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Optimal Trajectory Generation for Petri nets*

Szilvia Gyapay' and Andras Patariczal

Abstract

Recently, the increasing complexity of IT systems requires the early ve-
rification and validation of the system design in order to avoid the costly
redesign. Furthermore, the efficiency of system operation can be improved by
solving system optimization problems (like resource allocation and scheduling
problems). Such combined optimization and validation, verification problems
can be typically expressed as reachability problems with quantitative or qual-
itative measurements. The current paper proposes a solution to compute the
optimal trajectories for Petri net-based reachability problems with cost param-
eters. This is an improved variant of the basic integrated verification and
optimization method introduced in [11] combining the efficiency of Process
Network Synthesis optimization algorithms with the modeling power of Petri
nets.

1 Introduction

As the quality of service delivered by IT systems becomes more and more crucial
to production and the life of the society, their correct and efficient operation has
to be proved already during the design phase. Validation and verification methods
are known to assure the correctness of the services, while optimization may serve
to calculate the quantitative performance characteristics of a system by estimating
its quantitative boundaries and to minimize operation costs.

The fulfillment of the requirements have to be addressed already during the
early design phases in order to avoid costly redesigns. Recently, system design-
ers use the Unified Modeling Language (UML) that became the standard object-
oriented modeling language since it provides a semi-formal, concise description of
complex systems including the means to model both its static and dynamic behav-
ior. UML can be extended to incorporate quantitative measures, requirements, and
constraints.

While UML is a proper means for system and requirements modeling the anal-
ysis itself has to be carried with the help of some mathematical model analysis

*This work was supported by project OTKA T038027.

TBudapest University of Technology and Economics, Department of Measurement and Infor-
mation Systems, Magyar tudésok koratja 2., H-1117, Budapest, Hungary. Phone: +36-1-463-
3579, +36-1-463-3595 Fax: +36 1 463-2667 E-mail:{gyapay,pataric}@mit.bme.hu

225



226 Szilvia Gyapay and Andrds Pataricza

tool. Recent research efforts aim at an automated transformation from UML mod-
els to mathematical analysis tools [27]. One of the most challenging problems in
mathematical analysis of IT systems is the simultaneous analysis of the dynamical
behavior of the system and its impact to the quantitative measures as it meets a
combination of a mathematical paradigm describing the control logic of the appli-
cation and the quantitative impact of it.

Petri nets are used in the design of IT systems either as a direct modeling
paradigm or derived from engineering models. They describe the system logic, i.e.
they define the potential behavior of the system by identifying the trajectories in the
system state space in a compact form. However, the requirement is frequently not
only to provide a correct behavior of the system, but to perform some functionality
in an optimal way. Therefore, Petri nets first need to be extended with cost or
time parameters. Then the reachability problem can be formulated as an optimal
trajectory problem: to derive the optimal trajectory from the initial state to a
given state. Unfortunately, the optimal trajectory problem has been solved only
for rather restricted classes of Petri nets without practical relevance.

Our overall objective is to derive from the UML specification of the application
and to estimate the worst case characteristics of a system upon temporal constraints
on its operation sequence. (i) At first, an automated transformation on attributed
graph grammars maps the UML models into Petri nets (discussed in [10]). (ii)
Secondly, a basis of all firing sequences representing possible operations (trajecto-
ries from an initial state to a given state that satisfy user-defined constraints) are
estimated as a basis spanning the state space of the feasible solutions to the opti-
mization objective. (iii) The next step is to compute a candidate trajectory that
represents an optimal operation by combining trajectories generated in the pre-
vious step. (iv) In order to ensure the executability (fireability) of the candidate
trajectory, post-filtering is executed by model checking (exhaustive simulation).

The contribution of the current paper compared to previous ones [11, 12] is the
improved efficiency of the algorithm originating in (i) the basis-based generation of a
candidate trajectory instead of using the Accelerated Branch and Bound algorithm,
and (ii) a new algorithm to compute the reachability-membership function that
does not require the explicit enumeration of the state space of the Petri net.

The paper is organized as follows. An introduction is given in Section 2 to Petri
nets and Process Network Synthesis. The optimal trajectory problem is defined
for Petri nets extended with cost parameters in Section 3. Section 4 recalls the
assignments of the elements and problem semantics of the two paradigms followed
by the analysis of the problems related to the direct algorithm adaptation and we
recall the integrated technique in [11] to solve the Petri net-based optimization
problem emphasizing the new methods for the generation of the candidate optimal
trajectory in Section 5 and the reachability—membership function in Section 6.
Section 7 provides an overview of related works, and finally, Section 8 reports on
initial results and concludes our work.
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2 Basic Notations

Hereafter only the notations and definitions of Petri nets and PNS problems nec-
essary for understanding the concept of the solution (for more details see e.g., [20]
and [7]) will be recalled.

2.1 Petri Nets

A Petri net is a directed, bipartite graph represented by a four-tuple PN =
(P,T,w, My), where P and T are the disjoint sets of place and transition nodes,
respectively. Places may contain tokens, whose distribution represents the state of
the net. The state of the net is described by the so-called marking. A marking is
a | P|-dimensional vector over the naturals N, where the i-th component (M (p;)) is
the number of tokens contained in p; € P. My denotes the marking of the net in
the initial state.

