
Acta Cybernetica 17 (2005) 173–182.

Some Results Related to Dense Families of

Database Relations

Vu Duc Thi∗ and Nguyen Hoang Son†

Abstract

The dense families of database relations were introduced by Järvinen [7].
The aim of this paper is to investigate some new properties of dense families
of database relations, and their applications. That is, we characterize func-
tional dependencies and minimal keys in terms of dense families. We give a
necessary and sufficient condition for an abitrary family to be R− dense fam-
ily. We prove that with a given relation R the equality set ER is an R−dense
family whose size is at most m(m−1)

2
, where m is the number of tuples in R.

We also prove that the set of all minimal keys of relation R is the transversal
hypergraph of the complement of the equality set ER. We give an effective
algorithm finding all minimal keys of a given relation R. We aslo give an algo-
rithm which from a given relation R finds a cover of functional dependencies
that holds in R. The complexity of these algorithms is also esimated.

1 Basic definitions

In this section we present briefly the main concepts of the theory of relational
databases which will be needed in sequel. The concepts and facts given in this
section can be found in [1, 3, 4, 8, 9].

Let U be a finite set of attributes (e.g. name, age etc). The elements of U will
be denoted by a, b, c, . . . , x, y, z, if an ordering on U is needed, by a1, . . . , an. A
map dom associates with each a ∈ U its domain dom(a). A relation R over U is a
subset of Cartesian product

∏
a∈U dom(a).

We can think of a relation R over U as being a set of tuples: R = {h1, . . . , hm},
hi : U −→

⋃
a∈U

dom(a), hi(a) ∈ dom(a), i = 1, 2, . . . , m.

A functional dependency (FD for short) is a statement of form X → Y , where
X, Y ⊆ U . The FD X → Y holds in a relation R = {h1, . . . , hm} over U if

(∀hi, hj ∈ R)((∀a ∈ X)(hi(a) = hj(a)) ⇒ (∀b ∈ Y)(hi(b) = hj(b))).
∗Institute of Information Technology, Vietnamese Academy of Science and Technology, 18

Hoang Quoc Viet, Hanoi, Vietnam.
†Department of Mathematics, College of Sciences, Hue University, Vietnam.

173

174 Vu Duc Thi and Nguyen Hoang Son

We also say that R satisfies the FD X → Y .
Let FR be a family of all FDs that holds in R. Then F = FR satisfies

(F1) X → X ∈ F,

(F2) (X → Y ∈ F, Y → Z ∈ F) ⇒ (X → Z ∈ F),
(F3) (X → Y ∈ F, X ⊆ V, W ⊆ Y) ⇒ (V → W ∈ F),
(F4) (X → Y ∈ F, V → W ∈ F) ⇒ (X ∪ V → Y ∪ W ∈ F).

A family of FDs satisfying (F1) - (F4) is called an f − family over U .
Clearly, FR is an f -family over U . It is known [1] that if F is an arbitraryf -

family, then there is a relation R over U such that FR = F .
Given a family F of FDs over U , there exists a unique minimal f -family F+

that contains F . It can be seen that F+ contains all FDs which can be derived
from F by the rules (F1) - (F4).

A relation scheme s is a pair (U, F), where U is a set of attributes and F is a
set of FDs over U .

Let U be a nonempty finite set and P(U) its power set. The mapping L :
P(U) −→ P(U) is called a closure operation over U if it satisfies the following
conditions:

(1) X ⊆ L(X),
(2) X ⊆ Y implies L(X) ⊆ L(Y),
(3) L(L(X)) = L(X).

Remark 1.1. It is clear that, if F is an f− family, and we define LF (X) as

LF (X) = {a ∈ U : X → {a} ∈ F}

then LF is a closure operation over U . Conversely, it is known [1, 3] that if L is a
closure operation, then there is exactly one f− family F over U so that L = LF ,
where

F = {X → Y : X, Y ⊆ U, Y ⊆ L(X)}.

Thus, there is a one-to-one correspondence between closure operations and f−
families over U .

Let R be a relation over U and K ⊆ U . Then K is a key of R if K → U ∈ FR.
K is a minimal key of R if K is a key of R and any proper subset of K is not a key
of R.

