
Acta Cybernetica 17 (2005) 325–338.

HyperS Tableaux – Heuristic Hyper Tableaux

Gergely Kovásznai∗

Abstract

Several syntactic methods have been constructed to automate theorem prov-
ing in first-order logic. The positive (negative) hyper-resolution and the clause
tableaux were combined in a single calculus called hyper tableaux in [1]. In
this paper we propose a new calculus called hyperS tableaux which overcomes
substantial drawbacks of hyper tableaux. Contrast to hyper tableaux, hyperS
tableaux are entirely automated and heuristic. We prove the soundness and
the completeness of hyperS tableaux. HyperS tableaux are applied in the
theorem prover Sofia, which additionally provides useful tools for clause set
generation (based on justificational tableaux) and for tableau simplification
(based on redundancy), and advantageous heuristics as well. An additional
feature is the support of the so-called parametrized theorems, which makes
the prover able to give compound answers.

1 Introduction

Several syntactic methods have been constructed and implemented to automate
theorem proving in first-order logic. Most of these methods can be classified as
either tableau-based or resolution-based. Semantic tableaux were introduced by
[8] and meet the problem of term selection for instantiating γ-formulas, which was
tried to be overridden by the application of the most general unifier atomic closure
rule for free-variable tableaux in [2]. Resolution acts with clauses. An easy-to-
implement variant is SLD-resolution on which the programming language Prolog
is based. SLD-resolution restricted to the class of Horn clauses is complete. One
improved variant is the positive (negative) hyper-resolution which is not restricted
and resolves the entire clause head (body) in a single inference step [7]. Hyper
tableaux by [1] combine the advantageous features of positive hyper-resolution and
clause tableaux [3], but admit some unwanted solutions which were tried to be
eliminated in [4].

In this paper, we propose an improved and heuristic variant of rigid hyper
tableaux calculus defined in [4], what we call hyperS tableaux. The name comes
from the theorem prover Sofia in which the proposed calculus is applied and refers
to that more than one clauses can be instantiated in a single inference step. After

∗Department of Computer Science, University of Debrecen, Hungary. Email:
kovasz@inf.unideb.hu

325

326 Gergely Kovásznai

introducing the necessary concepts in Section 2, we will give details of hyperS
tableaux in Section 3, where the soundness and completeness of the calculus will
be proven. In Section 4.1, an easy-to-use and effective tableau-based method is
introduced for generating clauses. In Section 4.2, the heuristical management of
hyperS tableaux is argued in order to reduce the size of the tableau constructed. In
Section 5, this issue will be further analyzed by recommending some simplifications
in the tableau. These simplifications are related to the concept of redundancy [1].
Last, we mention the support for parametrized theorems, which is considered in
Section 4.3.

2 Preliminaries

In the followings, we assume the reader to be familiar with the basic concepts of
first-order logic.

Definition 1 (Equivalence). Two formulas A and B are logically equivalent,
denoted by A ≡ B, iff in any model A is true iff B is true.

Definition 2 (Literal). A formula L is a literal iff L = A or L = ¬A where A is
atomic.

Definition 3 (Positive/negative literal). Let L be a literal.

(1) If L is atomic and L /∈ {�,⊥} then L is positive.

(2) If L = ¬A where A is atomic, L is positive iff A is negative.

We have given an inductive definition of positive/negative literals. The definition
is incomplete since we have not defined if � and ⊥ are positive or negative. This
must also be defined for a complete definition, and can be defined on demand, as
it will be in Section 3 in connection with positive and negative hyper tableaux.

Definition 4 (Complement). A literal L is a complement of a literal L if

• L = � if L = ⊥, or

• L = ⊥ if L = �, or

• L = ¬A if L = A, or

• L = A if L = ¬A,

where A is atomic.

Definition 5 (Clause). A clause is a set C = {L1, . . . , Ln} where n ≥ 1 and
Li (1 ≤ i ≤ n) is a literal. C can be regarded as a disjunction of its literals, namely
L1 ∨ · · · ∨ Ln. Let {⊥} be the empty clause, and be denoted by �.

