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Functional Dependencies over XML Documents

with DTDs
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Abstract

In this article an axiomatisation for functional dependencies over XML
documents is presented. The approach is based on a representation of XML
document type definitions (or XML schemata) by nested attributes using
constructors for records, disjoint unions and lists, and a particular null value,
which covers optionality. Infinite structures that may result from referencing
attributes in XML are captured by rational trees. Using a partial order on
nested attributes we obtain non-distributive Brouwer algebras. The opera-
tions of the Brouwer algebra are exploited in the soundness and completeness
proofs for derivation rules for functional dependencies.
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1 Introduction

Over the last decade the eXtensible Markup Language (XML) [5] has attracted a
lot of attention in research and practice. Its spectrum of usage spreads from data
exchange on the web to a direct use as a data model. In fact, the language shows a
lot of similarities to semi-structured data [1] and to object-oriented databases [12].

The treatment of XML as a data model requires re-investigating core problems
of database theory. Therefore, it is no surprise that database dependency theory
[13] has recently started a revival in the context of XML. The research interest first
focused on the classes of keys [4, 11] and functional dependencies [3, 16, 18], which
represent the most common and at the same time easiest class of dependencies.

However, the problem is still not completely solved. The major drawback of the
work by Arenas, Fan and Libkin and similarly Vincent and Liu is the restriction to
a relational representation of XML documents. That is, XML documents are con-
sidered as some sets of (generalised) tuples, which then can be treated analogously
to the relational model. However, it is possible to formulate functional dependen-
cies on XML documents that are not preserved by the relational representation. In
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other words, these theories are adequate as long as we only deal with functional
dependencies that can be expressed on a relational representation of XML docu-
ments. Going beyond this restricted class of functional dependencies requires an
extended theory or a different approach to the problem.

Our own work in this area originates from a more classical approach dealing
with dependencies in higher-order data models such as the higher-order Entity-
Relationship model (HERM) [14] or the object-oriented data model (OODM) [12].
The basic idea is to consider nested attributes that can be built from constructors
for records, sets, lists, etc. Furthermore, our first interest is devoted to the logical
and mathematical foundations of dependency theory, i.e. we first address problems
of axiomatisation, number of possible dependencies, complexity of closure building,
etc.

Using just the record- and set-constructors we obtained an axiomatisation in
[6], extended in [7]. Additional constructors for lists, multisets and disjoint unions
have been handled in [10]. Unfortunately, the presence of the union-constructor, in
particular in connection with the set-constructor, requires an extension of the the-
ory to weak functional dependencies, i.e. disjunctions of functional dependencies.
Rather astonishingly, among the three “bulk” constructors the list-constructor is
the easiest one. So far it is the only part of the theory that could be generalised to
multi-valued dependencies [9]. Other work on multi-valued dependencies for XML
[17] is again “relationally minded”.

In this article we extend our theory of functional dependencies to XML docu-
ments. We show how to represent XML elements by nested attributes. In partic-
ular, we represent the Kleene-star by the list-constructor, i.e. we have order and
duplicates. In our theory it is also possible to use the multiset- or set-constructor
instead, thus neglecting order or duplicates. We may also treat all three “bulk”
constructors together. However, as this would blow up the article we made the
choice to restrict ourselves to only the easiest of the bulk constructors. A glimpse
of the necessary extensions for the other two bulk constructors can be obtained
from [10].

In any case the combination of a bulk constructor with the union-constructor
is only satisfactory, if some form of restructuring is taken into account. The early
work in [2] handles only the set-constructor, but even for this the theory would
be equivalent to restricting the union-constructor in a way that it can only occur
as the outermost constructor. This is insufficient, if subattributes are considered.
Therefore, we use an extended form of restructuring.

However, in order to fully capture functional dependencies over XML documents
we have to face two major extensions:

1. We have to consider rational tree attributes, which result from reference struc-
tures in XML documents. We will see that the extension arising from this
problem is not severe. The major observation is that the subattribute lat-
tice becomes infinite, but this does not affect the derivation of dependencies.
Note that all previous work on functional dependencies for XML including
[3] neglect references.
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2. We have to consider functional dependencies on embedded elements. These
dependencies can be “lifted” through the constructors, i.e. they induce func-
tional dependencies on complete XML documents. Such dependencies have
not been considered in our previous work. However, the “lifting rules” be-
came already indispensable in the presence of the union-constructor, as this
constructor leads to axioms on embedded structures [10].

In other words, this article takes a reasonable fragment of the theory from [10]
and extends it with respect to these two problems. The result is a quite uniform
axiomatisation for functional documents over XML documents.

In the remainder of the article we first investigate the relationship between XML
documents and nested attributes in Section 2. We show how to map the regular
expressions in XML document type definitions to the attribute constructors. Fur-
thermore, we extend nested attributes by rational trees and use them to represent
the infinite structures that may arise from references in XML documents. We then
define a partial order on nested attributes and show that the set of subattributes
of a given attribute forms nearly a Brouwer algebra — however, distributivity does
not hold.

In Section 3 we introduce functional dependencies and first prove the sound-
ness of some derivation rules for them. These soundness rules imply properties of
closures, i.e. sets of subattributes that depend functionally on a given set of sub-
attributes. This leads to the notion of “strong higher-level ideal” or SHL-ideal for
short. We show a central theorem about such SHL-ideals, which states that we can
always find two values in the associated domain that coincide exactly on a given
SHL-ideal. This theorem is indeed central for the proof of the completeness of the
derivation rules. The completeness theorem will be the major result of this article.

2 XML and Nested Attributes

In this section we define our extended model of nested attributes including rational
tree attributes. We show how to use these attributes to represent XML document
type definitions. Finally, we look a bit closer into the structure of sets of subat-
tributes and show that we obtain non-distributive Brouwer algebras.

2.1 Elements in XML and Constructors

The structure of XML documents is prescribed by a document type definition
(DTD) [1] or (almost equivalently) by an XML schema. Basically, such a DTD
is a collection of element definitions, where each element is defined by a regular
expression made out of element names and a single base domain PCDATA. Without
loss of generality we may assume to have more than one domain. Then we can
isolate those element definitions that lead only to domains. These elements can be
represented by simple attributes.
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Definition 1. A universe is a finite set U together with domains (i.e. sets of
values) dom(A) for all A ∈ U. The elements of U are called simple attributes.

For all other element definitions we may assume without loss of generality —
just spend a few more element names, if necessary — that they are normalised in
the sense that they only contain element names and no domains, and they only use
exactly one of the constructors for sequences, Kleene-star or alternative.

