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Classification using a sparse combination of basis

functions

Kornél Kovács∗ and András Kocsor∗

Abstract

Combinations of basis functions are applied here to generate and solve
a convex reformulation of several well-known machine learning algorithms
like certain variants of boosting methods and Support Vector Machines. We
call such a reformulation a Convex Networks (CN) approach. The nonlinear
Gauss-Seidel iteration process for solving the CN problem converges glob-
ally and fast as we prove. A major property of CN solution is the sparsity,
the number of basis functions with nonzero coefficients. The sparsity of the
method can effectively be controlled by heuristics where our techniques are
inspired by the methods from linear algebra. Numerical results and com-
parisons demonstrate the effectiveness of the proposed methods on publicly
available datasets. As a consequence, the CN approach can perform learning
tasks using far fewer basis functions and generate sparse solutions.

1 Introduction

Numerous scientific areas such as optical character and speech recognition, speaker
verification, bioinformatics and pharmacology nowadays significantly depend on
statistical machine learning algorithms of artificial intelligence. The common fea-
ture of these areas - artificial knowledge embedded in applications - is retrieved
from pre-collected databases in a statistical way. Recently the size of the data sets
for calibrating the methods has grown due to advances in global communication
networks like the Internet. Processing this extra amount of data requires effective
methods that store the extracted information in a compact and easily retrievable
form.

One of the most prevalent machine learning algorithms - Artificial Neural Net-
works (ANN) [3] - meets these requirements as it has compact form with a fast
evaluation. However the solution provided by the learning phase is only a local
minima of the objective function, which makes the networks trained on the same
database inconsistent. The ubiquitous Support Vector Machine (SVM) method
[6, 9, 18] leads to a quadratic programming task whose own global optima defines
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the compactness of the information retrieved. This kind of functioning can be
beneficial since preliminary assumptions are not required, but this is also why the
technique might not be applicable in every case. Our aim is to define an algorithm
which combines the advantages of the methods and, in particular, it has global
optima even with controlled sparsity.

Now we will briefly outline the contents of the paper. First we state the pattern
classification problem and derive the so called Convex Networks (CN) method from
a constrained optimization formulation in Eq. (8). The nonlinear Gauss-Seidel it-
eration technique in Definition 2 for solving the CN problem converges globally as
shown in the Optimization section without proof. To demonstrate CN’s flexibility
the original SVM quadratic programming task is re-expressed in a CN form. In
the next section we introduce heuristics for controlling the sparsity of the solution.
In the numerical tests and comparisons section we demonstrate the practical ap-
plicability of CN compared with ANN and SVM. Lastly, we round off with our
conclusions and some ideas for future research.

2 Convex networks

Tasks in machine learning often lead to classification and regression problems
where models employing a convex objective function might be beneficial. Consider
the problem of classifying n points in a compact set X over R

m, represented by
x1, . . . ,xn, according to the membership of each point xi in the classes {1, . . . , c}
as specified by y1, . . . , yn. A multiclass problem can be transformed into a set
of binary classification tasks yi ∈ {−1, +1}, which is in many ways like the one-
against-all method [20] or the output coding scheme [13]. Thus our investigation
can be restricted to the problem of the binary classification without any loss of
generality.

Solutions to classification problems in practice are usually based on the model-
method where the parameters of a fixed model structure are set by statistics-based
optimization. The structure can depend on compact mathematical models [3, 18]
or it could apply the points themselves of the available database [8]. Models ac-
complish the separation by estimating the probability density functions of different
classes [1], or by utilizing a separator surface between the points. In both cases we
need to look for models which return the following probabilities:

P (y | z) y ∈ {−1, +1}, z ∈ X . (1)

The latter case is the discriminative approach where the separator surface is defined
by the following set for a fixed γ ∈ R

{z | f(z) = γ, z ∈ X}, f : X → R. (2)

The classification of an arbitrary point z is based on the sign of f(z) − γ, and the
probabilities in Eq. (1) could be derived by taking the amplitude of this quantity.