A Petri net with four places and three transitions is depicted on the left in Fig. 1
with the initial marking My = (2, 3,0, 0).

The state of the net is changed by transition firings. The token flow is denoted
by the weight function w assigning positive integers to the directed arcs between
places and transitions w: (P x T') U (T x P) — N.

Let ez and xe denote the pre-set and the post-set of an element x € PUT,
respectively, s.t., ex = {y : w(y,z) > 0} and ze = {y : w(x,y) > 0}.

A t transition is enabled at marking M (i.e. it may fire), if all the places
in its pre-set contain at least as many tokens as required by the weight of the
corresponding arc, i.e. if Vp € ot : w(p,t) < M (p) holds. The firing of the transition
passes (removes and produces) the defined number of tokens (according to the
weight function) from its input places (et) to its output places (te). Thus, the
marking in the successor state M’ can be estimated as Vp € P : M'(p) = M(p) —
w(p,t) + w(t,p).

Let us define the |P| x |T'|-dimensional incidence matrix W of the Petri net
showing the change in the number of tokens in each place caused by the firing of the

individual transitions, i.e. Wp,t] = [—w(p,t) + w(t,p)],p € P,t € T. Thus, Vp €
P:M'(p) = M(p)—w(p,t)+w(t,p) = M(p)+W(p,t),and M' = M+W-e,,t; = t,
where e;; = (0,...,0,1,0,...,0) is a |T'|-dimensional unit vector with 1 in its j-th
component.

The effect of firing a transition can be extended for a firing sequence s =
(tiystins -, 1 < i < |T|,k = 1,2,.... The so-called transition occurrence vec-

tor (the Parikh vector of the sequence) of the firing sequence is a |T'|-dimensional
vector o, where its jth component counts the number of firing transition ¢; (i.e.
oslj] = |ti, € s :ix = j|. Then the firing sequence s starting from M, leads to
marking M defined by the following so-called state equation.

M= Mo+ W -o,. (1)

Another mathematical paradigm, Process Network Synthesis was investigated in
order to develop efficient search methods for the optimization of Petri net sequences
with quantitative parameters.
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2.2 Process Network Synthesis

Process Network Synthesis (PNS) algorithms were elaborated in chemical engineer-
ing to estimate an optimal resource allocation for the production of desired products
from given raw materials.

A PNS problem is represented by the so-called P-graph [6]. A P-graph is a di-
rected bipartite graph where the two sets of disjoint nodes are materials (or material
stores) and operating units. An operating unit consumes its input materials (con-
nected by incoming edges) in order to produce its output materials (connected by
outgoing edges). Then the PNS problem is to produce all products in the required
amount from available raw materials by the defined operating units of minimal
cost.

The solution of the problem is a sub-P-graph or a solution structure. In order
to ensure the production of the products a feasible network has to satisfy five
axioms [8]: (Al) every final product is represented in the graph, (A2) a material
has no input operating units if and only if it represents a raw material, (A3) every
operating unit represents an operating unit defined in the synthesis problem, (A4)
every operating unit has at least one path leading to a final product, and (A5) if a
material belongs to the graph, it must be an input to or output from at least one
operating unit in the graph.

In PNS problems, costs are assigned to raw materials and operating units (as
fix and operating costs). Naturally, an optimal network for the PNS problem is a
solution structure together with operating rates (assigned to the operating units)
such that the production of the products is of a minimal cost. Based on the specific
structure of the PNS problem, the combinatorial optimization problem can be
solved efficiently by exploiting of the features given by the five axioms. The optimal
solution structure of a PNS problems is synthesized by three algorithms [7].

The Maximal Structure Generation (MSG) and the Solution Structure Gene-
ration (SSG) algorithms collect the structurally feasible sub-P-graphs generating a
topology spanning the state space for further optimization. The MSG algorithm
generates the superstructure of the feasible solutions. MSG achieves a significant
reduction of the solution space in polynomial time by excluding those materials
and operating units from the initial P-graph that violate any of the five axioms.

Then the SSG algorithm computes the structurally feasible networks: it builds
up a set of possible operating units recursively starting from the products. The
algorithm maintains a set of materials to be produced’. The iteration consists of
two main steps: at first, a material from the set ’to be produced’ is selected and
excluded. Then the operating units producing the selected material are taken into
consideration: a subset of them is added to the previously selected operating units
and the algorithm calls itself recursively.

The SSG algorithm generates exactly the set of solution structures satisfying
the five axioms as the spanning graph of the set of the selected operating units. The
resulting solution structures formulate a logic basis for the optimization problem
that is closed under unification: an arbitrary solution structure can be generated
by this elementary solutions under the operations of unifications. This corresponds
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to the fact, that if two recipes produce some material according to the five axioms,
then their simultaneous operation is a proper solution, as well. Please observe, that
the SSG algorithm neglects the quantitative parameters: the solution structures are
structural solutions (given by the contained operating units).

PNS problems over linear constraints and objective functions can be represented
as a mixed integer linear programming. The Accelerated Branch and Bound (ABB)
algorithm [26] solves this programming problem by exploiting the additional struc-
tural properties (the same way as in the SSG algorithm): the algorithm delivers a
structurally feasible network with the operating rates of the individual operating
units.