Then they can be represented as nested attributes as defined next. We use a set
L of labels, and tacitly assume that the symbol λ is neither a simple attribute nor
a label, i.e. λ /∈ U∪L, and that simple attributes and labels are pairwise different,
i.e. U ∩ L = ∅.
Definition 2. Let U be a universe and L a set of labels. The set N of nested
attributes (over U and L) is the smallest set with λ ∈ N, U ⊆ N, and satisfying the
following properties:

• for X ∈ L and X ′
1, . . . , X

′
n ∈ N we have X(X ′

1, . . . , X
′
n) ∈ N;

• for X ∈ L and X ′ ∈ N we have X [X ′] ∈ N;

• for X1, . . . , Xn ∈ L and X ′
1, . . . , X

′
n ∈ N we have X1(X ′

1)⊕· · ·⊕Xn(X ′
n) ∈ N.

We call λ a null attribute, X(X ′
1, . . . , X

′
n) a record attribute, X [X ′] a list at-

tribute, and X1(X ′
1)⊕· · ·⊕Xn(X ′

n) a union attribute. As record and list attributes
have a unique leading label, say X , we often write simply X to denote the attribute.

Thus, a Kleene-star element definition 〈!ELEMENT X(Y )∗〉 will be represented by
the nested attribute X [Y ], a sequence element definition 〈!ELEMENT X(Y1, . . . , Yn)〉
by X(Y1, . . . , Yn), and an alternative element definition 〈!ELEMENT X(Y1 | · · · |
Yn)〉 by X(X1(Y1) ⊕ · · · ⊕ Xn(Yn)) with some new invented labels X1, . . . , Xn.
Furthermore, as the plus-operator in regular expressions can be expressed by the
Kleene-star, an element definition 〈!ELEMENT X(Y )+〉 will be represented by the
nested attribute X(Y, X ′[Y ]) with some new invented label X ′. Similarly, optional
elements can be expressed as alternatives with empty elements, thus an element
definition 〈!ELEMENT X(Y ?)〉 will be represented by the nested attribute X(Y ) ⊕
X ′(λ).

We can now extend the association dom from simple to nested attributes, i.e.
for each X ∈ N we will define a set of values dom(X).

Definition 3. For each nested attribute X ∈ N we get a domain dom(X) as
follows:

• dom(λ) = {
};
• dom(X(X ′

1, . . . , X
′
n)) = {(X1 : v1, . . . , Xn : vn) | vi ∈ dom(X ′

i) for i =
1, . . . , n} with labels Xi for the attributes X ′

i;

• dom(X [X ′]) = {[v1, . . . , vn] | vi ∈ dom(X ′) for i = 1, . . . , n}, i.e. each ele-
ment in dom(X [X ′]) is a finite list with elements in dom(X ′);
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• dom(X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)) = {(Xi : vi) | vi ∈ dom(X ′
i) for i = 1, . . . , n}.

Hence, each element in a DTD can be represented by a nested attribute. An
XML document is then represented by a value v ∈ dom(X) of the nested attribute
X that represents the root. In the following we assume without loss of generality
— rename, if necessary — that labels are used only once in a representing nested
attribute. In this way we may identify labels with nested attributes labelled by
them.

2.2 Attributes in XML and Rational Trees

Besides element definitions a DTD also contains attribute definitions. Attributes
are associated with elements. Neglecting some of the syntactic sugar, we basically
have three types of attributes:

• attributes with domain CDATA, which can be represented again by simple
attributes;

• attributes with domain ID , which can be ignored;

• attributes with domain IDREF or IDREFS , which can be replaced by the
label, or the list of labels, respectively, of the referenced elements.

More formally, we extend our Definition 2 of nested attributes by adding L ⊆ N.
We say that a label Y ∈ L occurring inside a nested attribute X , is a defining label
iff it is introduced by one of the three cases in Definition 2. Otherwise it is a
referencing label . We require that each label Y appears at most once as a defining
label in a nested attribute X , and that each referencing label also occurs as a
defining label. In other words, if we represent a nested attribute by a labelled tree,
a defining label is the label of a non-leaf node, and a referencing label is the label
of a leaf node.

Using labels we can subsume the attributes of an element in the element defi-
nition using a sequence constructor. Attributes with domain CDATA will be rep-
resented by simple attributes, attributes with domain IDREF will be represented
by the label of the referenced element, and attributes with domain IDREFS will
be represented by the list of labels of the referenced elements.

We still have to extend Definition 3. For this assume X ∈ N and let Y be a
referencing label in X . If we replace Y by the nested attribute that is defined by
Y within X , we call the result an expansion of X . Note that in such an expansion
a label may now appear more than once as a defining label, but all the nested at-
tributes defined by a label can be identified, as the corresponding sets of expansions
are identical.

In order to define domains assume set of label variables ψ(Y ) for each Y ∈ L.
Then for each expansion X ′ of a nested attribute X we define dom(X ′) as in
Definition 3 with the following modifications:

• for a referencing label Y we take dom(Y ) = ψ(Y );
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• for a label Y defining the nested attribute Y ′ take dom(Y ) = {y : v | y ∈
ψ(Y ), v ∈ dom(Y ′)};

• allow only such values v in dom(X ′), for which the values of referencing labels
also occur inside v exactly once at the position of a defining label.

Finally, define dom(X) =
⋃

X′ dom(X ′), where the union spans over all expansions
X ′ of X .

2.3 Subattributes

In classical dependency theory for the relational model we considered the powerset
P(R) for a relation schema R, which is a Boolean algebra with order ⊆. We have to
generalise this for nested attributes starting with a partial order ≥. However, this
partial order will be defined on equivalence classes of attributes. We will identify
nested attributes, if we can identify their domains.

Definition 4. ≡ is the smallest equivalence relation on N satisfying the following
properties:

• λ ≡ X();

• X(X ′
1, . . . , X

′
n) ≡ X(X ′

1, . . . , X
′
n, λ);

• X(X ′
1, . . . , X

′
n) ≡ X(X ′

σ(1), . . . , X
′
σ(n)) for any permutation σ;

• X1(X ′
1)⊕ · · · ⊕ Xn(X ′

n) ≡ Xσ(1)(X ′
σ(1)) ⊕ · · · ⊕ Xσ(n)(X ′

σ(n)) for any permu-
tation σ;

• X(X ′
1, . . . , X

′
n) ≡ X(Y1, . . . , Yn) iff X ′

i ≡ Yi for all i = 1, . . . , n;

• X1(X ′
1)⊕· · ·⊕Xn(X ′

n) ≡ X1(Y1)⊕· · ·⊕Xn(Yn) iff X ′
i ≡ Yi for all i = 1, . . . , n;

• X [X ′] ≡ X [Y ] iff X ′ ≡ Y ;

• X(X ′
1, . . . , Y1(Y ′

1) ⊕ · · · ⊕ Ym(Y ′
m), . . . , X ′

n) ≡
Y1(X ′

1, . . . , Y
′
1 , . . . , X ′

n) ⊕ · · · ⊕ Ym(X ′
1, . . . , Y

′
m, . . . , X ′

n);

• X [Xi(X ′
i)] ≡ X(Xi[X ′

i]).