Now let S denote a finite set of continuous basis functions

S = {f1(x), . . . , fk(x)}, fi : X → R (3)
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Figure 1: Possible loss functions

and the optimal separator surface of discriminative approach in Eq. (2) is searched
for in the linear subspace of basis functions, f ∈ Span(S), where

Span(S) =

{
h : X → R | h(x) =

k∑
i=1

αifi(x), x ∈ X , α ∈ R
k

}
. (4)

Generally the optimality criterion is based on a special indicator of the sample
points

yif(xi) 1 ≤ i ≤ n, (5)

whose amplitudes are proportional to point-surface distances, positive values rep-
resenting the well separated cases. Recalling that separable classification problems
have an infinite number of separator surfaces that can classify the sample points
perfectly, we introduce a twice continuously differentiable, monotone decreasing,
lower bounded and convex loss-function L : R → R [9]. Of the many possibilities
two candidates are shown in Fig. 1. Using a loss-function the separation measure
g (α) can be defined for a function f ∈ Span(S) and samples x1, . . . ,xn by

g (α) =
n∑

i=1

L

⎛
⎝yi

k∑
j=1

αjfj(xi)

⎞
⎠. (6)

2.1 Optimization methods

A machine learning method can be regarded as a multivariate regression problem
where the probabilities in Eq. (1) need to be approximated. The parameters of
the applied model can be optimally set only if the estimated function is known
over the whole space. The problem of approximating the parameters based on
sparse sample data is ill-conditioned and the classical way of solving it is to use
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regularization theory [17]. According to this theory the optimal separator surface
has the minimal separation measure of Eq. (6) with a regularization term

minα

∑n
i=1 L

(
yi

∑k
j=1 αjfj(xi)

)
+ λαT Aα

s.t. α ∈ R
k

(7)

where λ > 0 and A ∈ R
k×k is an arbitrary symmetric positive-definite matrix.

In practical applications constraints can be employed on the subspace of basis
functions in the form of α ∈ A ⊆ R

k where A is a non-empty, closed, convex set.
We will restrict our investigation here to the case where the domain is a product
of non-empty intervals, i.e. A = A1 × . . . × Ak. The formalism includes the
unconstrained task of Eq. (7) where Ai = (−∞,∞). The final form of the Convex
Networks (CN) problem is

minα

∑n
i=1 L

(
yi

∑k
j=1 αjfj(xi)

)
+ λαT Aα

s.t. α ∈ A = A1 × . . . ×Ak

(8)

It can be readily seen that the objective function in this equation is twice con-
tinuously differentiable, lower bounded and convex. Moreover, every level set is
bounded. Actually, Eq. (8) is a convex programming task which can be solved by
one of many techniques [2].

The Sequential Quadratic Programming (SQP) methods [7, 10] focus on the
solving of Kuhn-Tucker (KT) equations, which are sufficient conditions for global
optima in the convex programming case. SQP is an iterative algorithm for solving
a quadratic programming subproblem at each step. The convergence of SQP is
super-linear due to the special update rule of second order information about KT
equations.

In contrast to SQP, the Gauss-Seidel (GS) iteration technique is a kind of con-
vergent algorithm that modifies one component of the solution at each step - in
other words a simple convex optimization subproblem with one variable is solved
at each step. Hence the resource requirements of the method remain bounded even
for large-sized datasets. That is why we prefer to use the GS method to solve a CN
task.

Definition 1. (projection mapping)

[ ]p : R
k → A [α]p = z ⇔ ‖α − z‖2 = min

y∈A
‖α − y‖2

Definition 2. (constrained Gauss-Seidel iteration)

αt+1
i =

[
αt

i − γ∇if(zt
i)

]p

i

where

γ > 0, zt
i = (αt+1

1 , . . . , αt+1
i−1, α

t
i, . . . , α

t
k), αt+1 = zt

k+1.
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During the iteration process each component of the actual solution αt is succes-
sively upgraded by the gradient rule. If the solution falls outside the domain it will
be replaced by the nearest point of the set with the aid of the projection mapping.
The constrained GS iteration method is convergent for every function τ : A → R

over a non-empty, convex and closed set A, where τ is twice continuously differen-
tiable and lower bounded. Moreover, the gradient should be a Lipschitz function
and there must exist a δ > 0 such that 0 < δ ≤ ∇2

iiτ(α)). The limit point of the
iteration is the extreme of the function over A [2].

However it can be proved that the Lipschitz condition respecting the gradient
can be ignored if every level set of the function is bounded. Therefore the con-
strained Gauss-Seidel iteration procedure with low resource requirements is pro-
posed for solving the CN task.

2.2 Methods involved

The CN formalism includes several well-known machine learning algorithms e.g.
variants of boosting methods [11, 12] and Support Vector Machines (SVM) [6, 14,
16].