In the ABB algorithm, the numerical cut (bounding) is conventional (for more
details on Branch-and-Bound algorithms see [19]): if there is a known solution of
a lower cost, a branch of a greater value is cut, and only branches with lower value
are taken into consideration. In contrary to a conventional B&B algorithm, logical
cut (branching) is based on the structural properties of the problem: branching is
performed by the binary variables indicating whether a particular operating unit is
involved in the candidate solution according to the building process of SSG. This
way the ABB algorithm reduces the search for combinations to the elementary so-
lutions (recipes) instead of performing trials with individual elementary operations
(i.e. the fixing of binary variables in a certain order used in the conventional B&B
techniques). Thus, an essential improvement can be achieved by algorithm ABB
by the logical cuts in contrast to the conventional algorithm that traverses all the
2|7 problem nodes in worst case.

In the following section we discuss how PNS algorithms can be adapted to the
Petri net optimal trajectory problem.

3 Optimal Trajectory Problem

System optimization and verification, validation problems can be formulated as
combined reachability and optimization problems: (i) it has to be decided, whether
a particular state of the system is reachable from the initial state using the avail-
able resources, and (ii) if the state is reachable, an optimal trajectory has to be
computed. For instance, let us take a resource allocation problem modeled by a
Petri net. Program states can be modeled by a set of Petri net places, and resource
allocation to tasks can be modeled by transitions. Hence, the problem of finding
an optimal trajectory between the initial and the desired states can be translated
into a so-called Petri net partial reachability problem.

A state (marking) is reachable from an initial state if there exists a firing se-
quence between the two markings such that the trajectory is compliant in each
individual step with the firing condition. Frequently, in engineering problems only
the marking of a subset of places is relevant from practical point of view. Therefore,
‘partial reachability’ means that we should reach a state M that covers the desired
(partial) state Mpartial, 1-6. M > Mpyartial-

An optimal trajectory problem can be mapped into the search for a trajectory
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between two Petri net states with the least/most cost, time, quality indicator, etc.
As transitions typically represent operations in the system we restrict ourself to
cost functions linear in the number of executed transitions (however, this approach
can be adapted to other quantitative or even qualitative parameters).

A Petri net with cost parameters is a PN. = (PN, ¢), where the cost function
¢ € (RT U {0})ITI assigns costs to the firing of the individual transitions. Thus,
the cost of the firing sequence can be interpreted as the sum of the cost values of
the transitions in the sequence, formally, ¢s = C- 04, where o is the transition
occurrence vector of the firing sequence s, and cs; denotes the cost of the firing
sequence.

This way the optimal trajectory problem can be formulated as follows: a Petri
net optimal trajectory problem Rpy = (PN., M) is a Petri net with cost parame-
ters and a target marking M (i.e. a partial marking s.t., M(p) = 0 for each place
p € P that is irrelevant) where the problem is to find a fireable (executable) tra-
jectory s such that there exists a marking M’ > M that is reachable from My by
firing sequence s such that cs is minimal. Then o is called an optimal transition
occurrence vector.

Example. An example Petri net is shown in Fig. 1 with cost parameters depicted
as transition labels. The optimal trajectory problem shown is to find a trajectory
of minimal cost from the given initial marking My = (2,3,0,0) to a marking in
which place py contains at least one token.

= transition

O place pl pl
. token

w(pi,tj)=1

initial marking partial end marking

Figure 1: Example optimal trajectory problem

An obvious way to generate the optimal trajectory is the exhaustive traversal
of the state space starting from the initial state. However, the exhaustive search
for such a trajectory may easily result in state space explosion in case of complex
systems. In order to solve the Petri net reachability problem without state space
explosion, several techniques are discussed in the literature like unfolding-based
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solutions for 1-bounded (safe) Petri nets [4], symbolic analysis using Binary Decision
Diagrams (BDD) [21], or linear algebra—based algorithms [3, 24].

As an alternative solution, the state equation—based (Equation 1) method con-
stitutes a mixed integer linear programming problem, as the components of the
transition occurrence vector ¢ are nonnegative integers.

From the point of view of the reachability problem, the state equation method
represents a semi—decision method as it formulates a necessary condition: if there
is no o that satisfies the inequality M < My+ W -0, then there is no firing sequence
s from My to a state that covers M. Otherwise, since the transition occurrence
vector contains only reduced information on a trajectory by omitting the order
of the individual firings, a solution vector ¢ of the state equation can represent a
spurious solution. In this case, no appropriate firing sequence s exists such that
os = o, despite the fulfillment of the state equation. Therefore the elimination
of spurious solutions necessitates a separate check of the fireability of the solution
transition vectors.

4 PNS Algorithms in the Solution of the Optimal
Trajectory Problem

In order to support the modeling and solution of verification and optimization of
real-time systems, we aimed at combining the PNS approach with the Petri net
modeling in previous papers [12] and [11]. Although the two approaches are very
similar, and PNS algorithms can be adapted to the optimal trajectory problem, the
simple merging of ideas does not provide a proper solution in general.