Basically, the equivalence definition (apart from the last case) states that λ in
record attributes can be added or removed, and that order in record and union
attributes does not matter. The last case in Definition 4 covers an obvious restruc-
turing rule, which was already introduced in [2].

In the following we identify N with the set N/≡ of equivalence classes. In
particular, we will write = instead of ≡, and in the following definition we should
say that Y is a subattribute of X iff X̃ ≥ Ỹ holds for some X̃ ≡ X and Ỹ ≡ Y .

Definition 5. For X, Y ∈ N we say that Y is a subattribute of X , iff X ≥ Y holds,
where ≥ is the smallest partial order on N satisfying the following properties:
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• X ≥ λ for all X ∈ N;

• X ≥ X ′ for all expansions X ′ of X ;

• X(Y1, . . . , Yn) ≥ X(X ′
σ(1), . . . , X

′
σ(m)) for some injective σ : {1, . . . , m} →

{1, . . . , n} and Yσ(i) ≥ X ′
σ(i) for all i = 1, . . . , m;

• X1(Y1)⊕ · · · ⊕Xn(Yn) ≥ Xσ(1)(X ′
σ(1))⊕ · · · ⊕Xσ(n)(X ′

σ(n)) for some permu-
tation σ and Yi ≥ X ′

i for all i = 1, . . . , n;

• X [Y ] ≥ X [X ′] iff Y ≥ X ′;

• X [X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)] ≥ X(X1[X ′
1], . . . , Xn[X ′

n]);

• X [X1(X ′
1) ⊕ · · · ⊕ Xk(X ′

k)] ≥ X [X1(X ′
1) ⊕ · · · ⊕ X�(X ′

�)] for k ≥ �;

• X(Xi1 [λ], . . . , Xik
[λ]) ≥ X{i1,...,ik}[λ].

Obviously, X ≥ Y induces a projection map πX
Y : dom(X) → dom(Y ). For

X ≡ Y we have X ≥ Y and Y ≥ X and the projection maps πX
Y and πY

X are
inverse to each other.

Note that the last three cases in Definition 5 covers the restructuring for lists
of unions, which needs some more explanation. Obviously, if we are given a list of
elements labelled with X1, . . . , Xn, we can take the individual sublists – preserving
the order – that contain only those elements labelled by Xi and build the tuple of
these lists. In this case we can turn the label into a label for the whole sublist. This
explains the third to last subattribute relationship. In case n = 1 this is subsumed
by the last equivalence in Definition 4.

Using the subattribute relationship for record attributes we obtain

X(X1[Y1], . . . , Xn[Yn]) ≥ X(Xi1 [Yi1 ], . . . , Xik
[Yik

])

for {i1, . . . , ik} ⊆ {1, . . . , n}. But then also

X [Xi1(Yi1 ), . . . , Xik
(Yik

)] ≥ X(Xi1 [Yi1 ], . . . , Xik
[Yik

])

holds as already explained. It is therefore natural to require the second to last
property. It just means that a list with elements labelled by X1, . . . , Xk can be
mapped to the sublist – preserving the order – that contains only the elements
with labels X1, . . . , X�. We may of course take any subset of the labels here, but
this is already captured by the possibility to permute the components in a union
attribute.

In a list we can also map each element to 
, the unique element in dom(λ).
In fact, the subattribute of the form X [λ] only counts the number of elements in
the list. This is not affected by first separating the list according to labels, so we
obtain the last subattribute relationship.
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However, restructuring requires some care with labels. If we simply reused the
label X in the last property in Definition 5, we would obtain

X [X1(X ′
1) ⊕ X2(X ′

2)] ≥ X(X1[X ′
1], X2[X ′

2]) ≥ X(X1[X ′
1]) ≥ X(X1[λ]) ≥ X [λ].

However, the last step here is wrong, as the left hand side refers to the length
of the sublist containing the elements with label X1, whereas the right hand side
refers to the length of the whole list, i.e. elements have labels X1 or X2. No such
mapping can be claimed. In fact, what we really have to do is to mark the list label
in an attribute of the form X [X1(X ′

1) ⊕ · · · ⊕ Xn(X ′
n)] to indicate the inner union

attribute, i.e. we should use X{1,...,n} (or even X{X1,...,Xn}) instead of X . Then
the second to last restructuring property in Definition 5 would become

X{1,...,k}[X1(X ′
1) ⊕ · · · ⊕ Xk(X ′

k)] ≥ X{1,...,�}[X1(X ′
1) ⊕ · · · ⊕ X�(X ′

�)].

However, as long as we are not dealing with subattributes of the form
X{1,...,k}[λ], the additional index does not add any information and thus can be
omitted to increase readability. In the last restructuring property in Definition 5,
however, the index is needed.

Further note that due to the restructuring rules in Definitions 4 and 5 we may
have the case that a record attribute is a subattribute of a list attribute. This allows
us to assume that the union-constructor only appears inside a list-constructor or
as the outermost constructor. This will be frequently exploited in our proofs.

We use the notation S(X) = {Z ∈ N | X ≥ Z} to denote the set of subattributes
of a nested attribute X . In the next subsection we will take a closer look into the
structure of S(X).

Figure 1 shows the subattributes of X [X1(A)⊕X2(B)] together with the relation
≥ on them. Note that the subattribute X [λ] would not occur, if we only consid-
ered the record-structure, whereas other subattributes such as X(X1[λ]) would not
occur, if we only considered the list-structure. This is a direct consequence of the
restructuring rules.

Let us now investigate the structure of S(X). We will show that we obtain
a non-distributive Brouwer algebra, i.e. a non-distributive lattice with relative
pseudo-complements. A lattice L with zero and one, partial order ≤, join � and
meet � is said to have relative pseudo-complements iff for all Y, Z ∈ L the infimum
Y ← Z = �{U | U ∪ Y ≥ Z} exists.

Proposition 1. The set S(X) of subattributes carries the structure of a lattice
with zero and one and relative pseudo-complements, where the order ≥ is as defined
in Definition 5, and λ and X are the zero and one.