The standard SVM problem is given by the following for some C > 0, taking
into account the fact that the bias in the separator hyperplane may be eliminated
from the equation [15]:

minw CeT ξ + 1
2w

T w
s.t. Y Xw + ξ ≥ e

ξ ≥ 0
, (9)

where Y is a diagonal matrix with y1, . . . , yn along its diagonal, X = (x1, . . . ,xn)T

and e is a column vector of ones of arbitrary dimension. To solve this optimization
problem we have to find the saddle point of the Lagrangian

maxw,α CeT ξ + 1
2w

T w − αT (Y Xw + ξ − e)
s.t. α, ξ ≥ 0 (10)

The parameters that maximize the Lagrangian must satisfy the conditions

w = XT Y α 0 ≤ α ≤ Ce. (11)

These set of constraints can be employed in the original problem of Eq. (9) because
the duality gap disappears when the objective function is convex

minα CeT ξ + 1
2αT Y KY α

s.t. Y KY α + ξ ≥ e
α ≥ 0

−α ≥ Ce
ξ ≥ 0

, (12)

where Kij = κ(xi,xj) is the kernel matrix of the sample. Mapping κ : X ×X → R

is a Mercer-kernel [6] which can define some implicit nonlinear transformation of



316 Kornél Kovács and András Kocsor

the original points so that K = XXT means a linear mapping. For a solution α of
Eq. (12), ξ is given by (e− Y KY α)+ where

(z+)i = max{0, zi} i = 1, . . . , n (13)

Exploiting this in Eq. (12) we get

minα

∑n
i=1

(
1 − yi

∑n
j=1 αjyjKij

)
+

+ 1
2C αT Y KY α

s.t. 0 ≤ α ≤ Ce
(14)

which is a CN problem with the following parameters

k = n L(x) = (1 − x)+ fj(z) = yjκ(z,xj)
λ = 1

2C A = Y KY A = [0, C]n (15)

if the plus function (1 − x)+ is replaced by a very accurate smooth approximation
p(x) = − (1 − x) + 1

β log(1 + eβ(1−x)), β → ∞. Actually, it can be shown that as
the smoothing parameter β tends to infinity the unique solution of the smoothed
problem approaches the unique solution of the equivalent task in Eq. (15) [14].

3 Sparse solutions

The separator surface coded by a CN problem takes the form

{z |
k∑

j=1

αjfj(z) = γ, z ∈ X}, fj : X → R. (16)

for a fixed threshold γ ∈ R. Basis functions with zero coefficients can be eliminated
when evaluating the model and the remaining terms define the complexity of the
CN solution. The more the number of zero coefficients the faster the evaluation,
which makes the CN method suitable for fast or real-time applications. However
the coefficients are determined by the optimal solution of the mathematical pro-
gramming task, and the parameters can only influence the sparsity by degrading
the performance.

For the sake of controlling the complexity the number of basis functions will be
restricted by making the following assumption on the CN domain

k∑
i=1

|sign(αi)| ≤ q (17)

Such a condition violates the closed and convex properties of the domain so the
suggested nonlinear Gauss-Seidel technique and other iterative methods cannot be
applied to the problem. The last remaining approach is the combinatorial selection
of basis functions. Our aim is to select from the available basis functions a subset
of order q where the classification problem can be optimally solved. This task is
NP hard so the only effective way here is to employ heuristics which can be based
on the execution of CN with different parameters or their own objective functions.
In the next part we will outline methods from the latter group.
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3.1 Heuristics

In this section we deal with algorithms that do not use the CN objective function
itself during the optimal basis function subset selection of order q.

RANDOM The simplest strategy is the random selection approach when we randomly
select q basis functions from among the k basis functions. This approach
does not have an objective function that can be minimized so we will choose
instead the subset with the best performance after several executions.

MGRAMM The CN method approximates the optimal separator surface using a linear
combination of the basis functions. Hence the approximation can be per-
formed on an orthogonal basis of the function space, as in the case of the
result of the Gramm-Schmidt orthogonalization algorithm. Despite this, the
dimension of the basis is the rank of the function set which can exceed the
desired number q. Moreover, the algorithm generates an orthogonal function
system with linear combinations of basis functions instead of selecting the
individual functions.