Denote KR the set of all minimal keys of R.
Let I ⊆ P(U), U ∈ I, and A, B ∈ I ⇒ A∩B ∈ I. I is called a meet-semilattice

over U . Let M ⊆ P(U). Denote M+ = {∩M ′ : M ′ ⊆ M}. We say that M is a
generator of I if M+ = I. Note that U ∈ M+ but not in M , by convention it is
the intersection of the empty collection of sets.

Denote N = {A ∈ I : A 	= ∩{A′ ∈ I : A ⊂ A′}}. It can be seen that N is the
unique minimal generator of I.

Some Results Related to Dense Families of Database Relations 175

2 Hypergraphs and Transversals

Let U be a nonempty finite set and put P(U) for the family of all subsets of U .
The family H = {Ei : Ei ∈ P(U), i = 1, 2, . . . , m} is called a hypergraph over U if
Ei 	= ∅ holds for all i (in [2] it is required that the union of Eis is U , in this paper
we do not require this).

The elements of U are called vertices, and the sets E1, . . . , Em the edges of the
hypergraph H.

A hypergraph H is called simple if it satisfies ∀Ei, Ej ∈ H : Ei ⊆ Ej ⇒ Ei = Ej .
It can be seen that KR is a simple hypergraph.

Let H be a hypergraph over U . Then min(H) denotes the set of minimal edges
of H with respect to set inclusion, i.e., min(H) = {Ei ∈ H :	 ∃Ej ∈ H : Ej ⊂ Ei},
and max(H) denotes the set of maximal edges of H with respect to set inclusion,
i.e., max(H) = {Ei ∈ H :	 ∃Ej ∈ H : Ej ⊃ Ei}.

It is clear that, min(H) and max(H) are simple hypergraphs. Furthermore,
min(H) and max(H) are uniquely determined by H.

A set T ⊆ U is called a transversal of H (sometimes it is called hitting set) if it
meets all edges of H, i.e., ∀E ∈ H : T ∩E 	= ∅. Denote by Trs(H) the family of all
transversals of H. A transversal T of H is called minimal if no proper subset T ′ of
T is a transversal.

The family of all minimal transversals of H called the transversal hypergraph
of H, and denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.

Proposition 2.1 ([2]). Let H and G two simple hypergraphs over U . Then

(1) H = Tr(G) if and only if G = Tr(H),
(2) Tr(H) = Tr(G) if and only if H = G,
(3) Tr(Tr(H)) = H.

By the definition of minimal transversal, the following proposition is obvious

Proposition 2.2. Let H be a hypergraph over U . Then

Tr(H) = Tr(min(H)).

The following algorithm finds the family of all minimal transversals of a given
hypergraph (by induction).

Algorithm 2.3 ([5]).

Input: let H = {E1, . . . , Em} be a hypergraph over U .

Output: Tr(H).

Method:

Step 0. We set L1 := {{a} : a ∈ E1}. It is obvious that L1 = Tr({E1}).

176 Vu Duc Thi and Nguyen Hoang Son

Step q+1. (q < m) Assume that

Lq = Sq ∪ {B1, . . . , Btq},

where Bi ∩ Eq+1 = ∅, i = 1, . . . , tq and Sq = {A ∈ Lq : A ∩ Eq+1 	= ∅}.
For each i (i = 1, . . . , tq) constructs the set {Bi ∪{b} : b ∈ Eq+1}. Denote them

by Ai
1, . . . , A

i
ri

(i = 1, . . . , tq). Let

Lq+1 = Sq ∪ {Ai
p : A ∈ Sq ⇒ A 	⊂ Ai

p, 1 ≤ i ≤ tq, 1 ≤ p ≤ ri}.

Theorem 2.4 ([5]). For every q(1 ≤ q ≤ m)Lq = Tr({E1, . . . , Eq}), i.e., Lm =
Tr(H).

It can be seen that the determination of Tr(H) based on our algorithm does
not depend on the order of E1, . . . , Em.

Remark 2.5. Denote Lq = Sq ∪ {B1, . . . , Btq}, and lq(1 ≤ q ≤ m − 1) be the
number of elements of Lq. It can be seen that the worst-case time complexity of
our algorithm is

O(|U |2
m−1∑
q=0

tquq),

where l0 = t0 = 1 and

uq =

{
lq − tq, if lq > tq;
1, if lq = tq.

Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known
that the size of arbitrary simple hypergraph over U cannot be greater than C

[n/2]
n ,

where n = |U |. C
[n/2]
n is asymptotically equal to 2n+1/2/(π.n)1/2. From this, the

worst-case time complexity of our algorithm cannot be more than exponential in the
number of attributes. In cases for which lq ≤ lm(q = 1, ..., m − 1), it is easy to see
that the time complexity of our algorithm is not greater than O(|U |2|H||Tr(H)|2).
Thus, in these cases this algorithm finds Tr(H) in polynomial time in |U |, |H| and
|Tr(H)|. Obviously, if the number of elements of H is small, then this algorithm is
very effective. It only requires polynomial time in |R|.

The following proposition is obvious

Proposition 2.6 ([5]). The time complexity of finding Tr(H) of a given hypergraph
H is (in general) exponential in the number of elements of U .

Proposition 2.6 is still true for a simple hypergraph.

Some Results Related to Dense Families of Database Relations 177

3 Dense Families

Let D ⊆ P(U) be a family of subsets of a U . We define a set FD over D as follows

FD = {X → Y : (∀A ∈ D)X ⊆ A ⇒ Y ⊆ A}.
Proposition 3.1 ([7]). If D is a family of subsets of a finite set U , then FD is an
f− family over U .

The notion of dense family of a database relation is defined in [7], as follows:
Let R be a relation over U . We say that a family D ⊆ P(U) of attribute sets is

R − dense (or dense in R) if FR = FD.
The following proposition guarantees the existence of at least one dense family.

In the sequel we denote LFR simply by LR.

Proposition 3.2 ([7]). The family LR is R−dense.

Proposition 3.3 ([7]). If D is R−dense, then D ⊆ LR.

Note that by Proposition 3.2 and Proposition 3.3, LR is the greatest R−dense
family.

For any A ⊆ U , we denote by A the complement of A with respect to the set
U , that is, A = {a ∈ U : a 	∈ A}.
Theorem 3.4 ([7]). Let R be a relation over U . If D ⊆ P(U) is R−dense, then
the following conditions hold

(1) K is a key of R if and only if it contains an element from each set in
{A : A ∈ D, A 	= U}.

(2) K is a minimal key of R if and only if it minimal with respect to the property
of containing an element from each set in {A : A ∈ D, A 	= U}.

Let U be a finite set and P(U) its power set. For every family D ⊆ P(U), the
complement family of D is the family D = {A : A ∈ D} over U .

Let R = {h1, . . . , hm} be a relation over U , and ER the equality set of R, i.e.,

ER = {Eij : 1 ≤ i < j ≤ m}
where Eij = {a ∈ U : hi(a) = hj(a)}.
Proposition 3.5. The equality set ER is R−dense.

Proof. Assume that X → Y ∈ FR. Let Eij ∈ ER such that X ⊆ Eij . This means
that hi(X) = hj(X). From this, and according to the definition of FDs, we have
hi(Y) = hj(Y). Thus, Y ⊆ Eij . By the definition of FER , that is,

FER = {X → Y : (∀Eij ∈ ER)X ⊆ Eij ⇒ Y ⊆ Eij},
we obtain X → Y ∈ FER .

Conversely, let X → Y ∈ FER . Suppose that there are hi, hj ∈ R such that
hi(X) = hj(X), 1 ≤ i < j ≤ m. Which means that X ⊆ Eij . By X → Y ∈ FER ,
Y ⊆ Eij . Hence, we also obtain hi(Y) = hj(Y). Consequently, X → Y ∈ FR.

The proposition is proved.

178 Vu Duc Thi and Nguyen Hoang Son

It is easy to see that the dense family ER has at most m(m−1)
2 elements. By

Proposition 3.3, we also have ER ⊆ LR.

Theorem 3.6. Let R be a relation over U . Then

KR = Tr(min(ER)).

Proof. By the definition of relation R, we have U 	∈ ER. From this, Proposition
2.2, Proposition 3.5 and Theorem 3.4, the theorem is obvious.

The proof is complete.

Let R = {h1, . . . , hm} be a relation over U , and NR the nonequality set of R,
i.e.,

NR = {Nij : 1 ≤ i < j ≤ m}
where Nij = {a ∈ U : hi(a) 	= hj(a)}.

Note that, because R is a relation, ∅ 	∈ NR and U 	∈ ER. Moreover, NR = ER.
From this, and Theorem 3.6, the following corollary is immediate

Corollary 3.7. Let R be a relation over U . Then

KR = Tr(min(NR)).