In the following we denote join by �, meet by � and relative pseudo-complement
by ←. Then it is straightforward to show the following properties:

• for the join �:

1. Y � Z = Y iff Y ≥ Z;
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λ

X(X1[λ]) X[λ] X(X2[λ])

X(X1[A]) X(X1[λ],X2[λ]) X(X2[B])

X(X1[A],X2[λ]) X(X1[λ],X2[B])

X(X1[A],X2[B])

X[X1(λ) ⊕ X2(λ)]

X[X1(A) ⊕ X2(λ)] X[X1(λ) ⊕ X2(B)]

X[X1(A) ⊕ X2(B)]

Figure 1: The lattice S(X [X1(A) ⊕ X2(B)])

2. for X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn) and Z = X(Z1, . . . , Zn) we
have Y � Z = X(Y1 � Z1, . . . , Yn � Zn);

3. for X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn) �= λ and Z = XI [λ] with
I = {i1, . . . , ik} we have Y � Z = Z � Y = Y � X(Xi1 [λ], . . . , Xik

[λ]);

4. for X = X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n), Y = X1(Y ′
1) ⊕ · · · ⊕ Xn(Y ′

n) and Z =
X1(Z ′

1)⊕· · ·⊕Xn(Z ′
n) we have Y �Z = X1(Y ′

1 �Z ′
1)⊕· · ·⊕Xn(Y ′

n�Z ′
n);

5. for X = X [X ′], Y = X [Y ′] and Z = X [Z ′] we have Y �Z = X [Y ′ �Z ′];

6. for X = X [X1(X ′
1)⊕ · · ·⊕Xn(X ′

n)], Y = X [X1(Y ′
1)⊕ · · ·⊕Xn(Y ′

n)] and
Z = X(Z1, . . . , Zn) with either Zi = Xi[Z ′

i] or Zi = λ we have Y � Z =

Z�Y = X [X1(U1)⊕· · ·⊕Xn(Un)] with Ui =

{
Y ′

i � Z ′
i for Zi = Xi[Z ′

i]
Y ′

i for Zi = λ
.

• for the meet �:

1. Y � Z = Z iff Y ≥ Z;

2. for X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn) and Z = X(Z1, . . . , Zn) we
have Y � Z = X(Y1 � Z1, . . . , Yn � Zn);

3. for X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn) �= λ and Z = XI [λ] with
I = {i1, . . . , ik} and Y �≥ Z we have Y � Z = Z � Y = λ;

4. for X = X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n), Y = X1(Y ′
1) ⊕ · · · ⊕ Xn(Y ′

n) and Z =
X1(Z ′

1)⊕· · ·⊕Xn(Z ′
n) we have Y �Z = X1(Y ′

1 �Z ′
1)⊕· · ·⊕Xn(Y ′

n�Z ′
n);

5. for X = X [X ′], Y = X [Y ′] and Z = X [Z ′] we have Y �Z = X [Y ′ �Z ′];
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6. for X = X [X1(X ′
1)⊕ · · ·⊕Xn(X ′

n)], Y = X [X1(Y ′
1)⊕ · · ·⊕Xn(Y ′

n)] and
Z = X(Z1, . . . , Zn) with either Zi = Xi[Z ′

i] or Zi = λ we have Y � Z =

Z � Y = X(U1, . . . , Un) with Ui =

{
Xi[Y ′

i � Z ′
i] for Zi = Xi[Z ′

i]
λ for Zi = λ

.

• for the relative pseudo-complement ←:

1. λ ← Y = Y ;

2. for Y ≥ Z we have Y ← Z = λ;

3. for X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn), Z = X(Z1, . . . , Zn) and
X [λ] /∈ S(X) we have Y ← Z = X(Y1 ← Z1, . . . , Yn ← Zn);

4. for Z = X(Z1, . . . , Zn) �= λ and I = {i1, . . . , ik} we have Z ← XI [λ] = λ
and XI [λ] ← Z = X(Xi1 [λ] ← Zi1 , . . . , Xik

[λ] ← Zik
);

5. for X = X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n), Y = X1(Y1) ⊕ · · · ⊕ Xn(Yn), Z =
X1(Z1) ⊕ · · · ⊕ Xn(Zn) and Y �≥ Z we have Y ← Z = X1(Y1 ← Z1) ⊕
· · · ⊕ Xn(Yn ← Zn);

6. for Z = X(Z1, . . . , Zn) �= λ we have Z ← X [λ] = λ and X [λ] ← Z =
X(X1[λ] ← Z1, . . . , Xn[λ] ← Zn);

7. for X = X [X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)] or X = X(X1[X ′
1], . . . , Xn[X ′

n]) we
have:

(a) for Z = X(Z1, . . . , Zn) �= λ and I = {i1, . . . , ik} we have Z ←
XI [λ] = λ and XI [λ] ← Z = X(Xi1 [λ] ← Zi1 , . . . , Xin [λ] ← Zik

);
(b) for Y = X(Y1, . . . , Yn) and Z = X(Z1, . . . , Zn) with λ �= Y �≥ Z

– if Yi ≥ Zi or Yi = λ, Zi = Xi[λ] for all i = 1, . . . , n we have
Y ← Z = λ,

– otherwise we have Y ← Z = X(Y1 ← Z1, . . . , Yn ← Zn);
(c) for Y = X [X1(Y ′

1 ) ⊕ · · · ⊕ Xn(Y ′
n)] and Z = X(Z1, . . . , Zn) with

Zi = Xi[Z ′
i] or Zi = λ and Y �≥ Z we have Y ← Z = X(U1, . . . , Un)

with Ui =

{
Xi[Y ′

i ← Z ′
i] for Zi �= λ

λ else
;

(d) for Y = X(Y1, . . . , Yn) �= λ with Yi = Xi[Y ′
i ] or Yi = λ, and

Z = X [X1(Z ′
1) ⊕ · · · ⊕ Xn(Z ′

n)] with Zi = Xi(Z ′
i) or Zi = λ

and Y �≥ Z we have Y ← Z = X [X1(U1) ⊕ · · · ⊕ Xn(Un)] with

Ui =

{
Y ′

i ← Z ′
i for Yi �= λ �= Zi

λ else
;

(e) for Y = X [X1(Y ′
1 )⊕ · · · ⊕ Xn(Y ′

n)], Z = X [X1(Z ′
1) ⊕ · · · ⊕ Xn(Z ′

n)]
with Y �= Z we have Y ← Z = X(U1, . . . , Un) with

Ui =

{
Xi[Y ′

i ← Z ′
i] for Y ′

i �= λ �= Z ′
i

λ else
.
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3 Axiomatisation of Functional Dependencies

In this section we will define functional dependencies on S(X) and derive some
sound derivation rules. We consider finite sets r ⊆ dom(X), which we will call
simply instances of X . If Y is a nested attribute that occurs inside X , then an
instance r of X defines an instance r(Y ) of Y ; simply take r(Y ) = {v′ ∈ dom(Y ) |
v′ occurs inside some v ∈ r at the position defined by Y }.
Definition 6. Let X, X ′ ∈ N such that X ′ occurs in X . A functional dependency
(FD) on S(X) is an expression X ′ : Y → Z with Y, Z ⊆ S(X ′).