4.1 The Optimal Trajectory Problem as a PNS Problem

As PNS algorithms focus only on the production of the desired end products with-
out taking into account the intermediate byproducts, the PNS problem constitutes
a partial reachability problem with cost parameters for the output places. Thus, a
Petri net optimal trajectory problem could be described as a PNS problem, where
(i) the places that are marked in the initial marking are the raw materials, (ii)
the places that have to be marked at the target marking are the products, (iii) a
transition is an operating unit mapping the pre- and post-set of the transition into
the input and output materials of the operating unit, respectively (preserving the
weight function), (iv) the cost of a transition is the operation cost of the corre-
sponding operating unit, (v) and the result vector of the ABB algorithm can be
interpreted as an optimal transition occurrence vector for the optimal trajectory
problem.

The operating rates of operating units in chemical engineering may take con-
tinuous values, which is not allowed in case of a Petri net transition. Therefore
the ABB algorithm cannot be directly used for the solution of the optimal trajec-
tory problem but it can be reformulated so that the algorithm searches for integer
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operating rates. The current paper proposes another method to deliver an inte-
ger solution based on the solution structures generated by the SSG algorithm (see
Section 5).

On the other hand, thanks to their expressive power, Petri nets cover a wider
range of models than P-graphs, i.e. not all Petri net reachability problems can be
directly described as a PNS problem. One reason for the limited expressiveness of
the PNS problems are the constraints introduced by the axioms (see Section 2.2) for
the translated reachability problem. In [11] the problem of 'produced raw materials’
and ’catalysts’ is discussed.

In chemical engineering, catalysts play an essential role in production processes:
they are both consumed and produced during the manufacturing process resulting
in a total of zero change in their amount. However, while such catalysts cannot be
assessed based upon material bill like equations as those used in the PNS model,
PNS algorithms assume those materials to be available in the beginning.

In the Petri net optimal trajectory problem catalysts are tokens in places that
participate in a cycle. In contrary to PNS problems, these catalysts may be required
to the fireability of a sequence. Thus, it can occur, that there is no firing sequence in
the solution structure of the PNS problem of the translated Petri net reachability
problem. Thus, our problem has two different aspects requiring optimality, and
fireability of the solution in order to be feasible.

4.2 Previous Results and New Contribution

In [11] we proposed an integrated algorithm. The algorithm consists of a collection
of semi—decision methods that gradually eliminate the spurious non-fireable solu-
tions as early as possible. The systematic search follows a best-first approach: the
candidate solution nearest to the quantitative optimum is estimated as a transi-
tion occurrence vector and its feasibility (fireability) is checked until a solution is
found. To provide a quick optimization technique for the reachability problem of
general Petri nets, the optimization by the ABB algorithm (over integer variables)
is complemented by a subsequent fireability check. This check is composed of a
set of two subchecks: (i) semi-decisions like one use the reachability—membership
function which is parameterized by two markings M, Ms and evaluated to true if
M is reachable from M or a fast reachability check of the marking reached by
the solution transition occurrence vector from the initial marking (that is calcu-
lated by the state equation) eliminating a major part of spurious solutions, and (ii)
an explicit fireability check of the transition occurrence vector providing the final
evidence on the feasibility of solutions by using model checker SPIN [15].

Depending on the result of the checks, the algorithm either terminates delive-
ring a fireable optimal solution or a new search is performed by the ABB algorithm
for the second optimal solution. The main advantage of this approach is that both
the reachability—membership function and the generated SPIN code can be reused
to check the next candidate solution.

The new contribution in the current paper compared with previous works [11],
[12] is (i) the generation of an integer candidate transition occurrence vector using a
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Branch—and—Bound algorithm where branching is based on the logical combinations
of the basis solution structures as variables (Section 5), and (ii) the introduction
of an efficient reachability-membership function computation in the form of the
transitive closure of the single-step transition relation (Section 6).

5 Solution Structure-based Optimization

In [11] we used the Accelerated Branch and Bound algorithm to generate the tran-
sition occurrence vector of an optimal candidate trajectory. However, the current
ABB implementation potentially violates the required integrality of the Petri net
reachability problem, i.e. it may return a non—integer as an optimal solution.

While the acceleration in the original ABB algorithm lies in the exploitation
of the correlation between the binary variables assigned to the transitions (or to
the operating units) our new Branch-and-Bound solution generates an optimal
candidate trajectory for the Petri net optimal trajectory problem based on the
logic basis of the Petri net structure. While the bounding step is identical in both
approaches, instead of making decisions on the binary variables and their correlation
at branching, our method considers complete solution structures as a single boolean
variable.

The set of the logically feasible solution structures (satisfying Axioms (A1)-(A5)
in Section 2.2) is closed under the logical unification. A basis of this set can be
generated such that all solution structures can be composed as the logical union of
some of these basis solution structures. This way our method covers all the feasible
solutions.

Let be given an optimal trajectory problem Rpn = (P,T,w, My, ¢, Mp). At
first, we generate a basis of the solution structures by a slightly modified version
of the SSG algorithm. The modification lies in the collection step of a basis of the
solution structures: a subset of the solution structures is called solution structure
basis such that all other solution structures can be calculated as the disjunction
(or union) of some of the basis solution structures. Since the set of the solution
structures is closed under unification, this subset does exist and it can be com-
puted. Thus, all new solution structure generated by the SSG algorithm has to be
evaluated, whether it can be synthesized as the union of some previously generated
solution structures or not.

