

20
h 4

< ADAFN)AFRyR.0 >

1
A 4
AR,
EXstruel

20
h 4

< AUAFN,CHO >

1
v
A 0C0
EXtruell

Ni[AFN ;AFW,C)l

Figure 17: The global state transition diagram (part 2)

144 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

NiLAFN ;AFW,CJl

10

> NII]AFSzDSz> -

RIIAFR S0
<T {IAFR 0A,)
<T1DAFN2[IA2EI
<N1I]AFN2DNgI]
<R1I]AFSZESZI]
<C1I]AFSZDE2D , N

<C IAFW (E0
<V,DAFW.I]W3I]

(SN g g g g g g S g S S g g g SR

EAFWICI S>e¢——— N WIC)] |g-----)

Figure 18: The global state transition diagram (part 3)

Synthesis of the synchronization of general pipeline systems 145

<T1I]AFN2[IA2> - 4
’

’
’

TIIAFRIAD > P VY1) S 4

RIDAFRIELSZ>-4 RiSS |
/

’
’

ROAFS S0 >
<C]DAFS:|II52I] - 4 CilED
’
’

’

/\

\%

CIIAFW B0 >

G Tl ST,

’ 10 :
’

: : /s :

Wﬂ]AFWszzD :

2 E\IAFS ,IAFW,IW,ll 1

|

|

]

!

1

E(0C,0 N
< EJIAFW,IC,0 > - EXotruel

W, IAFW 0AFN,0A0

Figure 19: The global state transition diagram (part 4)

146 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

<S|[|Ez[> <1DAFS|DAFSZDE2D
/ Pad
, B

v / =" EIAFS IAFS,S.]
AIW0 / 27T

EXtruel ’ PR L _-

\ 4

s.uAFs,uszu> - -.| S,0S,0
7

i /

SIIAFS,0S,0 >

[sS3

6

—_

0 20

10
AJIAFN [AFS,{S,(

1

4

A DAFS,IE0 .
AE
EXtruel

Adﬁﬂ
EXtruel

[sS]

|

0

!

AJIAFNIE0 > 7

g g g

A IAFN,0A0

10
ADAFN0A0
~<. aa-""

A 0AD
EXutruel

20
A IAFN,IAFN,IN,0
1

Figure 20: The global state transition diagram (part 5)

Synthesis of the synchronization of general pipeline systems 147

Appendix B

The following figures (21 — 24) describe the model of the two-process system of the
embedded system.

T,dT-0
AFR,0AFR,

lm

R,0T.0
AFR,0

DAG([T,IT,],JAFR)0

DAG([T,IT>],1AFR,)I
/00
AFR,IAFR,0

[1

DAG([R;,IT>],JAFR,)0
R/IT0
AFRy

[10

DAG([C,,IT,],1AFR,)0
CyIT0
AFW IAFR0

[

DAG([W.IT>].JAFR,)I
WIT0
AFR,0

[10

DAG([E,IT,].JAFR,)0

E\IT,0
AFS IAFR,0

[1

DAG([S,,0T>] JAFR,)0
ST
AFR,0

[10

DAG([AIT,],JAFR,)0

AIT>0
AFN|IAFR,0

I

AIR-0
AFN/0

Figure 21: The DAGs that are needed to construct frag([T1, T5])

148 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

N]DNZD
1{ E%n
T]DNZD NIDTZD
10 2x 10
v \ 4
R]DNZD TIDTZD
10 20 10
y y
C]DNZD RIDTZD
10 20 10
v \ 4
W]DNZD C]DTQD
10 20 10
v \ 4
E]DNZD WIDTZD
10 20 10
y y
S]DNZD EIDTZD
10 20 10
v y
E\IT0
e N AN SIT0
10 I
v v N‘r .
R/OT,0 S,IT0
UL UL A]DTzD
10 Ir
v v i 20
C,ITA0 A0
UL U1 2 AlEleEI
10 2x
v v i 20
W IT,0 AR
1012 JHIRDL AIIZD
10
10
y
FRAG([T, IT,])0 NiCA
Figure 22: The fragment of the Figure 23: The model of the system

[T1,T5] AND node

Synthesis of the synchronization of general pipeline systems

N;,0C0

1 20

T,0C0 N,OW,0

10 01 Ul
R,IC,0 T,OW20 N, E,0
1 01 I

W,IC,0 C,IW,0 RyIED T,0S,0 N;0A0

W DWzﬂ C UEzD 1DSzD IDAZD

Figure 24: The model of the system

149

150 Balazs Ugron, Szabolcs Hajdara, and Laszlé Kozma

Appendix C

In the following, the temporal logic specification can be seen for the system that is
built from the sender process and the embedded system.

For the sake of simplicity, we can join the states N, W, E, S and A of the first
process of the embedded system (because the first process only receives data from
the sender, the sender will not keep the first process from sending). Let the name
of the joined state be N (Normal). Furthermore, we omit the indexes of the states,
because the states of the sender process are labeled in another way.

Note that in this case P; is the second process and the sender is the first process.

1. Initial state (every process is initially in its normal state):

JAN

2. It is always the case that any move P, makes from its IV state is into its T
state, and such a move is always possible (and similarly for the state R and
for the states J and L of the sender):

AG(L = (AY1M N EX 1 M))
AG(N = (AY2T AN EXLT))
AG(R = (AY>C N EX5C))
3. It is always the case that any move P; makes from its T state is into its R

state — but such a move is not definitely possible (and similarly for the state
C' and for the states K and M of the sender):

AG(K = AY|L)
AG(M = AY1J)

AG(T = AY3R)
AG(C = AY,N)

4. The processes are always in exactly one state of the state set:

b

G(J = (K VLV M))
AG(K = ~(JV LV M))
G(L=~(J VKV M)
()
()

b

AG(M =~(JVEKVL
AG(N=~(TVRVC

Synthesis of the synchronization of general pipeline systems 151

AG(T = ~(N VRV C))
AG(R=~(NVTVC))
AG(C =~(NVTVR))

5. Liveness: if P; is in state T, then some time it will reach state R (and similarly
for the state C' and states K and M of the sender):

AG(K = AFL)
AG(M = AFJ)
AG(T = AFR)
AG(C = AFN)

6. A transition by a process cannot cause a transition by another one:

AG(J = AY,J)

AG(K = AY3K)

AG(L = AY2L)
AG(M = AY>M)

AG(N = AY1N)

AG(T = A1 T)

AG(R = AY1R)

AG(C = AY1C)

7. Data flow control: a process in state T waits for the sender process to reach

state M and a process in state C' waits for the sender process to leave M (and
similarly for the sender):

AG((K AN—T) = —EXqtrue
AG((M N =C) = ~EX;true
AG((T N —=M) = —EXstrue
AG((C AN M) = —EXstrue

8. Always there is a possible step:

AGEX true

Received November, 2004