An instance r of X satisfies the FD X ′ : Y → Z on S(X) (notation: r |= X ′ :
Y → Z) iff for all t1, t2 ∈ r(X ′) with πX′

Y (t1) = πX′
Y (t2) for all Y ∈ Y we also have

πX′
Z (t1) = πX′

Z (t2) for all Z ∈ Z.

Let Σ be a set of FDs defined on some S(X). A FD ψ is implied by Σ (notation:
Σ |= ψ) iff all instances r with r |= ϕ for all ϕ ∈ Σ also satisfy ψ. As usual we write
Σ∗ = {ψ | Σ |= ψ}.

We write Σ+ for the set of all FDs that can be derived from Σ by applying a
system R of axioms and rules, i.e. Σ+ = {ψ | Σ �R ψ}. We omit the standard
definitions of derivations with a given rule system, and also write simply � instead
of �R, if the rule system is clear from the context.

Our goal is to find a finite axiomatisation, i.e. a rule system R such that
Σ∗ = Σ+ holds. The rules in R are sound iff Σ+ ⊆ Σ∗ holds, and complete iff
Σ∗ ⊆ Σ+ holds.

3.1 Sound Axioms and Rules for Functional Dependencies

Let us now look at derivation rules for FDs. We will need a particular notion of
“semi-disjointness” that will permit a generalisation of the well known Armstrong
axioms for the relational model.

Definition 7. Two subattributes Y, Z ∈ S(X) are called semi-disjoint iff one of
the following holds:

1. Y ≥ Z or Z ≥ Y ;

2. X = X(X1, . . . , Xn), Y = X(Y1, . . . , Yn), Z = X(Z1, . . . , Zn) and Yi, Zi ∈
S(Xi) are semi-disjoint for all i = 1, . . . , n;

3. X = X [X ′], Y = X [Y ′], Z = X [Z ′] and Y ′, Z ′ ∈ S(X ′) are semi-disjoint;

4. X = X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n), Y = X1(Y ′
1) ⊕ · · · ⊕ Xn(Y ′

n), Z = X1(Z ′
1) ⊕

· · · ⊕ Xn(Z ′
n) and Y ′

i , Z ′
i ∈ S(X ′

i) are semi-disjoint for all i = 1, . . . , n;

5. X = X [X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)], Y = X(Y1, . . . , Yn) with Yi = Xi[Y ′
i ] or

Yi = λ = Y ′
i , Z = X [X1(Z ′

1)⊕ · · ·⊕Xn(Z ′
n)], and Y ′

i , Z ′
i are semi-disjoint for

all i = 1, . . . , n.
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With the notion of semi-disjointness we can formulate axioms and rules for FDs
and show their soundness.

Theorem 1. The following axioms and rules are sound for the implication of FDs:

• the λ axiom: X ′ : ∅ → {λ}
• the subattribute axiom: X ′ : {Y } → {Z} for Y ≥ Z

• the join axiom: X ′ : {Y, Z} → {Y � Z} for semi-disjoint Y and Z

• the reflexivity axiom: X ′ : Y → Z for Z ⊆ Y

• the extension rule: X ′ : Y → Z implies X ′ : Y → Y ∪ Z

• the transitivity rule: X ′ : Y → Z and X ′ : Z → U imply X ′ : Y → U

• the list axioms:

– X : {XI [λ], XJ [λ]} → {XI∪J [λ]} for I ∩ J = ∅
– X : {XI [λ], XI∪J [λ]} → {XJ [λ]} for I ∩ J = ∅
– X : {XI [λ], XJ [λ], XI∩J [λ]} → {X(I−J)∪(J−I)[λ]}
– X : {XI [λ], XJ [λ], X(I−J)∪(J−I)[λ]} → {XI∩J [λ]}

• the list lifting rule: X ′ : Y → Z implies X [X ′] : {X [Y ] | Y ∈ Y} → {X [Z] |
Z ∈ Z} for Y �= ∅

• the record lifting rule: Xi : Yi → Zi implies X(X1, . . . , Xn) : Ȳi → Z̄i with
Ȳi = {X(λ, . . . , Yi, . . . , λ) | Yi ∈ Yi} and Z̄i = {X(λ, . . . , Zi, . . . , λ) | Yi ∈ Zi}

• the union lifting rule: X ′
i : Yi → Zi implies X1(X ′

1)⊕ · · ·⊕Xn(X ′
n) : Ȳi → Z̄i

with Ȳi = {X1(λ) ⊕ · · · ⊕ Xi(Yi) ⊕ · · · ⊕ Xn(λ) | Yi ∈ Yi} and Z̄i = {X1(λ) ⊕
· · · ⊕ Xi(Zi) ⊕ · · · ⊕ Xn(λ) | Zi ∈ Zi}

Proof. We only show the soundness of some of the axioms and rules. The proof
for the other axioms and rules is either analogous or trivial.

For the join axion let t1, t2 ∈ dom(X) with πX
Y (t1) = πX

Y (t2) and πX
Z (t1) =

πX
Z (t2). We use induction on X to show πX

Y �Z(t1) = πX
Y �Z(t2). The cases X = λ

and X = A (i.e. a simple attribute) are trivial. There is also nothing to show for
Y ≥ Z or Z ≥ Y , as in these cases Y � Z is one of Y or Z.

For X = X(X1, . . . , Xn) let Y = X(Y1, . . . , Yn) and Z = X(Z1, . . . , Zn) be semi-
disjoint. For tj = (X1 : tj1, . . . , Xn : tjn) (j = 1, 2) we have πXi

Yi
(t1i) = πXi

Yi
(t2i) and

πXi

Zi
(t1i) = πXi

Zi
(t2i), and Yi, Zi are semi-disjoint for all i = 1, . . . , n. By induction

πXi

Yi�Zi
(t1i) = πXi

Yi�Zi
(t2i), which implies πX

Y �Z(t1) = πX
Y �Z(t2).

