
Acta Cybernetica 17 (2005) 199–211.

Cycle Structure in Automata and the Holonomy

Decomposition

Attila Egri-Nagy∗ and Chrystopher L. Nehaniv∗

Abstract

The algebraic hierarchical decomposition of finite state automata can be
applied wherever a finite system should be ‘understood’ using a hierarchical
coordinate system. Here we use the holonomy decomposition for character-
izing finite automata using derived hierarchical structure. This leads to a
characterization according to the existence of different cycles within an au-
tomaton. The investigation shows that the problem of determining holonomy
groups can be reduced to the examination of the cycle structure of certain
derived automata. The results presented here lead to the improvements of the
decomposition algorithms bringing closer the possibility of the application of
the cascaded decomposition for real-world problems.

1 Introduction

The aim of this paper is to study the cycle structure in automata associated to the
holonomy decomposition in Krohn-Rhodes Theory. With a recent computational
tool [5] (developed by the authors) the Krohn-Rhodes theory [9] finally has com-
putational means to foster further research in it and to show its real significance to
scientists working outside theoretical computer science. The main aim of this paper
is to summarize the theoretical insights gained from the systematic study of finite
state automata by examining their derived hierarchical decomposition computed
by the implemented holonomy decomposition [6, 4], and show how these insights
may be used for improving the algorithms. It also can be considered as a first
– although still theoretical – computational application of the Krohn-Rhodes the-
ory remaining within the confines of algebraic automata theory. Further possible
applications come up in all different fields where we deal with hierarchical mod-
els of systems: physics [13], software-development [10], artificial intelligence [11],
evolutionary biology [12], etc.

As the holonomy decomposition mainly deals with certain sets of subsets of an
automaton’s state set that are permuted by input words, our investigation concen-
trates on the question of when nontrivially permuted sets of appropriate subsets
really exist and of recognizing when automata are completely without them.

∗School of Computer Science, University of Hertfordshire, College Lane, Hatfield, Herts AL10
9AB, United Kingdom, Email: {A.Nagy | C.L.Nehaniv}@herts.ac.uk

199

200 Attila Egri-Nagy and Chrystopher L. Nehaniv

2 Mathematical Preliminaries and Notations

Here we establish the close connection between finite state automata and some
algebraic structures called semigroups as it is more convenient to handle automata
algebraically. The connection between these structures is outlined here with special
emphasis on the cascaded product of automata, together with the notions of division
and wreath product. For more details see [4, 1, 6].

2.1 Transformation Semigroups

Semigroups. A semigroup is a set S equipped with an associative binary operation
μ : S×S→ S. Instead of μ(s1, s2) we write s1 · s2 or more briefly s1s2. If A and
B are subsets of a semigroup, then AB means the set {ab : a ∈ A, b ∈ B}. An
element 1 is the identity element of S if s1 = 1s = s, for all s ∈ S. The identity is
unique if it exists. By S1 we denote S if it has an identity otherwise S ∪ {1}. By
SI we mean S∪{I} where I acts as an identity on S and itself, the identity of S (if
it exists) ceases to be an identity as it fails on I. The order of a semigroup S is its
cardinality |S|. We say that G generates the semigroup 〈G〉 = S if G ⊆ S and all
elements of S can be expressed as a finite product of elements in G. A semigroup
S is aperiodic if for each element s ∈ S there is a positive natural number n such
that sn = sn+1; for a finite semigroup this means that it contains no nontrivial
subgroups.

Homomorphisms. Let S and T be semigroups with operations ◦, 	 respectively,
and having a mapping ψ : S → T such that ψ(s1 ◦ s2) = ψ(s1) 	 ψ(s2), for all
s1, s2 ∈ S. Then we say that ψ is a homomorphism from S to T, a mapping which
preserves products. If a homomorphism is bijective then it is an isomorphism.

Groups. A semigroup is a monoid if it has an identity element. A monoid is a
group if for every s ∈ S there is an inverse s−1 ∈ S such that ss−1 = s−1s = 1. A
subset T of a semigroup S is a subsemigroup if it is closed under the multiplication
of S. Subgroups are defined analogously. A subgroup H of a group G is normal
if gH = Hg ∀g ∈ G. A nontrivial group is simple if it has no nontrivial normal
subgroups.