The solution structure basis for the Petri net reachability problem constitute a
set of characteristic vectors S(PN)pasis = {0:} representing the solution structures
such that for all j: 1 <j <|T:

0 otherwise.

6:(j) = { 1 if ¢; is contained in the corresponding solution structure
(7)) =

The candidate optimal transition occurrence vector opy,, for the Petri net is an
integer solution of the following mixed integer linear programming problem such
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that oppn, is generated as the logical combination (union) of the elements of the
logic basis (i.e. the characteristic vectors of the solution structure basis).

minimize ¢- opnp, (2)
subject to M < Mo+ W -opn,,, (3)
and the characteristic vector
[S(PN)basis|
X(0pNg) of PN, = \/ afi) - 6; (4)
i=1
opny € Nl o € BISPNvasisl B = 0,1} (5)

The above problem can be solved by a Branch-and-Bound (B&B) algorithm.
The starting problem consists of the objective function Eq. 2 and the constraint
Eq. 3. Then the B&B tree is built by adding constraints due to Eq.4.

Eq.4 ensures that the logic structure of the candidate optimal transition occur-
rence vector is composed of some basis solution structures: the characteristic vector
of the candidate solution corresponds to the logical disjunction of some basis solu-
tion structures. Numerically, there is a corresponding o € BIS(PN)vasis| vector for
all subproblem such that V1 <i < |T|: 0= opn, (i) <= P <k <|S(PN)pasis| :
ar = 1 A 0(i) = 1. In other words, exactly those transitions are included in the
solution transition occurrence vector that are contained by some of the composing
basis solution structures.

Branching. Inthe B&B algorithm branching is performed by the binary variables
«; considering the corresponding solution structure 6;. The main difference between
the ABB algorithm (Section 2.2) and our B&B algorithm is that the ABB algorithm
decides on the binary variables according to the individual transitions while we
search the solution over the logically feasible solution structures (i.e. over the set
of the binary variables!).

Generation of the Integer Solution. since we need integer solutions, if we
reach a leaf, i.e. the logical structure of the candidate solution is fixed, we solve
the given restricted MILP problem.

Bounding and Pruning. Bounding is traditional: if the LP relaxation is infea-
sible or returns a worse cost value than a best known value, the tree is pruned.

An additional advantage of our algorithm is that the next best solution can be
easily computed using the already built B&B tree.
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p2 p2 p3
c=2 12 c=1
p4 p4
S1=(0,1,0) S2=(0,0,1)

$3=(1,0,1)

Figure 2: Solution structure basis for the reachability problem of the running
example generated by the SSG algorithm

Example. Fig. 2 shows the solution structures in the solution structure basis
for the reachability problem generated by the modified SSG algorithm. Please
observe, that they are mutually independent under unification and there is only a
single additional solution structure that can be composed as the logical union of
some basis solution structures: the union of the three solution structures.

According to the example in Fig. 1, the candidate optimal transition occurrence
vector opn, has to satisfy the following inequality system.

minimize (2,2,1) - opny, (6)
-1 0 0
. 0o -2 -1
subject to (0,0,0,1) < (2,3,0,0) + 3 0 o | oPNes (7)
0 4 1

x(opng) = \/Oé(i)'ei (8)

where opn,, eNTl o, eB:V1<i<3, 9)
and 91 = (0, 1,0), 92 = (0,07 1), 93 = (1,07 1). (10)

The Branch-and-Bound algorithm solved 7 LP relaxation, and 1 MILP problem,
and the solution is opn,, = (0,0, 1). The corresponding B&B tree is shown in Fig. 3.

Initially, the «; variables are restricted neither to 1 nor to 0. The cost value and
the solution o pp, vector of the LP relaxation is shown below the constraints for «;.
Since the solution is non-integer valued, o is restricted to 1 (see Nodey). Then we
branch the tree taking as into consideration. Since the unbounded « variables are
between 0 and 1, m denotes a very small value in subproblems Nodes, Nodes, and
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Node,
O<a <1
0<a,<1
0<a, <1
Oy, =(0,025,0)
cost =0.5
Node, Node
o =1 o = 0
0<a, <1 0<a, <1
0<o, <1 0<a <1
Oy, =(0,0.25,0) Oy, =(0,0,1)
cost =0.5 cost=1
/\ = 1’06 =
Node, sol.str:{t,}
Node, o = 1
o =1 a,=0
=1 0<a, <1
0<e, <1 Oy, =(0,1,0)
Opy, =(0,(1—m)/4,m) cost =2
cost=(1+m)/2 a,=0
/ \ sol.str:{t,}
Node,
o =1 Node,
a, =1 o =1
o, =1 a,=1
Opy, = (m,(1+m)/2,2m) a,=0
cost=(1+9m)/2 Opy, =(O,LD
MILP:0,, =(11) cost=3
cost=3 sol.str:{t,,t,}

sol.str:{t,,t,,t;}

Figure 3: The B&B tree solving the optimal trajectory problem in Fig. 1

Nodey. In the leaf Nodes the solution of the MILP problem returns the first best
known solution opn, = (1,1,1) with a cost of 5 units and the logical structure of
the solution is composed of all the three solution structures.