For X = X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n) assume t1 = (Xj : t′1) and t2 = (Xj : t′2).
Thus, for semi-disjoint Y = X1(Y ′

1)⊕· · ·⊕Xn(Y ′
n) and Z = X1(Z ′

1)⊕· · ·⊕Xn(Z ′
n)
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we obtain π
X′

j

Y ′
j
(t′1) = π

X′
j

Y ′
j
(t′2), π

X′
j

Z′
j
(t′1) = π

X′
j

Z′
j
(t′2), and Y ′

j , Z ′
j are semi-disjoint. By

induction π
X′

j

Y ′
j �Z′

j
(t′1) = π

X′
j

Y ′
j �Z′

j
(t′2), which implies πX

Y �Z(t1) = πX
Y �Z(t2).

For X = X [X1(X ′
1) ⊕ · · · ⊕ Xn(X ′

n)], Y = X(Y1, . . . , Yn) with Yi = Xi[Y ′
i ] or

Yi = λ = Y ′
i and Z = X [X1(Z ′

1)⊕ · · · ⊕Xn(Z ′
n)] we get Y �Z = X [X1(Y ′

1 �Z ′
1)⊕

· · · ⊕ Xn(Y ′
n � Z ′

n)]. As Z ≥ X [λ], we also have πX
X[λ](t1) = πX

X[λ](t2), so t1 and
t2 are lists of equal length. Therefore, assume tj = [tj1, . . . , tjm] for j = 1, 2 and
tjk = (X� : t′′jk). This gives πX

Y �Z(tj) = [t′j1, . . . , t
′
jm] with t′jk = (X� : π

X′
�

Y ′
� �Z′

�
(t′′jk)).

We know π
X′

�

Z′
�
(t′′1k) = π

X′
�

Z′
�
(t′′2k), so we are done for Y� = λ. For Y� �= λ the sublists

containing all (X� : t′′jk) coincide on Y ′
� . As Y ′

� and Z ′
� are semi-disjoint, we have

π
X′

�

Y ′
� �Z′

�
(t′′1k) = π

X′
�

Y ′
� �Z′

�
(t′′2k) by induction, which implies πX

Y �Z(t1) = πX
Y �Z(t2).

For the first list axiom let t1, t2 ∈ dom(X). Then πX
XI [λ](t1) = πX

XI [λ](t2) means
that t1 and t2 contain the same number of elements of the form (Xi : vi) with
i ∈ I. If the same holds for I ∪ J , then t1 and t2 must also contain the same
number of elements of the form (Xi : vi) with i ∈ J , i.e. πX

XJ [λ](t1) = πX
XJ [λ](t2).

The soundness of the second list axiom follows from the same argument.
Analogously, for the third list axiom πX

Y (t1) = πX
Y (t2) for Y ∈

{XI [λ], XJ [λ], XI∩J [λ]} means that t1, t2 contain the same number of elements
with labels in I, J and I ∩ J , respectively. So they also contain the same number
of elements with labels in (I −J)∪ (J − I). The soundness of the fourth list axiom
follows from the same argument.

For the soundness of the list lifting rule let t1, t2 ∈ dom(X) with πX
X[Y ](t1) =

πX
X[Y ](t2) for all X [Y ] with Y ∈ Y. As Y �= ∅, it follows that t1 and t2 must have

the same length, say ti = [ti1, . . . , tik] (i = 1, 2), and for all j = 1, . . . , k and all
Y ∈ Y we have πX′

Y (t1j) = πX′
Y (t2j). Hence πX′

Z (t1j) = πX′
Z (t2j) for all j = 1, . . . , k

and all Z ∈ Z, which implies πX
X[Z](t1) = πX

X[Z](t2) for all X [Z] with Z ∈ Z. The
soundness of the other two lifting rules follows analogously.

Using these rules we can derive additional rules:

• the union rule: X : Y → Z and X : Y → U imply X : Y → Z ∪ U

• the fragmentation rule: X : Y → Z implies X : Y → {Z} for Z ∈ Z

• the join rule: X : {Y } → {Z} implies X : {Y } → {Y � Z} for semi-disjoint
Y and Z

3.2 SHL-Ideals

In this subsection we investigate ideals. Of particular interest will be ideals with
additional closure properties, which we call “strong high-level ideals” or SHL-ideals
for short. These ideals will appear naturally in the completeness proof in the next
subsection. The main result of this subsection is Theorem 2.
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Definition 8. An ideal for a nested attribute X is a subset G ⊆ S(X) with λ ∈ G

and whenever Y ∈ G, Z ∈ S(X) with Y ≥ Z, then also Z ∈ G.

Let us now address the closure properties that will turn ideals into “higher-level”
or “strong higher-level ideals”.

Definition 9. Let X ∈ N. An ideal F ⊆ S(X) is called SHL-ideal on S(X) iff the
following properties are satisfied:

1. if Y, Z ∈ F are semi-disjoint, then Y � Z ∈ F;

2. (a) if XI [λ] ∈ F and XJ [λ] ∈ F with I ⊆ J , then XJ−I [λ] ∈ F;

(b) if XI [λ] ∈ F and XJ [λ] ∈ F with I ∩ J = ∅, then XI∪J [λ] ∈ F;

(c) if XI [λ] ∈ F and XJ [λ] ∈ F, then XI∩J [λ] ∈ F iff X(I−J)∪(J−I)[λ] ∈ F;

3. if X = X(X ′
1, . . . , X

′
n), then the sets Fi = {Yi ∈ S(X ′

i) | X(λ, . . . , Yi, . . . , λ) ∈
F} are SHL-ideals;

4. if X = X [X ′] and F �= {λ}, then the set G = {Y ∈ S(X ′) | X [Y ] ∈ F} is a
SHL-ideal;

5. If X = X1(X ′
1)⊕· · ·⊕Xn(X ′

n) and F �= {λ}, then the sets Fi = {Yi ∈ S(X ′
i) |

X1(λ) ⊕ · · · ⊕ Xi(Yi) ⊕ · · · ⊕ Xn(λ) ∈ F} are SHL-ideals.

We now prove the main result of this subsection.

Theorem 2. Let X be a nested attribute such that the union-constructor appears
in X only inside a list-constructor. If F is a SHL-ideal on S(X), then there exist
tuples t0, t1 ∈ dom(X) with πX

Y (t0) = πX
Y (t1) iff Y ∈ F.

Proof. We use induction on X . The case X = λ is trivial. For a simple attribute
X = A we either have F = {λ} or F = {A, λ}. In the former case take t0 = a and
t1 = a′ for a, a′ ∈ dom(A) with a �= a′. In the latter case take t0 = t1 = a.