Transformations. For a nonvoid finite set A, a mapping ϕ : A → A is called
a transformation of A. If the mapping is bijective, then it is a permutation. The
image of ϕ is defined as {aϕ : a ∈ A} denoted by im(ϕ). If the image of a mapping
is a singleton then the mapping is constant. The rank of a transformation is the
cardinality of its image. The set T of all transformations of A form a semigroup
under the operation of function composition of transformations and it is called the
full transformation semigroup denoted by TA = (A, T). If S is a subsemigroup of T
then (A,S) is called a transformation semigroup on A (or briefly a ts), and we say
that S acts on A. (A,S) is a permutation group if each elements s ∈ S acts on A
by permutation. We write a · s for the image of state a under the transformation
s, and we have (a · s1)s2 = a · (s1s2) for all a ∈ A, s1, s2 ∈ S. It is a basic fact
of semigroup theory that every finite semigroup can be represented as a ts using

Cycle Structure in Automata and the Holonomy Decomposition 201

the right regular representation (S1, S) where S acts on S1 by multiplication on
the right [3]. If (A,S) is a transformation semigroup, we denote by (A,S) the
transformation semigroup with transformations S = {t | t ∈ S or t is constant}.
Division. We say that a transformation semigroup (A,S) divides (B, T) denoted
by (A,S) | (B, T) if we can choose for all a ∈ A at least one ã ∈ B as a lift and
and for each s ∈ S at least one s̃ ∈ T as a lift, such that the following hold:

1. Each member of B (resp. T) is a lift of at most one element of A (resp. S),
i.e. the (non-empty) lift sets are non-intersecting,

2. If ã is any lift of a and s̃ is any lift of s, then ã · s̃ is some lift of a · s, i.e. the
products are respected.

Denote the set of lifts of a state a by L(a) (and L(s) for a transformation s respec-
tively). Note that in general L(a) · L(s) ⊆ L(a · s), instead of being equal.

a s a · s

L(a) L(s) L(a · s)

=

⊆

·

·

action in (A,S)

action in (B, T)

Words and the free semigroup.[15] Let X the set of letters be called the
alphabet. A word over the alphabet X is a finite sequence of elements of X :
(x1, x2, . . . , xn), xi ∈ X . The empty word is denoted by λ. X+ is the set of all
non-empty finite words. X+ is a semigroup under the operation of concatenation,
it is called the free semigroup. X∗ = X+ ∪ {λ} is the free monoid.

A word v ∈ X∗ is a factor of a word z ∈ X∗ if there exist words u,w ∈ X∗ such
that z = uvw. v is a left factor of z if there exists a word w ∈ X∗ such that z = vw.
A word w is primitive if it is not a power of another word. For any nonempty word
w, the smallest factor u such that w = un, n ≥ 1 is the primitive root of w. We
also use the notation u =

√
w.

2.2 Finite State Automata

By a finite state automaton, we mean a triple A = (A,X, δ) where A is the (finite
nonempty) state set, X is the input alphabet and δ : A ×X → A is the transition
function. We do not explicitly consider the output of the automaton as it can be
recovered from the state and the input symbol. We tacitly use the state as the
output.

We can naturally extend the transition function for words i.e. sequences of in-
put symbols: for the empty word δ(a, λ) = a, and for arbitrary words u, v ∈ X∗,
δ(a, uv) = δ(δ(a, u), v). There is a natural equivalence relation, the congruence in-
duced by A on words u ≡ v if δ(a, u) = δ(a, v) ∀a ∈ A, i.e. identifying words with

202 Attila Egri-Nagy and Chrystopher L. Nehaniv

f1∈S1

f2 :A1→S2

f3 :A2×A1→S3

(A1, S1)

(A2, S2)

(A3, S3)

b1∈A1

b2∈A2

b3∈A3

a1∈A1

a1 a2∈A2

Figure 1: State transition in the wreath product (A3, S3) � (A2, S2) � (A1, S1).
The transformation (f3, f2, f1) is applied to state (a3, a2, a1) yielding (b3, b2, b1) =
(a3 · f3(a2, a1), a2 · f2(a1), a1 · f1). The black bars denote the applications of func-
tions f2, f3 according to hierarchical dependence. Note that the applications of
these functions happen exactly at the same moment since their arguments are the
previous states of other components, therefore there is no need to wait for the
other components to calculate the new states. We use the state as the output of
the automaton.

the same action on A. The characteristic semigroup S(A), also called the semi-
group of the automaton, is the set equivalence classes X+/ ≡ of this congruence,
with associative operation induced by concatenation. With the characteristic semi-
group we can handle an automaton A as a transformation semigroup (A,S(A)).
Conversely if S is a semigroup then the corresponding automaton is AS = (S1, S),
where the transition function is the right action of S on S1.