In the literature, a tableau is usually defined as a labelled tree. However, a tableau
is commonly regarded, and used, as a set of its branches, which are defined as sets
of their formulas.

HyperS Tableaux – Heuristic Hyper Tableaux 327

Definition 6 (Branch). A branch is a multiset B = {L1, . . . , Ln} where n ≥ 1
and Li (1 ≤ i ≤ n) is a literal. B can be regarded as a conjunction of its literals,
namely L1 ∧ · · · ∧ Ln.

Definition 7 (Tableau). A tableau is a multiset T = {B1, . . . ,Bn} where n ≥ 1
and Bi (1 ≤ i ≤ n) is a branch.

The instantiation of a clause C in a tableau means that for some substitution σ
(the literals of) Cσ is being attached to a branch of the tableau. We require to
classify each parameter of a clause either as a parametric variable or as a universal
variable (see Section 4.3).

Definition 8 (Brand new clause instance). A new instance of a clause C is
Cσ where σ is a renaming substitution such that Dom(σ) contains all universal
variables in C, as defined in [3]. By a brand new instance of C, we mean a new
instance Cσ where Range(σ) consists of only “brand new” variables, i.e., variables
that have not occured in the given derivation yet (neither in the clause set being
refuted nor in the tableau being constructed). We say that a variable is rigid iff it
was introduced by a brand new clause instance.

Definition 9 (Renamed variants). Two formula F1 and F2 are renamed variants
iff there is a renaming substitution σ such that F1 = F2σ.

The concepts “unifiable” and “unifier” are well-known. We define the following
concept:

Definition 10 (Complementary unifier). Two literals L1 and L2 are comple-
mentary unifiable iff there is a substitution σ such that L1σ is a complement of
L2σ, and σ is called a complementary unifier of L1 and L2.

3 HyperS Tableaux

Let C be a clause set. We assume that no C ∈ C contains any parametric variable.1

The effects and advantage of eliminating this restriction will be explored in Section
4.3.

Definition 11 (Extension). An extension is a tuple (E, θ) where E is a clause
and θ is a substitution.

Definition 12 (Extension application). Applying extension (E, θ) to a branch
B in a tableau T means executing the following steps:

(1) T := T \B ∪
{
B ∪ {L} | L ∈ E

}
;

(2) T := T θ.

1By this we refer to closed clauses, as it is known in the literature.

328 Gergely Kovásznai

The following definitions (Definition 13, Definition 14, and Definition 15) and theo-
rem (Theorem 19) concern positive hyperS tableaux. For negative hyperS tableaux,
we can easily formulate the dual forms of these definitions and theorem only by
switching all the adjectives “positive” to “negative”, and vice versa. This is why
we postponed the completion of Definition 3 to this section, which is done by the
following definition.

Definition 13. Let � be negative, and ⊥ be positive.

The following two definitions are for computing the possible extensions for a branch
and a clause set.

Definition 14. Let C be a clause and let {L�
1 , . . . , L�

n } (n ≥ 0) be the set of all
negative literals in C. Furthermore, let {C1, . . . , Cn} be a clause multiset and let
{L⊕

1 , . . . , L⊕
n } be a multiset of positive literals such that L⊕

i ∈ Ci (1 ≤ i ≤ n). The
extension E for C, {C1, . . . , Cn}, and {L⊕

1 , . . . , L⊕
n } is computed by executing the

following steps:

(1) E := � and θ := ε;

(2) for all i (1 ≤ i ≤ n) :

(a) let σ be the most general complementary unifier of L�
i θ and L⊕

i θ;

(b) if σ does not exist then E does not exist (halt);

(c) E := E ∪ C′
i where C′

i = Ci\{L⊕
i };

(d) θ := θσ;

(3) E := E ∪ C′ where C′ = C\{L�
1 , . . . , L�

n };

(4) E exists and is (E, θ).