At nodes Nodey, Nodes, jand Nodeg the solution of the corresponding LP
relaxation returns integer solutions of a worse value thus, the tree can be pruned
at these nodes. The candidate optimal solution is found at Nodeg composed of one
basis solution structure 6. (Please note, that the depth-first algorithm required
no bounding. However, if branching is done for instance in the order of as, a1, as,
the optimal solution is found already at the first node.)

However, the solution (S2 in Fig. 2) represents a non-fireable solution from
the initial marking My = (2,3,0,0), since transition ¢3 is not fireable at marking
My = (2,3,0,0) and no other transition is included in the solution. In order
to eliminate these spurious solutions we introduce the following reachability and
fireability checks.
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6 Reachability—Membership Function Generation

We use symbolic modeling techniques introduced in [21] for the check of the candi-
date transition occurrence vector computed by the previous PNS algorithms-based
programming problem. The efficiency of our new method lies in its parametral
feature.

6.1 The Reachability-Membership Function Generation Al-
gorithm

The states and the representation of the dynamic behavior (successor relation)
of Petri nets are encoded as Boolean functions during the generation of the
reachability-membership function (shortly reachability function). The algorithm
generates the reachability function as the transitive closure of the single-step tran-
sition relation starting from the current set of reachable markings encoded as the
disjunction of Boolean functions (collecting transitions that are enabled in the set
of reachable markings). The computation of the set of new reachable states is
performed by Boolean operations based on their Binary Decision Diagram (BDD)
representation.

Due to the encoding of the reachable set by Boolean variables, the reachability
function can be parameterized by the initial and the final states. The reachability
function returns the value true, if the final state is reachable from the initial state
and false, otherwise. The reachability function is characteristic for the Petri net,
thus, it has to be estimated one by one, and does not have to be newly generated for
the check of the next candidate solution after a spurious solution is found. The other
advantage of the method compared to the previous one in [11] is that the states do
not have to be explicitly enumerated as the parameters of the reachability function.
Nevertheless, the main disadvantage of the method is its slightly limited scope (the
Petri net has to be bounded) in order to be able to be parameterized and encoded
by the function.

For the sake of simplicity, let PN = (P,T,w, My) be a safe (or 1-bounded)
Petri net, i.e. for every marking M reachable from the initial marking My, Vp €
P : M(p) <1 holds. Thus, the weight is 1 for each arc. (Note, that the algorithm
also works for general bounded Petri nets using n Boolean variables for upper bound
k s.t. 2™ > k [21], or using Functional Decision Diagrams ([25]).

A marking M is encoded as a set of Boolean variables {p1,...,pn;n = |P|} (as
a characteristic function). Each variable p; assigned to a place has a value of 1 if
and only if the corresponding place is marked in M.

A set of markings can be represented by the disjunction (union) of their Boolean
representations. The enabledness of a transition ¢ in marking M is evaluated by

the equation £y = [] p;. That means that the transition is enabled if there are at
pi€eot

least as many tokens in its places p € ot as required by the weight function that is

1 in our case. Since we supposed that the Petri net is a safe Petri net, this number

of tokens is exactly 1, i.e. p; = 1.
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The following transition function is used in order to compute the subsequent
reachable states from the markings in the actual set. 6° : P — {true, false} is the
transition function for t € T, i.e. it denotes the effect of transition ¢ on the Boolean
variables after its firing.

1 if pi € te
St(p1,...pn) =2 0 ifp; € ot\te
p; otherwise.

The parameterized reachability function is generated iteratively as the transitive
closure of the single-step transition function. Algorithm 1 sketches this stepwise
generation of the reachability function. (Note, that the conjunction and disjunction
operations on markings are interpreted as the corresponding operation on the place
variables.)

The single-step transition function ¢ is the disjunction of the conjunction of
the transition function 6 and the firing condition E; for all transitions t € T
(see line 1). The algorithm starts from the initial set of reachable markings,
ie. fo(vi,...,Un,wi,...,wy) = (V1,...,0p = W1,...,wy) (see line 1). The ac-
tual reachability function f;(Mg, M) after the i-th iteration is evaluated to true
if marking M is reachable from Mj, by a firing sequence with maximal length of
i. Then the next reachability function f;; is calculated as the disjunction of the
actual reachability function f; and the single-step transition function ¢ from the
set of markings that are reachable in at most ¢ steps from the initial marking (i.e.
fi(Mo, My) A g(My, M), see line 1. Both the single-step transition function and
the reachability function are parameterized by variables (v1,...,v,), (r1,...,75),
(w1, ..., w,) denoting the initial, the auxiliary and the end markings, respectively.
The algorithm terminates if the computation reached a fixpoint, i.e. the transitive
closure is computed (at line 1).