An automaton A emulates another one B with states B if every computation
which can be done in B can be done in A as well, i.e. (B,S(B)) divides (A,S(A)).

Using automata terminology constant mappings in transformation semigroups
are often called resets. A permutation-reset automaton is an automaton such that
each of its inputs acts either as a permutation or a constant map on states.

The state transition graph D(A) of an automaton A = (A,X, δ) is a digraph
with A as the set of vertices and (a, x, b) is a labelled edge if a · x = b, where
a, b ∈ A, x ∈ X . It is a loop-edge if a = b. A path is a sequence of edges (ai, xi, bi)
1 ≤ i ≤ n with ai+1 = bi for all 1 ≤ i < n, and the label of the path is x1 . . . xn. A
loop is a path with bn = a1.

2.3 Wreath Product Explained

Although the concept of the wreath product is not so complicated, it is not as
easy to present the intuitive idea how the loop-free cascaded product works. After
reading the formal definition a figure may shed light on how state transitions happen
in the product (Fig. 1). It is also a great help first to consider a simpler product

Cycle Structure in Automata and the Holonomy Decomposition 203

with no dependence between the components.
Let (An, Sn), . . . , (A1, S1) be transformation semigroups called components.

The indices 1, . . . , n are called coordinates. The direct product (An, Sn) × . . . ×
(A1, S1) is the ts (An × . . .×A1, Sn × . . .× S1) with the componentwise action

(an, . . . , a1) · (sn, . . . , s1) = (an · sn, . . . , a1 · s1).

Direct product is also called parallel composition as the components’ state tran-
sitions do not depend on each other, and the order of the components does not
really matter up to isomorphism.

Now we introduce an order-dependent connection between the components. Let
A = An × . . . × A1 and TA the full ts on A. Let S be the subsemigroup of TA

consisting of all transformations s : A → A satisfying the condition of hierarchical
dependence of coordinates. Denote pk : A → Ak the kth projection map, then for
each k = 1, . . . , n there exists fk : Ak−1 × · · · ×A1 → Sk such that

pk

(
(tn, . . . , tk+1, tk, . . . , t1) · s

)
= tk · fk(tk−1, . . . , t1) = t′k

where s ∈ S, tk, t
′
k ∈ Ak, k = 1, . . . , n.

That is, the new kth coordinate t′k resulting from the action of s depends only
on the values of the old first k coordinates and on the transformation s. More-
over, it is given by acting with an element of Sk which depends only on s and
(tk−1, . . . , t1). We can write this transformation as the ordered list of these func-
tions: s = (fn, . . . , f1).

Then the transformation semigroup (A,S) = (An, Sn)�. . .�(A1, S1) is the wreath
product of transformation semigroups (An, Sn), . . . , (A1, S1). Reading from left to
right the last component is the top level of the hierarchy.

3 Holonomy Decomposition Theorem

The holonomy decomposition originates from Zeiger’s method of proving the Krohn-
Rhodes Theorem [16, 17, 7]. This algorithm work by the detailed study of how the
semigroup S of an automaton (A,X, δ) acts on subsets of A. It looks for groups
induced by S permuting some set of subsets of A. These groups are called the
holonomy groups. These groups are the building blocks for the components of the
decomposition. As we go deeper in the hierarchy of the cascade composition we
have components that act on subsets with smaller cardinality.