To solve the above we will define a greedy iterative selection strategy based
on a modified version of the Gramm-Schmidt orthogonalization algorithm.
Among the available basis functions we choose the one with a maximal resid-
ual norm after the Gramm-Schmidt process at each step. The result of this
greedy method is not the orthogonal function system itself but the basis func-
tions used in the linear combinations.
GRAMM(q)

Y = {1, . . . , k}; I = ∅;
for i = 1...q

t = argmaxj∈Y −I ‖fj −
∑i−1

l=1
〈fj ,f∗

l 〉
〈f∗

l ,f∗
l 〉f

∗
l ‖2

I = I ∪ {t};
f∗

i = ft −
∑i−1

l=1
〈ft,f∗

l 〉
〈f∗

l ,f∗
l 〉f

∗
l ;

return I;

Assume that the basis functions are elements of L2 so the dot product is the
integral of the product function. When analytical computations of the inte-
grals are not possible we utilize the following approximation in the algorithm
using the sample points

〈f, g〉 =
n∑

i=1

f(xi)g(xi) f, g : X → R. (18)

CORR The MGRAMM method tries to choose an orthogonal basis of the functions with
the help of the Gramm-Schmidt process. The choice might be good when
the dot product of functions is available. Employing the approximation in
Eq. (18) the result of the algorithm will be also just an approximation of the
desired basis.
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Such an estimation can be carried out in different ways. The orthogonality of
the elements in the basis can be also employed, since the mutual correlation
coefficients must be zero. Our aim is to select functions such that the squared
sum of the element in the correlation matrix should be minimal. Similar to
MGRAMM this method will be a greedy iterative process and also exploit the
fact that the mutual correlation coefficient for normalized functions takes the
form of Eq. (18).

CORR(q)
Y = {1, . . . , k}; I = ∅;
for i = 1...q

t = argminj∈Y −I

∑i−1
l=1

〈fj ,f∗
l 〉2

〈fj ,fj〉
I = I ∪ {t};
f∗

i = ft

〈ft,ft〉0.5 ;

return I;

4 Results

We now demonstrate the effectiveness of the CN approach by comparing its results
with other methods. In order to evaluate how well each algorithm classifies an
unknown dataset, we performed a tenfold cross-validation on publicly available
datasets from the UCI repository [4]. The performance of the CN method was
compared with Artificial Neural Networks (ANN) and Support Vector Machines
(SVM).

We applied a feed-forward neural network (MLP) with one hidden layer, where
the number of hidden neurons was set at three times the class number. The back-
propagation learning rule was applied for training. MLP was executed five times
on each dataset and then we chose the parameter values which gave the best per-
formance on training sample.

For an impartial comparison we employed our 1-norm SVM implementation
where the bias term was absent [15]. Multiclass cases were handled by the one-
against-all approach. Additionally, the cosine polynomial kernel we applied made
the SVM method nonlinear

κ (x,y) =
(

xT y
‖x‖ ‖y‖ + σ

)q

, q ∈ N, σ ∈ R+ (19)

with parameters q = 3 and σ = 1.
The basis functions for the CN problem were defined by the above kernel func-

tion using the sample points of a training set, as shown in Eq. (14). Thus

fj (z) = yjκ (z,xj) . j = 1, . . . , n (20)

The coefficients of the basis functions were not restricted in our tests, i.e. we used
the domain A = (−∞,∞)n. In the regularization term of Eq. (8) we set the identity
matrix equal to A with λ = 1.
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ANN SVM CN
balance 89.03 93.55 99.79

86.35 90.63 95.41
bupa 72.01 81.73 80.69

68.07 74.39 71.92
glass 84.24 99.79 100.0

69.87 84.70 86.23
iono 93.35 99.40 99.94

86.17 91.09 92.41
monks 90.64 97.50 99.05

87.28 95.82 96.51
pima 78.68 82.49 80.55

76.09 75.58 74.82
wdbc 98.71 99.47 100.0

97.61 97.62 96.93
wpbc 85.71 98.47 99.04

76.41 77.36 79.63

Table 1: Ten-fold cross-validation training and testing results on some UCI datasets
using three different methods. ANN is a feed-forward neural network with one
hidden layer where the number of hidden units was set at three times the class
number. SVM used the cosine polynomial kernel defined in Eq. (19) with q = 3
and σ = 1 for nonlinearity. With the help of Eq. (14) the CN method applied the
same basis functions.