Since the generation of the reachability function does not store the order of the
transition firings, the described method is appropriate only to check the reachability
of the marking computed by the state equation. On the other hand, if we were
interested only in the reachability of this end marking and we would not like to
reuse the reachability function, we could improve our method in the following way.

e The sum of the components of the candidate transition occurrence vector pro-
vides the necessary number of iterations. Thus, after exceeding this number
of iterations, the computation of the reachability function can be stopped.

e The transition function could be restricted only to those transitions that are
involved in the candidate transition occurrence vector.

Example. In the running example (see in Fig. 1), transition ¢; is enabled if there
is a token in p;. Thus, the enabledness of transition ¢; can be expressed as follows:
E;, = p1 = (p1 = 1). The firing of transition ¢; removes the token from p; and
produces one token to place p3, while the marking of places ps and p4 do not change.
Namely, the transition function for ¢; is 6°* (p1, p2, p3,pa) = (0,p2, 1, p4).
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Algorithm 1 Reachability—membership function generation

1: Let be a safe Petri net PN = (P,T,w, Mp) given.
2: Compute the ROBDD of the transition function g:

n

3: g(vlﬂ"wvnawla"'vwn): \/ /\(wlz(s'f(vl))Et
vteT Li=1
4: {g(v1,.. . v Wi, wy) =1 = HEeT:Vi:1<i<n:d(v;)=w; and
E Avy...v, =11}
5: Compute the ROBDD of the 0-th iteration of the reachability function:
n

6: fo(vi, ..., Un,W1,...,Wy) = (V1...0, S W1 ... W) = ./\1(1)1' = w;)

71— 0 '

8: repeat

9:  Compute the ROBDD of f; 7 using the ROBDDs of f; and g:

100 fir1(v1, -y Un, Wi, .o, W) = filvi,. o op,we, ..o wy)
V(v ooy Uny 1y ooy Tn) AG(F1y ooy Ty Wy e W)

11:  {the reachability function f;(Mo, M) is evaluated to true if and only if M is
reachable from My by a firing sequence with maximal length of i.}

122 t+—1+1

13: until fi = fi—i—l-

According to the above algorithm, in our running example functions fy, g,
and the reachability function f are the following. Lines 12-14 in the definition of
function g refer to the effect and the enabledness of transition t1, to, and 3, respec-
tively. The reachability function f reflects the firing sequences on a parameterized
marking: the ‘sub-equation’ in line 16 is evaluated to true only for end markings
M = (w1, wa, w3, wys) that are the same as the initial marking My = (v1, va, v3,v4)
while the Boolean expressions in lines 17-19 and 20-21 are evaluated for markings
reachable by a firing sequence of length 1, and 2, respectively.

Jo(v1v203v4, w1wWaw3Wy) = (W1W2W3W4 = V1V2V3VL)
g(11v2v3v4, W wowswy) = (Wiwewswy = Qvalug) A (v = 1) V
(wrwowsws = v10v31) A (v2 = 1) V

1)

—_— — ——

(wrwawswy = v1011) A (v2 = 1) A (vs

—
Ut

N e e e N
—_
oo

NN N N NI A N N

f(U1U2U3U47 w1w2w3w4) =

(w1 wewswy = v1V2V3V4)

—_
EN|

(wrwawswy = Ovalug) A (v1 =

(wwawswy = v10031) A

(wrwowswy = v1011) A (v2 =1
(wrwowswys = 0011) A (v1 =1
(wrwewzwy = 0011)A (v = 1) A(v2 =1) A (v3 = 1)
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6.2 Implementation of the Reachability Function: Binary
Decision Diagrams

In order to gain efficiency, the reachability function computation requires an effi-
cient representation of Boolean functions. As Binary Decision Diagrams (BDDs)
[2] provide an efficient form to manipulate Boolean functions, we express the above
Boolean functions by means of them. BDDs are directed acyclic graphs with two
leaf nodes that represent Boolean functions 0 and 1. The other nodes represent the
Boolean variables and each of them has two outgoing edges labeled by 1 'then’ or
0 ’else’. Thus, the evaluation of a Boolean function is performed by the traversal
of the corresponding BDD according to the actual values of the variables.

To generate the reachability function (see Algorithm 1) as a BDD, we use Re-
duced Ordered BDDs (ROBDD) where the equivalent branches of the tree are
merged and the redundant variables are excluded from the tree. Then the dis-
junction and conjunction operations in the calculation of g, fo, and f;+1 (in lines
1, 1, 1) can be directly executed on the ROBDD representations. However, the
ROBDDs to be merged have to contain the same variables in the same order. Nev-
ertheless, arbitrary variables can be added to the ROBDD of functions f; and g
thus, the computation of f;11 is performed by using the ROBDDs of f; and g¢

with variables vy,...,v5,71,..., 0, W1, ..., Wy,. Since variables r1,...,r, in g can
be substituted by variables vy, ..., v,, the resulting ROBDD of f;;1 contains only
variables vy, ..., vy, w1,...,w, satisfying the definition of f such that it is inter-

preted on the variables of the initial and the end markings.

7 Related work

The use of integer programming methods in the analysis of Petri nets is not a novel
idea. In [18] deadlock detection was reduced to a mixed integer linear programming
problem. In [17] the authors presented a further development of this approach to
prove deadlock detection, mutual exclusion, and marking reachability and coverabil-
ity. In contrary to our approach, this solution was based on the unfolding of the
Petri net. Another unfolding-based solution is discussed for safe Petri nets in [4].