Corollary 3.7 was shown in [5].

Proposition 3.8. If D is R− dense, then

min(D − {∅}) = max(ER).

Proof. According to Theorem 3.6, we have KR = Tr(ER). By Proposition 2.2, it
is clear that

KR = Tr(max(ER)). (1)

Because D is R− dense, and by Theorem 3.4, we have KR = Tr(D − {∅}). Fur-
thermore, we have

Tr(D − {∅}) = Tr(min(D − {∅})).
Hence

KR = Tr(min(D − {∅})). (2)

From (1) and (2), we give

Tr(min(D − {∅})) = Tr(max(ER)).

By min(D− {∅}) and max(ER) are simple hypergraphs, thus according to Propo-
sition 2.1 we have

min(D − {∅}) = max(ER).

The proposition is proved.

From Proposition 3.8, the following corollary is clear

Some Results Related to Dense Families of Database Relations 179

Corollary 3.9. If D is R− dense, then

min(D − {∅}) = min(NR).

Now we give a necessary and sufficient condition for an arbitrary family D is
R− dense.

Theorem 3.10. Let R be a relation, D ⊆ P(U) a family of subsets of a U . Then
D is R− dense iff for every X ⊆ U

LR(X) =

⎧⎨
⎩

⋂
X⊆A

A if ∃A ∈ D : X ⊆ A,

U otherwise,

where LR(X) = {a ∈ U : X → {a} ∈ FR}.
Proof. First we prove that in an arbitrary family D ⊆ P(U) for all X ⊆ U

LFD (X) =

⎧⎨
⎩

⋂
X⊆A

A if ∃A ∈ D : X ⊆ A,

U otherwise.

Suppose that X is a set such that there is no A ∈ D with X ⊆ A. By the
definition of FD, it is easy to see that X → U ∈ FD. Hence, LFD (X) = U .

Since ∅ ⊆ ⋂
A∈D A ⊆ A, according to the definition of FD and LFD we obtain

LFD (∅) =
⋂

A∈D
A.

If X 	= ∅ and there is an A ∈ D such that X ⊆ A then we set

G = {A : X ⊆ A, A ∈ D},

B =
⋂

A∈G
A.

It is easy to see that X ⊆ B holds. If G = D or G 	= D, then we also obtain
X → B ∈ FD.

By the definition of LFD , we have B ⊆ LFD (X). Using X ⊆ B ⊆ LFD (X), we
obtain B → LFD (X) ∈ FD.

Now we suppose that b is an attribute such that b 	∈ B. Then, there is A ∈ G
so that b 	∈ A. Hence, by the definition of FD we have B → B ∪ {b} 	∈ FD.
Consequently,

LFD (X) =
⋂

A∈D
(A).

By Remark 1.1 it is easy to see that FR = FD holds iff LR = LFD does.
The Theorem is proved.

180 Vu Duc Thi and Nguyen Hoang Son

From Theorem 3.10 and Proposition 3.5, the following proposition is obvious

Proposition 3.11. Let R = {h1, . . . , hm} be a relation over U = {a1, . . . , an}.
Then

(1) If D is R− dense, then D ∪ {U} also is R−dense, and thus ER ∪ {U} is
R−dense.

(2) If m = 1 or FR = {{a1} → U, . . . , {an} → U}, then families D1 = ∅,
D2 = {∅} and D3 = {U} are R−denses.

4 Finding the set of all minimal keys of a relation

In this section, we give the following algorithm finding all minimal keys of a given
relation R. Remember that this problem is inherently exponential in the size of R
[4].

Algorithm 4.1.

Input: a relation R = {h1, . . . , hm} over U .

Output: KR.

Method:

Step 1. Construct the equality set

ER = {Eij : 1 ≤ i < j ≤ m}

where Eij = {a ∈ U : hi(a) = hj(a)}.
Step 2. Compute the complement of ER as follows

ER = {Eij : Eij ∈ ER}.

Denote elements of ER by N1, . . . , Nk

Step 3. From ER compute the family min(ER) = {Ni ∈ ER :	 ∃Nj ∈ ER : Ni ⊆
Nj}.
Step 4. By Algorithm 2.3 we construct the set Tr(min(ER)).