Definition 15 (Extension for branch and clause set). An extension for a
branch B and the clause set C is an extension for

(1) any C where C ∈ B′ ∪ C and B′ is the set of the negative literals in B,

(2) any multiset {C1, . . . , Cn} where n is the number of negative literals in C
and Ci ∈ B ∪ C (1 ≤ i ≤ n), and

(3) any multiset {L1, . . . , Ln} where Li is a positive literal in Ci (1 ≤ i ≤ n),

where for any clause D

D =
{

a brand new instance of D , if D ∈ C
D , otherwise

}

HyperS Tableaux – Heuristic Hyper Tableaux 329

Definition 16 (HyperS tableaux). For a clause set C, a hyperS tableau is con-
structed as follows:

(1) (Initialization rule) A tableau consisting of a single branch {�} is a hyperS
tableau for C.

(2) (Extension rule) Let T be a hyperS tableau for C, let the branch B ∈ T , and
let E be an extension for B and C. The tableau constructed by the application
of E to B in T is a hyperS tableau for C.

For proving hyperS tableaux to be sound and complete, we will use the soundness
and completeness of clause tableaux introduced in [3].

Definition 17 (Clause tableaux). For the clause set C, a clause tableau is con-
structed with the following rules:

(1) (Initialization rule) A tableau consisting of a single branch {�} is a clause
tableau for C.

(2) (Extension rule) Let T be a clause tableau for C, let B ∈ T , and let C ∈ C.
Let {L1, . . . , Ln} be a brand new instance of C. T \B ∪

{
B∪{Li} | 1 ≤ i ≤ n

}
is a clause tableau for C.

(3) (Closure rule) Let T be a clause tableau for C, let B ∈ T , and let the literals
L1, L2 ∈ B. If L1 and L2 are complementarily unifiable with the most general
unifier σ, then T σ is a clause tableau for C.

Lemma 18. Clause tableaux are sound and complete as proven in [3].

Theorem 19 (Soundness and completeness). HyperS tableaux are sound and
complete.

Proof. It is sufficient to prove that the application of each rule of clause tableaux can
be simulated by the application of the rules of hyperS tableaux, and vice versa. In
the proof, we do not distinguish two tableaux if they contain some closed branches
additionally as compared to each other. Such a distinction is superfluous in terms
of derivation.

The initialization rule of the two calculi is the same. For the rest:
(I) For clause tableaux (notation is from Definition 17):

(1) (Extension rule) Let C′ denote C∪{⊥}. Notice that � ∈ B and C′ ≡ C.
Consider the extension for {�}, {C′}, and {⊥}, namely (C′, ε) where C′

is a brand new instance of C′.

(2) (Closure rule) Assume that L1 is negative. Consider the extension for
{L1},

{
{L2}

}
, and {L2}, which is actually (�, σ).

(II) For hyperS tableaux, the proof for the extension rule follows (notation is from
Definition 14 and Definition 16).

Apply the extension rule of clause tableaux for T and for

330 Gergely Kovásznai

(1) B and C1;

(2) B ∪ {L⊕
1 } and C2;

(3) B ∪ {L⊕
1 , L⊕

2 } and C3;
...

(n) B ∪ {L⊕
1 , . . . , L⊕

n−1} and Cn;

(n+1) B ∪ {L⊕
1 , . . . , L⊕

n } and C

one after the other.

Then for each i (1 ≤ i ≤ n), consider the branch containing L⊕
i and L�

i ,
to which the closure rule is applied, i.e., σi is applied to the tableau where
σi is the most general complementary unifier of L⊕

i and L�
i . Notice that

θ = σ1σ2 . . . σn.

As usual, a branch B is said to be closed if B contains complementary literals.
In hyperS tableaux, it would be sufficient to define the closeness of B as follows:
B contains both � and ⊥. What is more, since a branch always contains �, it
would be completely sufficient to monitor whether ⊥ has occurred in B. This latter
method is very similar to that is used in resolution, namely monitoring whether �
has occurred.