Let X = X(X1, . . . , Xn) with X [λ] /∈ S(X). Take the SHL-ideals Fi from
Definition 9(3). By induction we find t0i, t1i ∈ dom(Xi) with πXi

Yi
(t0i) = πXi

Yi
(t1i) iff

Yi ∈ Fi. So take tj = (X1 : tj1, . . . , Xn : tjn) (j = 0, 1). For Y = X(Y1, . . . , Yn) ∈ F

we have πX
Y (t0) = (X1 : πX1

Y1
(t01), . . . , Xn : πXn

Yn
(t0n)) = (X1 : πX1

Y1
(t11), . . . , Xn :

πXn

Yn
(t1n)) = πX

Y (t1). For Y = X(Y1, . . . , Yn) /∈ F there is at least one Yi /∈ Fi,
which gives πX

Y (t0) = (X1 : πX1
Y1

(t01), . . . , Xn : πXn

Yn
(t0n)) �= (X1 : πX1

Y1
(t11), . . . , Xn :

πXn

Yn
(t1n)) = πX

Y (t1).
Let X = X [X ′] and assume that X ′ is not a union attribute. If we have F = {λ},

then take t0 = [v] with v ∈ dom(X ′) and t1 = []. For Y = X [Y ′] /∈ F we get
πX

Y (t0) = [πX′
Y ′ (v)] �= [] = πX

Y (t1). For F �= {λ} take the SHL-ideal G from Definition
9(4). By induction we find t′0, t

′
1 ∈ dom(X ′) with πX′

Y ′ (t′0) = πX′
Y ′ (t′1) iff Y ′ ∈ G.

Let tj = [t′j ] for j = 0, 1. Then we get πX
Y (t0) = [πX′

Y ′ (t′0)] = [πX′
Y ′ (t′1)] = πX

Y (t1) iff
Y = X [Y ′] ∈ F.
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Let X = X [X1(X ′
1)⊕· · ·⊕Xn(X ′

n)]. If F = {λ}, define t0 = [(X1 : v1), . . . , (Xn :
vn)] with arbitrary vi ∈ dom(X ′

i) and t1 = []. Then we get πX
XI{λ}(t0) = [
, . . . ,
︸ ︷︷ ︸

|I| times

],

whereas πX
XI{λ}(t1) = [].

Now assume F �= {λ}. Take I+ = {i ∈ {1, . . . , n} | X(Xi[λ]) ∈ F} and
I− = {1, . . . , n} − I+. If I+ = {i1, . . . , ik}, then consider first the subattribute
X+ = X [Xi1(X ′

i1) ⊕ · · · ⊕ Xik
(X ′

ik
)]. By Definition 9(2b) we have XI [λ] ∈ F for

all I ⊆ I+. We first construct t+0 , t+1 ∈ dom(X+) with πX+

Y (t+0 ) = πX+

Y (t+1 ) iff
Y ∈ F+ = {Y ∈ F | X+ ≥ Y }.

For this take X̃ = X(Xi1 [X
′
i1 ], . . . , Xik

[X ′
ik

]) and H = {Y = X(Yi1 , . . . , Yik
) |

Y ∈ F}. Ignoring restructuring and considering X̃ just as a record attribute,
H becomes an SHL-ideal on S(X̃). Applying the record case above we obtain
t̃0, t̃1 ∈ dom(X̃) with πX̃

Y (t̃0) = πX̃
Y (t̃1) iff Y ∈ H.

If t̃i = (ti,i1 , . . . , ti,ik
), we may concatenate these lists in the order of the indices

to define t+0 and t+1 , respectively. Then for Y ∈ S(X+) with X̃ ≥ Y we have
πX+

Y (t+0 ) = πX+

Y (t+1 ) iff Y ∈ F+. This does not change, if for any j we replace t0,ij

and t1,ij by the concatenated lists t0,ij
�t0,ij and t1,ij

�t0,ij , respectively.
Now let K = {k1, . . . , km} ⊆ I+ be maximal such that X [Xk1(X ′

k1
) ⊕ · · · ⊕

Xkm(X ′
km

)] ∈ F. Then for k ∈ I+ − K we must have X(Xk[X ′
k]) /∈ F, otherwise

also X [Xk1(X ′
k1

) ⊕ · · · ⊕ Xkm(X ′
km

) ⊕ Xk(X ′
k)] ∈ F due to the semi-disjointness

of the two subattributes and property 1 in Definition 9. Therefore, K is uniquely
determined.

Now, if X(Xi1 [Y ′
i1 ], . . . , Xiμ [Y ′

iμ
]) ∈ F, but X [Xi1(Y ′

i1 ) ⊕ · · · ⊕ Xiμ(Y ′
iμ

)] /∈ F,
then the uniqueness of K implies X(Xi1 [X ′

i1
], . . . , Xiμ [X ′

iμ
]) /∈ F. Hence there

must be some ι ∈ {i1, . . . , iμ} with t0,ι �= t1,ι. We therefore replace t0,ι and t1,ι

by the concatenated lists t0,ι
�t0,ι and t1,ι

�t0,ι, respectively, changing t+0 and t+1
accordingly. This gives πX+

X[Xi1 (Y ′
i1

)⊕···⊕Xiμ (Y ′
iμ

)](t
+
0 ) �= πX+

X[Xi1 (Y ′
i1

)⊕···⊕Xiμ (Y ′
iμ

)](t
+
1 )

without destroying previously established equalities and inequalities. This implies
πX+

Y (t+0 ) = πX+

Y (t+1 ) iff Y ∈ F+ for all Y ∈ S(X+) as claimed.
Now let I− = {j1, . . . , j�}. We choose non-negative integers xi, yi (i = 1, . . . , �)

such that for each I = {jr1 , . . . , jr|I|} ⊆ I− we have

|I|∑
p=1

xrp =
|I|∑

p=1

yrp iff XI [λ] ∈ F.

These integers can be obtained by the following procedure:
for p = 1, . . . , � :

choose xp, yp such that all equations and inequations containing
only xi, yi with 1 ≤ i ≤ p are satisfied;
replace xp, yp in the remaining equations and inequations by the
chosen values

endfor
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Properties 2(b) and 2(c) in Definition 9 guarantee that this procedure always pro-
duces a solution for the given equations and inequations. Now define

t−0 = [(Xj1 : vj1)︸ ︷︷ ︸
xj1 -times

, . . . , (Xj�
: vj�

)︸ ︷︷ ︸
xj�

-times

] and t−1 = [(Xj1 : vj1)︸ ︷︷ ︸
yj1 -times

, . . . , (Xj�
: vj�

)︸ ︷︷ ︸
yj�

-times

]

with arbitrary values vji ∈ dom(X ′
ji

) and concatenate t+i and t−i to give ti
(i = 0, 1). Then for Y ∈ {Y ∈ S(X) | X+ ≥ Y } we have πX

Y (ti) = πX
Y (t+i ), hence

πX
Y (t0) = πX

Y (t1) iff Y ∈ F+.
For Y �≤ X+ we always have one j ∈ I− with Y ≥ X(Xj[λ]) or Y = XI [λ]. In

the first case Y /∈ F and

πX
X(Xj [λ])(t0) = πX

X(Xj [λ])(t
−
0 ) �= πX

X(Xj [λ])(t
−
1 ) = πX

X(Xj [λ])(t1)

as desired. In the second case πX
Y (t0) = πX

Y (t1) iff πX
XI∩I− [λ](t

−
0 ) = πX

XI∩I− [λ](t
−
1 )

iff XI∩I− [λ] ∈ F iff Y = XI [λ] ∈ F due to property 2(a) of Definition 9 and
XI∩I+ [λ] ∈ F.