The sketch of the algorithm to obtain a decomposition: First calculate the set of
images of transformations in S. From now on, let I denote this set extended by A
itself and its singletons. On I there is a preorder relation called subduction defined.
A subset P is subduction related to a subset Q if P is contained in a resulting set
of acting by some s ∈ S on Q, i.e. P ⊆ Q · s. The mutual relation of elements
induces an associated equivalence relation P ≡ Q ⇐⇒ P ≤ Q and Q ≤ P . The
set of equivalence classes are partially ordered by the subduction relation. The set
of equivalence classes and their partial order are called the subduction picture. The

204 Attila Egri-Nagy and Chrystopher L. Nehaniv

tiles BP of a subset P (P ∈ I, |P | > 1) are its proper subsets directly below it
in the subduction preorder. The union of its tiles equals to P . The length of a
longest strict path from a singleton to a subset P in the partial order of subduction
equivalence classes defines the height of the subsets within the equivalence class of
P . Equivalence classes with the same height are on the same hierarchical level. The
sets of tiles for each element Q ∈ I form the tiling picture. The holonomy group
HQ of Q is the group (arising from elements of S1) permuting the tile set BQ of Q.
The component Hi of one hierarchical level i is the direct product of the holonomy
groups belonging to the representative elements of equivalence classes with height
i augmented with the constant mappings.

Theorem 1 (Holonomy Decomposition [6, 4]). Let (A,S) be a finite transformation
semigroup then (A,S) divides a wreath product of its holonomy permutation-reset
transformation semigroups (B1,H1) � · · · � (Bh,Hh).

This strong formulation of part of the Krohn-Rhodes theorem is slightly different
from the original since the components here are groups extended with constants
and not simple groups and the divisors of the flip-flop. But these permutation-
reset components can be easily decomposed into flip-flops and groups. Moreover
the groups can be further decomposed into a series of simple groups using the
Lagrange Coordinate Decomposition Theorem and Jordan-Hölder Theorem [8, 4].
Note that the top level of the hierarchy is the component with highest index, not
1.

4 Cycles in Automata

Definition 2. A graphical cycle in an automaton (A,X, δ) is a cycle in its
state transition digraph together with a word w ∈ X+, i.e. a sequence of states
a1, . . . , an n ≥ 2, where the states in the sequence are pairwise distinct except
a1 = an, and w = x1 . . . xn−1, xi ∈ X such that ai ·xi = ai+1 for all 1 ≤ i ≤ n− 1.
The word w = x1 . . . xn−1 is called the label of the cycle.

Since n ≥ 2 a loop edge is not a graphical cycle, and also, since ai �= ai+1 within
a graphical cycle, loop edges are not allowed.

Definition 3. An algebraic cycle in an automaton A = (A,X, δ) is a permutation
group ({a1, . . . , an}, 〈w〉) for which ai = aj ⇒ i = j, n > 1, and w is a word in X+

such that ai · w = ai+1 for all 1 ≤ i < n, and an · w = a1.

The word w generates a cyclic group which acts faithfully on {a1, . . . , an} by
permutations. (Of course 〈w〉 might not act by permutations on A.) Obviously
wn is the identity element. Moreover, n being greater than 1 excludes trivial one-
element groups. Note that loops are not generally algebraic cycles. The generator
of the algebraic cycle is w, and its label is wn.

Cycle Structure in Automata and the Holonomy Decomposition 205

5 Graphically Cycle-Free Automata

Definition 4. An automaton is graphically cycle-free if it does not have any graph-
ical cycle.

The very simple structure of graphically cycle-free automata is reflected in their
subduction pictures in the following way:

Lemma 5. (A,S) is graphically cycle-free iff on every height level in each subduc-
tion relation equivalence class there is only one element.

Proof: Let P,Q ∈ I and P ≡ Q but P �= Q. Since P,Q are finite |P | = |Q|. Clearly
by finiteness there is at least one x ∈ Q such that x /∈ P ∩Q, otherwise P,Q would
be the same. Due to the equivalence of P and Q we have s, t ∈ S bijective mappings
such that P = Q · s and Q = P · t and thus (st)n is the identity on Q for some
n > 0, by the finiteness of P,Q. Since x · s = x′ �= x while x · (st)n = x, there must
be a graphical cycle.

Conversely, a graphical cycle ensures the existence of an equivalence class with
at least two elements at height zero. �

Another way to think about the proof of this lemma is to recognize that for the
singleton subsets of the state set (at height zero) the equivalence classes are exactly
the strongly connected components of the automaton’s state transition graph.

This result can be exploited in the decomposition algorithm since if the equiv-
alence classes are detected to all be singleton classes, then there is no need to
look for holonomy groups at all and the holonomy identity-reset ts’s can be built
immediately.

6 Algebraically Cycle-Free Automata

It is a well-known result of algebraic automata theory that the star-free rational
languages are recognized by exactly those automata whose characteristic monoid
is aperiodic (having no nontrivial subgroup)[14]. It is also known that deciding
aperiodicity for a finite automaton is PSPACE-complete[2]. We are interested in
this problem for certain derived automata that arise naturally in the holonomy
decomposition.