Compared to hyper tableaux, hyperS tableaux do not require “purifying sub-
stitutions”, which moreover were generated by guessing in [1]. This is handled by
using rigid variables, similarly to [4]. However, we have made improvements to
the method written there in order to avoid other unwanted solutions like “clause
copies” and “factoring”. Three evident improvements, as compared to [4], have
been made as follows.

In Definition 14, {C1, . . . , Cn} is a multiset, i.e., a clause may occur more than
once. This means that a clause can be instantiated more than once during a
single extension application. This is why “clause copies” are not needed in hyperS
tableaux. For example, consider the clause set consisting of E1 = {P (x), Q(x)}
and E2 = {¬P (a()),¬P (f(x)), R(y)}. E1 should be instantiated twice in order
to instantiate E2 (see [4] for details). In hyperS tableaux, an extension can be
constructed for E2, {E1, E1}, and {P (x), P (x)} (we are passing over brand new
instances this time).

In Definition 15, (1), C can be chosen from B′∪C, i.e., not only from the clause
set, but also from the branch. This results in the elimination of “factoring.” For ex-
ample, consider the clause set consisting of E1 = {P (x), P (y)} and E2 = {¬P (z)}.
The tableau, after the instantiation of E1, should be factored [5], otherwise an
infinite tableau will be constructed. In hyperS tableaux, this is avoided by ap-
plying both the extension for E2, {E1}, and {P (x)}, and the extension for E2,
{P (y)}, and {P (y)} (we are passing over brand new instances again). We want to
emphasize that although we have eliminated factoring, it could be performed as a

HyperS Tableaux – Heuristic Hyper Tableaux 331

simplification (i.e., tableau reduction) on demand. In Section 5, we will propose
other simplifications in connection with redundancy.

In Definition 15, (2), Ci (1 ≤ i ≤ n) can be from B ∪ C, i.e., not only from
the branch, but also from the clause set. Such a permissiveness was motivated by
the observation that [1] and [4] took into consideration only the “past” (i.e., what
literals have been attached to the branch), but the “future” (i.e., what literals may
be attached to the branch further on) not at all. By such a lookahead, we intend
to reduce the size of the constructed tableau (and so the execution time). This is
one of the reasons why we use heuristics in ranking extensions for the branch and
the clause set (see Section 4.2).

4 Theorem Prover Sofia

The theorem prover Sofia applies hyperS tableaux for theorem proving. Besides
the use of the calculus, Sofia provides automated clause set generation (Section
4.1) and the heuristic management of hyperS tableaux (Section 4.2), and can give
compound answers by using parametric variables (Section 4.3).

4.1 Clause Set Generation by Justificational Tableaux

In this section, we propose an easy-to-use and effective method for generating a
clause set for a formula, i.e., a clause set which is satisfiable iff the given formula
is satisfiable. The method is based on the so-called justificational tableaux. Justi-
ficational tableaux are similar to refutational tableaux except for the nature of the
questions that can be answered. While refutational tableaux are for investigating
whether a formula is unsatisfiable, justificational tableaux can answer whether a
formula is valid. This difference manifests in the form of the tableau expansion
rules. Justificational tableau expansion rules are the ones in Figure 1, where we
use α, β, γ, and δ formulas as introduced in the unifying notation by [8].

α
α1 | α2

β
β1

β2

γ
γ(x)

x is a new parameter

δ
δ(f(x1, . . . , xn))

f is a new function symbol

and FV (δ) = {x1, . . . , xn}

Figure 1: Justificational Tableau Expansion Rules

Every branch of a justificational tableau can be regarded as a disjunction of for-
mulas, and a justificational tableau is a conjunction of its branches. The closeness
of a branch means that the branch, as a disjunction, is valid, and the closeness of
a tableau corresponds to the fact that the tableau, as a conjunction, is valid.