It turned out that, on most of the datasets tested, the tenfold testing correct-
ness of the CN problem was the highest for these methods. We summarize all these
results in Table 1. It confirms that the CN classification method is indeed just as
effective as the ubiquitous machine learning algorithms. Moreover, their perfor-
mances were surpassed in many cases. It can be readily seen that the problem of
overfitting the data was present more often in the methods with global optima. It
might be explained with the locally optimal solution of the ANN method, which
can be regarded as a kind of regularization. Similar results are expected when using
sparse heuristics to solve a CN problem.

We also examined the performance of the proposed heuristics controlling CN
sparsity. We compared the methods on the Iono database by examining the value
of the CN objective function, regardless of how the methods worked. Now the
RANDOM method chose its best from 5 executions. The results of the heuristics are
shown in Fig. 2. We used the performance of the RANDOM method as a reference
so the results of other algorithms are expressed in percentages. As the reader will
notice the MGRAMM and the CORR approaches achieved similar results, and both of
them outperformed the RANDOM method here. Despite the fact that these algorithms
require computational time the selected basis perform better.
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Figure 2: Performances of the proposed heuristics controlling CN sparsity on the
Iono database expressed in percentages of the RANDOM method result. The CN
measures were used as performance indicators regardless of how the methods works.

0 10 20 30 40 50 60
30

40

50

60

70

80

90

100

order of the selected subset

se
p

ar
at

io
n

 m
ea

su
re

sep. measure
train correctness
test correctness

Figure 3: The consistency of the measure in the CN method and its abstraction
ability with the aid of the MGRAMM method on the Iono database. The decreasing
CN measure means a better testing correctness.
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During the subset selection we optimize some measures while the abstraction
ability is the most important in the machine learning sense. The consistency of the
measure in the CN method and its abstraction ability can be seen in Fig. 3 with
the aid of the MGRAMM method on the previous database. As can readily be seen,
the decreasing CN measure value means a better abstraction ability, i.e. testing
correctness. Thus the measure of the CN approach might indeed be employed as
an objective function of machine learning algorithms.

The performance of heuristics were examined with the help of ten-fold cross-
validation. We summarize our results here in Table 2. The sparsity of solutions
were maximized using 10%, 20% and 30% of the available functions. The RANDOM

RANDOM
MGRAMM
CORR

10% 20% 30% 100%

balance
95.10

95.25
95.41

95.25
95.40

95.10

95.40
95.25

95.25
95.41

bupa
70.49

69.14
69.12

71.35
70.53

69.12

69.14
71.61

69.42
71.92

glass
84.75

85.16
85.18

89.66
86.62

85.16

87.00
85.91

86.66
86.23

iono
89.16

91.23
91.58

93.19
92.04

91.32

92.68
90.54

91.85
92.41

monks
93.18

92.94
92.65

93.70
91.66

94.40

94.76
90.89

95.11
96.51

pima
78.51

77.89
77.62

77.24
76.43

76.22

75.97
77.87

76.60
74.82

wdbc
97.44

97.25
97.10

97.27
96.93

96.93

97.44
96.09

96.93
96.93

wpbc
78.27

76.37
74.05

78.29
75.14

75.93

77.29
73.20

79.70
79.63

Table 2: Ten-fold cross-validation testing results of the Convex Networks method
using the heuristics RANDOM, MGRAMM and CORR. The sparsity was controlled by maxi-
mizing the number of available basis functions to 10%, 20% and 30% of the complete
sets, respectively.
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method had the same parameter as that above. As observed, all of the algorithms
selected subsets with adequate testing correctness. This kind of capacity reduction
in the CN learning method brings about a sort of regularization which is reflected
in the results: results with a reduced basis outperform the original ones in many
cases. The various algorithms here have their best performance on different tasks.
In general, different requirements in the learning phase will lead the user to select
one of the available heuristics.

5 Conclusions

We proposed a reformulation of certain machine learning algorithms that includes
several well-known nonlinear classification methods. The CN problem can be solved
by the convergent nonlinear Gauss-Seidel iteration process, which is sufficiently fast
for this task. The numerical results on its abstraction ability show that the CN
method can be considered as a rival classification method to both ANN and SVM.
Moreover, the sparsity of the CN problem can be effectively controlled by the
proposed heuristics. Future work includes a new heuristic based on a CN objective
function which can be utilized in very large classification problems. We also plan
to use chunking algorithms like those described in [5] for problems which do not fit
in the memory.
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