3.3 Completeness of the Axioms and Rules for Functional
Dependencies

In this final subsection we want to show that the axioms and rules from Theorem
1 are also complete. This gives our main result.

Before we come to the proof let us make a little observation on the union-
constructor. If X = X1(X ′

1) ⊕ · · · ⊕ Xn(X ′
n), then each instance r of X can be

partitioned into ri (i = 1, . . . , n), where ri contains exactly the Xi-labelled elements
of r. Then r satisfies a FD ϕ ≡ Y → Z iff each ri satisfies the i’th projection ϕi of
ϕ, which results by replacing all subattributes Y = X1(Y1) ⊕ · · · ⊕ Xn(Yn) in Y or
Z by Xi(Yi). Similarly, we see ϕ ∈ Σ+ iff ϕi ∈ Σ+

i for all i = 1, . . . , n.

Theorem 3. The axioms and rules in Theorem 1 are complete for the implication
of FDs.

Proof. Assume Y → Z /∈ Σ+. Due to the union rule we must have Y → {Z} /∈ Σ+

for some Z ∈ Z. Now take Ȳ = {Z | Y → {Z} ∈ Σ+}, so Z /∈ Ȳ. It is easy to see
that F = Ȳ is a SHL-ideal:

1. λ ∈ Ȳ follows from the reflexivity axiom, the subattribute axiom and the
transitivity rule.

2. In the same way for Z ∈ Ȳ and Z ≥ Z ′ we get Z ′ ∈ Ȳ from the subattribute
axiom and the transitivity rule.

3. For semi-disjoint Z, Z ′ ∈ Ȳ we obtain Z �Z ′ ∈ Ȳ from the union rule, the join
axiom and the transitivity rule.
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4. The other properties of SHL-ideals follow directly from the list axioms and
the lifting rules.

If the outermost constructor is not the union-constructor, we can apply Theorem
2 to obtain an instance r = {t1, t2} with πX

Z (t1) = πX
Z (t2) iff Z ∈ Ȳ. As Y ⊆ Ȳ and

Z /∈ Ȳ, we must have r �|= Y → {Z} and thus also r �|= Y → Z due to the soundness
of the fragmentation rule.

If the outermost constructor is the union-constructor, say X = X1(X ′
1) ⊕ · · · ⊕

Xn(X ′
n) and thus Z = X1(Z1) ⊕ · · · ⊕ Xn(Zn), we find some i with Zi /∈ Fi.

Otherwise all X1(λ) ⊕ · · · ⊕ Xi(Zi) ⊕ · · · ⊕ Xn(λ) ∈ F, and as these attributes are
all semi-disjoint, we would obtain Z ∈ F, too, which contradicts our assumptions.

Apply the Theorem 2 to X ′
i and Fi, which gives ti1, ti2 ∈ dom(X ′

i) with
π

X′
i

Yi
(ti1) = π

X′
i

Yi
(ti2) iff Yi ∈ Fi. Take r = {(Xi : ti1), (Xi : ti2)}. For Y ∈ Y

we get

πX
Y ((Xi : ti1)) = (Xi : π

X′
i

Yi
(ti1)) = (Xi : π

X′
i

Yi
(ti2)) = πX

Y ((Xi : ti2))

and on the other hand

πX
Z ((Xi : ti1)) = (Xi : π

X′
i

Zi
(ti1)) �= (Xi : π

X′
i

Zi
(ti2)) = πX

Z ((Xi : ti2)) ,

i.e. r �|= Y → {Z} and thus also r �|= Y → Z follows also in this case.
In order to complete the proof we have to show r |= Σ. Let X ′ : V → W ∈ Σ.

Applying only the lifting rules we obtain X : V∗ → W∗ ∈ Σ+. We either have V∗ ⊆
Ȳ or not. In the first case we obtain Y → V∗ ∈ Σ+ and thus also Y → W∗ ∈ Σ+,
which implies W∗ ⊆ Ȳ. This gives πX

W (t1) = πX
W (t2) for all W ∈ W∗ and hence

r(X ′) |= V → W. If V∗ �⊆ Ȳ, then there is some V ∈ V∗ − Ȳ, for which we must
have πX

V (t1) �= πX
V (t2). This implies also r(X ′) |= V → W.

4 Conclusion

In this article we extended our theory of functional dependencies for higher-order
data models and presented an axiomatisation for functional dependencies over XML
documents. The approach is based on a representation of XML document type
definitions (or XML schemata) by nested attributes using constructors for records,
disjoint unions and lists, and a particular null value, which covers optionality. The
list-constructor is used to represent the Kleene-star in regular expressions in XML
element definitions.

In order to fully capture functional dependencies over XML documents we ex-
tended our previous work in two major directions. We introduced rational tree
attributes, which result from reference structures in XML documents. This led to
infinite subattribute lattices, but did not affect the derivation of dependencies. This
is the first time that the investigation of functional dependencies for XML did not
neglect references. Furthermore, we considered functional dependencies on embed-
ded elements. These dependencies can be lifted through the constructors, i.e. they
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induce functional dependencies on complete XML documents. Such dependencies
have not been considered in previous work.

Using a partial order on nested attributes we obtain the structure of non-
distributive Brouwer algebras. The operations of the Brouwer algebra are exploited
in the soundness and completeness proofs for derivation rules for functional depen-
dencies.

In our theory it is also possible to use the multiset- or set-constructor instead
of the list-constructor, thus neglecting order or duplicates. We may also treat all
three “bulk” constructors together. These extensions had to be left out in this
article. A glimpse of the necessary extensions for the other two bulk constructors
can be obtained from [10].

Natural next steps in the development of a fully satisfying dependency theory
for XML will be the generalisation to other classes of dependencies, e.g. multi-
valued or join dependencies, the investigation of efficient closure algorithms, and
the study of normal forms [15] that provably characterise desirable properties of
well-designed XML documents. First steps in this direction are the normal forms
introduced in [3], [8], and [17].
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