Justificational tableau expansion rules for α, β, and γ formulas are based on
the same facts as refutational tableau expansion rules. Namely: in any model

332 Gergely Kovásznai

(1) α is true iff both α1 and α2 are true;

(2) β is true iff any of β1 and β2 is true;

(3) γ is true iff γ(x) is true.

The justification tableau expansion rule for δ formulas is based on the following
fact: for a formula F , F is satisfiable iff FSK is satisfiable where FSK is a Skolem
formula for F [9]. Our treatment of δ formulas results in performing skolemization
“on the fly”, i.e., there is no need to skolemize F before constructing a tableau for
F .

We consider a tableau finished iff each of its formulas either is a literal or has
already been used for applying a tableau expansion rule. Since we want to use
justificational tableaux only for clause set generation, we do not allow reusing any
formulas2. Consequently, a finished justificational tableau for a formula can be
constructed in finitely many steps.

Note that if only literals are considered then a finished justificational tableau
for a formula F is a clause set for F . Hence, it is reasonable to let Sofia operate
with two tableaux: one finished justificational tableau T for F and one hyperS
tableau for (the set of the branches of) T . In Figure 2, a clause set C is generated
for the formula set of problem No. 31 in [6], as an example.

4.2 Heuristics

In this section, we argue what heuristic is worth to use for ranking the extensions
for a branch and a clause set. Let E = (E, θ) be an extension for a branch B of a
tableau T and for a clause set C. The heuristic is reckoned as a total order over the
set of extensions. When defining the heuristic, we primarily consider the number
of new branches in T after applying E to B, which is exactly |E|. We secondarily
consider the number of rigid variables substituted by the application of E .

Definition 20 (Heuristic). For two extensions (E1, θ1) and (E2, θ2), (E1, θ1) ≤
(E2, θ2) iff

(1) |E1| < |E2| or

(2) |E1| = |E2| and |R1| ≤ |R2|
where Ri = {x|x ∈ Dom(θi) ∩ FV (T)}, i ∈ {1, 2}.

Sofia applies the minimal extension to B in T . Of course, the total order over the
set of extensions can be defined differently.

In Figure 3, a derivation for the clause set C = {C1, . . . , C6} in Figure 2 can
be seen. The derivation consists of three hyperS tableaux shown on the left in
Figure 3. On the right, the extensions generated for the single open branch of the
given tableau and C are enumerated, ordered by the proposed heuristic. To the
(open branch of the) first tableau E1 is applied. To the (open branch of the) second
tableau E3 is applied, which only appends ⊥ to the open branch, thus a closed
tableau gets constructed. Hence, C is unsatisfiable.

2As it is known, reusing γ formulas must be allowed for a complete proof procedure [2].

HyperS Tableaux – Heuristic Hyper Tableaux 333

Premises: P1 = ¬∃x(F (x) ∧ (G(x) ∨ H(x)))
P2 = ∃u(I(u) ∧ F (u))
P3 = ∀y(¬H(y) ⇒ J(y))

Conclusion: C = ∃z(I(z) ∧ J(z))

For P1: For P2:

¬∃x(F (x) ∧ (G(x) ∨ H(x)))

¬(F (x) ∧ (G(x) ∨ H(x)))

¬F (x)

¬(G(x) ∨ H(x))

�� ��
¬G(x) ¬H(x)

∃u(I(u) ∧ F (u))

I(f()) ∧ F (f())

�� ��
I(f()) F (f())

For P3: For ¬C:

∀y(¬H(y) ⇒ J(y))

¬H(y) ⇒ J(y)

H(y)

J(y)

¬∃z(I(z) ∧ J(z))

¬(I(z) ∧ J(z))

¬I(z)

¬J(z)

C =

8>>>>><
>>>>>:

{¬F (x),¬G(x)},
{¬F (x),¬H(x)},

{I(f())},
{F (f())},

{H(y), J(y)},
{¬I(z),¬J(z)},

9>>>>>=
>>>>>;

Figure 2: Generating a clause set.