Linear algebraic algorithms were used to solve the Petri net reachability problem
without state space explosion in [3, 24]. Although these techniques are powerful,
in general they provide only semi—decision techniques to decide the reachability of
a given marking while we are dealing with general Petri nets.

Several papers [14, 9] use stochastic Petri nets or timed Petri nets to model
and solve scheduling and optimization problems (e.g. in the field of manufacturing
systems). These approaches use mainly simulation and performance evaluation in
order to solve the problem (for instance, in [28] profit function values are represented
as a function according to some given restrictions using simulation of stochastic
Petri nets). Since we do not only want to solve the optimal trajectory problem
(where we have fixed parameters assigned to the transitions), but we also aim at
simultaneous verification and optimization, these techniques are not appropriate
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for our purposes.

Model checking methods were used to solve scheduling and optimization prob-
lems in several papers. These papers are common in the feature that the problem is
translated into a reachability condition that can be easily encoded into a temporal
logic expression to be verified by the model checking tool. In [5] timed automata
was used to model a steel plant and the corresponding scheduling problem. The
scheduling problem was solved using the UPPAAL tool, which is a model checker
for networks of timed automata. [23] and [13] deal with time optimization prob-
lems using the SPIN model checker. The main idea of this solution (originated from
[23]) is to interpret Branch-and-Bound techniques encoding both the bounding and
branching conditions into the linear temporal expression to be verified. Although
the optimal trajectory problem could be solved using only SPIN based on the above
technique the pre—optimization in our method using linear programming solutions
significantly reduces the search space for the optimal solution.

In [16] the authors analyzed the ezecutability of a given process network solu-
tion,where operating units consume exactly one unit of their input materials and
produce exactly one unit of their output materials. This modified PNS problem
was solved using an automaton theoretical approach such that the problem is trans-
formed into a problem to find the shortest path in the weighted transition graph of
the automaton constructed from the PNS problem. In case of Petri nets where the
weights of the arcs are restricted to one, the fireability of the candidate solution
transition occurrence vector can be proved using this method.

8 Conclusion and Initial Results

Finally, our method was tested on an example Petri net with 11 places and 7
transitions. The example originates in [1]: we reformulated the PNS problem as a
Petri net optimal trajectory problem. The example Petri net is shown in Figure 4,
where the weight of the arcs are written on the edges.

The original SSG algorithm generates 19 solution structures (see the solution
structures in [1]) while our modified algorithm computes only 7 basis solution struc-
tures. The Branch—and-Bound algorithm (described in Section 5) executes 13 LP
relaxations and 5 MILP problem (at the leaves of the tree). This number of LP
relaxations and MILP problem solving is still less than the number of the MILP
problems to be solved if we would like to find the optimal solution calculating the
optimal solution for all the 19 solution structures. The SSG basis-based algorithm
returns the solution opy, = (0,1,0,0,1,0,1) with cost 1085, i.e. the candidate op-
timal transition occurrence vector contains transitions ¢2, ¢5, and ¢7 (each exactly
once).

As a next step, we calculate the end marking by the state equation. Then
we check whether there exists a trajectory from the given initial marking to the
calculated end marking using the reachability function. Substituting the initial and
the end marking into the reachability function, the answer is positive, i.e. the end
marking is reachable from the initial marking. In case of a negative answer, the
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Figure 4: Example optimal trajectory problem

next optimal solution should be generated by our Branch—and—Bound algorithm for
which the previous calculations could be reused, as well as the reachability function
for the next check.

Finally, we generate the fireable trajectory according to the candidate optimal
transition occurrence vector, that is the following transition sequence: (t7,t5,¢2).

Since the solution of the optimal trajectory problem needs the generation of the
fireable trajectory, the efficiency of our method cannot be easily compared to other
approaches. In addition, several structural specialties could be explored, for which
dedicated algorithms give much more efficient results. In Table 1 the number of
LPs and MILPs solved are shown both in case of ABB (however it does not return
an integer solution!!!) and in case of our method, while the execution time values
(on a Pentium IV) for the individual phases of the algorithm are given in Table 2.

Conclusion In the current paper we introduced a solution structure-based
method for optimization purposes to solve the Petri net optimal trajectory problem
and the generation of a reusable, initial marking—independent reachability function
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Table 1: Initial results: comparison of number of LPs and MILPs solved by the
ABB algorithm and the solution structure basis-based B&B algorithm

| algorithm | number of LPs | number of MILPs |
ABB 0
B&B algorithm 13 5
based on the solution structure basis

Table 2: Initial results: execution time for the example optimal trajectory problem

| step | execution time (sec) |
Generation of the solution structure basis S(PN )pasis 0.01
Generation of the optimal candidate 0.72
transition occurrence vector opny,
Generation of the reachability function 4.56
Trajectory generation using SPIN 0.01

to check the reachability of the target state corresponding to the candidate optimal
solution structure. As further work, we aim to develop a similar framework for time
optimization with Petri nets using dedicated linear programming problem solutions
developed for the so-called S-graphs [22].
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