Intuitively one might expect that the state transition graph of an aperiodic
automaton contains no cycles at all, but this is not true in general: there might be
graphical cycles in it, while remaining aperiodic (see Fig 2). But with another type
of cycles the notion of aperiodicity can be expressed.

Definition 6. An automaton A = (A,X, δ) is algebraically cycle-free if it does not
have any algebraic cycle.

The property of algebraic cycle-freeness is tied up with the primitivity of words,
which act on some states as the identity.

206 Attila Egri-Nagy and Chrystopher L. Nehaniv

Lemma 7. An automaton A = (A,X, δ) is algebraically cycle-free iff for all states
a ∈ A and for all words w ∈ X+ such that a·w = a , one of the following statements
holds.

1. w is primitive.

2. w is not primitive but has primitive root u ∈ X+, i.e. w = un, and a · u = a.

Proof: If w is primitive, then we are done. Otherwise w = un where u is primitive.
Let’s suppose indirectly that a · u �= a. Let k be the least integer that a · uk = a
(1 < k ≤ n). Then ({a, a · u, . . . , a · uk−1}, 〈u〉) is a cyclic permutation group
(with at least two elements), therefore we have an algebraic cycle, contradicting
our assumptions.

The converse is obvious due to the fact that a trivial permutation group does not
constitute an algebraic cycle, and the conditions 1−2 allow only trivial permutation
groups. �

Remark 8. Obviously Lemma 7 holds even if a · z �= a for some left factor z of w.

It is clear that in the absence of graphical cycles there cannot be any algebraic
cycle. Thus,

Proposition 9. If an automaton is graphically cycle-free then it is algebraically
cycle-free.

Now we show that aperiodic automata are exactly the algebraically (not the
graphically) cycle-free ones.

Theorem 10. The following are equivalent for an automaton A = (A,X, δ) with
corresponding transformation semigroup (A,S):

1. A is algebraically cycle-free.

2. S is aperiodic.

3. Holonomy groups are trivial for (A,S).

Proof: (1) ⇒ (2): Suppose S is not aperiodic, then we have a cyclic group 〈v〉 in
S of order n ≥ 2, where v ∈ X+ is a word representing the generator. Thus vn

is the identity of the cyclic group, v ≡ vn+1 and v �≡ v2. Therefore ∃a such that
a · v �= a · v2 and a · v = a · vn+1. Let a′ = a · v, thus a′ · vn = a′ and since A is
algebraically cycle-free we can apply Lemma 7: let u =

√
vn =

√
v, then we have

a′ · u = a′, a′ · v = a′ and finally a · v2 = a · v, which is a contradiction.
(2) ⇒ (1): For the converse we use again an indirect proof: Suppose there is an

algebraic cycle, i.e. ({a1, . . . , an}, 〈w〉) is a permutation group with ai ∈ A,w ∈ X+

and n > 1. Therefore Zn, the cyclic group with n elements, divides S. This cannot
happen when S is aperiodic.

Cycle Structure in Automata and the Holonomy Decomposition 207

1 2

A

x

x

y y 1 2

B

x

y

y x

Figure 2: Automaton A has an algebraic cycle ({1, 2}, 〈a〉). Automaton B has
graphical cycles ab, ba, but they are labelled with primitive words.

6

3x

2
y

y 1x

y

4

x

x
y

y

x

5
x,y

Figure 3: An automaton A with state set A = {1, 2, 3, 4, 5, 6} and alphabet {x, y},
where x and y are transformations with x = (3 4 1 3 4 3), y = (4 3 6 6 4 2).

(2) ⇔ (3): The components of the holonomy decomposition are all divisors
of the original semigroup, thus aperiodic semigroups have only trivial holonomy
groups, and wreath products and divisors of aperiodic transformation semigroups
are aperiodic. �

Corollary 11. An automaton A = (A,X, δ) is aperiodic if and only if

∀a ∈ A, w ∈ X+, x · w = a⇒ a ·
√
w = a.

The distinction between algebraically cycle-free aperiodic and nonaperiodic au-
tomata is rather subtle. Two automata having the same state-transition graphs
regarding their connectivity might belong to different classes depending on how the
input symbols act on the state set (Fig. 2).