Based on Proposition 2.2, Algorithm 2.3 and Theorem 3.6, we have KR =
Tr(min(ER)). It can be seen that the time complexity of this algorithm is the
time complexity of Algorithm 2.3. In many cases this algorithm is very effective
(see Remark 2.5).

It can be seen that, if the number of elements of the equality set ER is constant,
i.e. |ER| ≤ k for some constant k, then the time complexity of finding KR of a
given relation R is polynomial time [9].

The following example shows that for a given relation R, Algorithm 4.1 can be
applied to find all minimal keys of a given relation R.

Some Results Related to Dense Families of Database Relations 181

Example 4.2. Let us consider the relation R over U = {a, b, c, d} as follows

R =

a b c d
0 0 0 0
0 0 0 1
2 0 0 0
3 3 0 0
4 0 4 4
5 5 5 0

It can be seen that the equality set ER is the following
ER = {∅, {b}, {c}, {d}, {b, c}, {c, d}, {a, b, c}, {b, c, d}}.

Hence
ER = {{a}, {d}, {a, d}, {a, b}, {a, b, c}, {a, b, d}, {a, c, d}, U},
min(ER) = {{a}, {d}}.

From this, we obtain
KR = {{a, d}}.

5 Finding the cover of a relation

From Proposition 3.5 and Theorem 3.10 we have an application, which is the fol-
lowing algorithm finding a cover of FDs of a given relation R. Recall that this
problem is inherently exponential in the size of R [6].

Algorithm 5.1.

Input: a relation R = {h1, . . . , hm} over U .

Output: FR.

Method:

Step 1. Construct the equality set

ER = {Eij : 1 ≤ i < j ≤ m}
where Eij = {a ∈ U : hi(a) = hj(a)}.
Step 2. Compute the family E+

R = {∩A : A ⊆ ER}. Denote the elements of E+
R by

X1, . . . , Xt.

Step 3. Construct set of FDs as follows

F = {K1 → X1 : K1 ∈ Key(X1)} ∪ · · · ∪ {Kt → Xt : Kt ∈ Key(Xt)}
where Key(Xi) is a set of all minimal keys of ΠXi (R) (the projection of R onto the
attributes set Xi).

Obviously, F = FR. Note that LR = E+
R . It is easy to see that the time

complexity of this algorithm is exponential in the number of attributes.
The following example shows that for a given relation R, Algorithm 5.1 can be

applied to find a cover of a given relation R.

182 Vu Duc Thi and Nguyen Hoang Son

Example 5.2. R is the following relation over U = {a, b, c, d}

R =

a b c
0 0 0
0 1 0
1 1 0

It can be seen that the equality set ER is the following
ER = {{c}, {a, c}, {b, c}}.

Therefore
E+

R = {{c}, {a, c}, {b, c}, U}.
From this, we have

F = {{a} → {c}, {b} → {c}, {a, b} → {c}}.
It is obvious that F = FR.

References

[1] Armstrong W. W., Dependency structure of database relationship, Information
Processing 74, North-Holland Pub. Co. , (1974) 580-583.

[2] Berge C., Hypergraphs: combinatorics of finite sets, North - Holland, Amster-
dam (1989).

[3] Demetrocis J., On the equivalence of candidate keys with Sperner systems, Acta
Cybernetica 4, (1979), 247-252.

[4] Demetrovics J., Thi V.D., Keys, antikeys and prime attributes, Annales Univ.
Sci. Budapest Sect. Comp. 8, (1987), 35-52.

[5] Demetrovics J., Thi V. D., Describing candidate keys by hypergraphs, Computers
and Artificial Intelligence 18, 2 (1999), 191-207.

[6] Gottlob G., Libkin L., Investigations on Armstrong relations, denpendency in-
ference, and excluded functional dependencies, Acta Cybernetica Hungary 9, 4
(1990), 385-402.

[7] Järvinen J., Dense families and key functions of database relation instances,
in: Freivalds R. (ed.), Fundamentals of Computation Theory, Proceedings of
the 13th International Symposium, Lecture Notes in Computer Science 2138
(Springer-Verlag, Heidelberg, 2001), 184-192.

[8] Thi V. D., Minimal keys and antikeys, Acta Cybernetica 7 (1986), 361-371.

[9] Thi V. D., Son N. H., Some problems related to keys and the Boyce-Codd normal
form, Acta Cybernetica 16, 3 (2004), 473-483.

Received December, 2004