7 Non-Aperiodic Automata

A main concern of the holonomy decomposition is to find the nontrivial holonomy
groups. Fortunately the tiling picture provides tools for locating the elements of I
for which there exist nontrivial holonomy groups.

Lemma 12. For an element Q of I in the tiling picture of (A,S) if there is a
nontrivial holonomy group HQ, then in its set of tiles BQ there are at least two
distinct tiles t1, t2 such that t1 ≡ t2.

208 Attila Egri-Nagy and Chrystopher L. Nehaniv

{5} {6} {2}{4} {3}{1}

{2,3}{3,6}{1,4} {2,6}{1,3} {4,6}{3,4}

{1,3,4} {2,3,6}

{2,3,4,6}

{1,2,3,4,5,6}

Figure 4: The tiling picture of automaton A in Fig. 3. The equivalence classes are
denoted by boxes. Equivalence classes with elements having nontrivial holonomy
groups are shaded. Dotted edges denote the ’tile of’ relation.

Proof: HQ being nontrivial means that there are some pair(s) of tiles for which
there are transformations permuting them and thus they are mutually subduction
related. �

The converse is not generally true as we can see in the example of an automaton
(Fig 3) with tiling picture (Fig 4). For a trivial HQ the set of tiles BQ may
contain distinct equivalent tiles, see Fig 5. In order to determine whether we have
a nontrivial holonomy group for a Q ∈ I we define an extended automaton and
examine its cycle structure. Denote the equivalence classes of subduction relation
by E1 to EN .

Lemma 13. If P ∈ Ei and for some s ∈ S, P · s = Q such that Q /∈ Ei (leaving
the equivalence class) then there is no transformation t ∈ S such that Q · t ∈ Ei

(no way back to the original equivalence class).

Proof: Suppose there is such a t that Q = P · s and P ′ = Q · t with P ≡ P ′. Due to
the equivalence we have P = P ′ ·s′′ for some s′′ ∈ S, thereforeQ·(ts′′) = P ′ ·s′′ = P ,
thusQ ≡ P , which contradicts the original assumption that we leave the equivalence
class of P . �

Let’s define EQ as the union of equivalence classes which contain at least one
tile of Q ∈ I. Formally: EQ =

⋃
Ei∩BQ �=∅Ei. Then the tile automaton of Q is

Cycle Structure in Automata and the Holonomy Decomposition 209

{2,3}

{3,6}

y

{1,4}x

{2,6}y

{1,3}
x

{4,6}y

sink

x

y

{3,4}

x x

y

y

x

x

y

{1,3,4}

{2,3,6}

{2,3}

{3,6}

{2,6}y

{1,4}

x

y

{1,3}
x

{4,6}
y

sink

x

y

{3,4}

x
x

y
y

x

x
y

Figure 5: Two tile automata of automaton A in Fig. 3. A{1,3,4} is trivial, while
A{2,3,6} is nontrivial with generator word y.

defined as AQ = (EQ ∪ {ς}, X, γ), where ς is a sink state, the input alphabet X is
the same as the original automaton’s, and γ is the natural extension of δ to act on
subsets of A providing that if the image is not in some Ei then it is ς. This way
ς represents going to another equivalence class not contained in EQ, but according
to Lemma 13 this can be represented as a sink since there is no way to come back.

The equivalence classes in EQ form strongly connected components in AQ.
When determining the nontriviality of HQ we look for algebraic cycles in these
components. We look not simply for independent algebraic cycles in each compo-
nent as a word of a cycle might not permute the tile elements in another component,
but for parallel algebraic cycles. This way we can recast the characterization of a
holonomy group element in terms of algebraic cycles. More formally:

Proposition 14. HQ is nontrivial iff there exists a word w ∈ A+ and BQ can be
partitioned into {T1, . . . , Tk} subsets such that either

210 Attila Egri-Nagy and Chrystopher L. Nehaniv

1. Ti consists of exactly one tile and Ti · w = Ti, or

2. Ti · 〈w〉 ⊆ BQ ∩ Ej for some 1 ≤ j ≤ N , and (Ti · 〈w〉, 〈w〉) is an algebraic
cycle in AQ

holds for all Ti, 1 ≤ i ≤ k, and (2) must hold for at least one Ti.

In short the proposition characterizes when the transformation induced by w
nontrivially permutes BQ. This transformation is clearly a nontrivial holonomy
group element. From Lemma 13, Ti · wn ∈ (BQ ∩ Ej) follows for any n ≥ 0.
Therefore the algebraic cycles contained in BQ generated by w are all disjoint. If
all intersections (BQ∩Ej) are singletons, or none of them contains an algebraic cycle
then HQ is trivial. This fact can be exploited in efficient decomposition algorithms
of the holonomy decomposition by excluding cases where the construction of the
holonomy group should not be attempted.

8 Conclusions

Using an implementation of the holonomy decomposition we could get new insights
about its working mechanism and found a relation between the cycle structure of
an automaton and its holonomy components. We also showed that detecting cycles
with primitive words helps in excluding elements of I when searching for holon-
omy groups. Currently we are investigating the possibility of efficient construction
of holonomy groups by using the extended tile automata replacing the current
algorithm which is based on a breadth-first search in the space of semigroup ele-
ments. These results will eventually lead to improvements of the decomposition
algorithms providing efficient and scalable tools for attacking real-world problems
such as analyzing metabolic networks [13], understanding biological complexity [12],
AI applications [11] and so on.

References

[1] Michael A. Arbib, editor. Algebraic Theory of Machines, Languages, and Semi-
groups. Academic Press, 1968.

[2] Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is pscpace-
complete. Theoretical Computer Science, 88:99–116, 1991.

[3] A.H. Clifford and G.B. Preston. The Algebraic Theory of Semigroups (Math-
ematical Survey, No 7), volume 1 of Mathematical Survey. American Mathe-
matical Society, 2nd edition, 1967.

[4] Pál Dömösi and Chrystopher L. Nehaniv. Algebraic Theory of Finite Au-
tomata Networks: An Introduction, chapter 3, The Krohn-Rhodes and Holon-
omy Decomposition Theorems. SIAM Series on Discrete Mathematics and
Applications, 2005.

Cycle Structure in Automata and the Holonomy Decomposition 211

[5] Attila Egri-Nagy and Chrystopher L. Nehaniv. GrasperMachine, Com-
putational Semigroup Theory for Formal Models of Understanding.
(http://graspermachine.sf.net)., 2003.

[6] Samuel Eilenberg. Automata, Languages and Machines, volume B. Academic
Press, 1976.

[7] Abraham Ginzburg. Algebraic Theory of Automata. Academic Press, New
York, 1968.

[8] Marshall Hall. The Theory of Groups. The Macmillan Company, New York,
1959.

[9] Kenneth Krohn and John Rhodes. Algebraic theory of machines. I. Prime
decomposition theorem for finite semigroups and machines. Transactions of
the American Mathematical Society, 116:450–464, April 1965.

[10] Chrystopher L. Nehaniv. Algebraic engineering of understanding: Global hier-
archical coordinates on computation for the manipulation of data, knowledge,
and process. In Proc. 18th Annual International Computer Software and Appli-
cations Conference (COMPSAC 94), pages 418–425. IEEE Computer Society
Press, 1994.

[11] Chrystopher L. Nehaniv. Algebra and formal models of understanding. In
Masami Ito, editor, Semigroups, Formal Languages and Computer Systems,
volume 960, pages 145–154. Kyoto Research Institute for Mathematics Sci-
ences, RIMS Kokyuroku, August 1996.

[12] Chrystopher L. Nehaniv and John L. Rhodes. The evolution and understand-
ing of hierarchical complexity in biology from an algebraic perspective. Arti-
ficial Life, 6:45–67, 2000.

[13] John L. Rhodes. Applications of Automata Theory and Algebra with the Math-
ematical Theory of Complexity to Finite-State Physics, Biology, Philosophy,
Games, and Codes. book submitted for publication.

[14] M. P. Schützenberger. On finite monoids having only trivial subgroups. Infor-
mation and Control, 8:190–194, 1965.

[15] H. J. Shyr. Free monoids and languages. Hon Min Book Company, Taichung,
Taiwan, 2001.

[16] H. Paul Zeiger. Cascade synthesis of finite state machines. Information and
Control, 10:419–433, 1967. plus erratum.

[17] H. Paul Zeiger. Yet another proof of the cascade decomposition theorem for
finite automata. Math. Systems Theory, 1:225–228, 1967. plus erratum.