4.3 Parametrized Theorems

As mentioned in Section 3, we remove the restriction on the closeness of clauses
in a clause set C being refuted. Thus we let any clause in C contain parametric
variables. For a user who wants the theorem prover to answer on the theoremhood
of a formula F , the facility of permitting parametric variables in F provides exciting
opportunities. The prover can give not only a yes/no answer but can tell the
substitution θ to the parametric variables which makes Fθ a theorem. Notice that
F being a theorem is a special case of Fθ being a theorem, when θ = ε.

As it is well-known, SLD-resolution (and hence, Prolog) allows the use of para-
metric variables. Actually, Prolog does not distinguish universal and parametric
variables. The effect of this fact is the need of backtracking. The hyper tableaux
calculus (and hence, the hyperS tableaux calculus) is a straightforward method (see
[1]) since it prohibits the use of parametric variables. The explanation for this is
that a substitution to (a rigid variable substituted to) a universal variable does

334 Gergely Kovásznai

First iteration:

� E1 for C2, {C4, C5}, {F (f()), H(y)} :
`{J(y),⊥}, {x/f(), y/f()}´

E2 for C6, {C3, C5}, {I(f()), J(y)} :
`{H(y),⊥}, {z/f(), y/f()}´

Second iteration:

�
� �

⊥ J(f())

E3 for C6, {C3, {J(f())}}, {I(f()), J(f())} :
`�, {z/f()}´

E1 for C2, {C4, C5}, {F (f()), H(y)} :
`{J(y),⊥}, {x/f(), y/f()}´

E2 for C6, {C3, C5}, {I(f()), J(y)} :
`{H(y),⊥}, {z/f(), y/f()}´

Third iteration:

�
� �

⊥ J(f())

⊥

Figure 3: HyperS tableaux derivation.

not exclude the other substitutions to (a rigid variable substituted to) the same
universal variable to be applied later, since new instances of the clauses in C can
be attached to the tableau several times. Contrarily, a substitution to a parametric
variable is final.

On the basis of the preceding discussion, the use of parametric variables in
hyperS tableaux requires “rollback points” to be declared in a derivation whenever
a parametric variable gets substituted, and to try to construct another derivation
starting from the latter “rollback point” whenever a derivation ends in an open
tableau. Thus, Sofia becomes a compromised solution: it substitutes universal
variables in a straightforward way and it supports the use of parametric variables
by backtracking.

5 Tableau Simplifications Based on Redundancy

In this section, we propose simplifications (or reductions) of the tableau being
constructed, based on redundancy. [1] introduced the redundancy of a clause in a
branch. We define the concept of redundancy by the following definition:

Definition 21 (Redundancy). A formula A is redundant in a formula B w.r.t.
a logical connective ◦ iff A ◦ B ≡ B.

In Section 5.1, we define the redundancy of an extension in a branch, based on [1]
and [4], and then a simplification called the Redundancy Check in order to avoid
repetitions along a branch.

In Section 5.2, we propose two other simplifications based on the redundancy
of clauses.

HyperS Tableaux – Heuristic Hyper Tableaux 335

5.1 Redundancy Check

Definition 22 (Redundancy in conjunction). A literal L is redundant in a
conjunction of the literals L1, . . . , Ln iff for some i (1 ≤ i ≤ n) there is a substitution
σ such that L = Liσ.

Theorem 23. If a literal L is redundant in a conjunction of the literals
L1, . . . , Ln then L is redundant in L1 ∧ · · · ∧ Ln w.r.t. ∧.

Proof. By Definition 22, L is redundant in a conjunction of the literals L1, . . . , Ln

iff for some i (1 ≤ i ≤ n) there is a substitution σ such that L = Liσ.
By Definition 21, L is redundant in L1 ∧ · · · ∧ Ln w.r.t. ∧ iff L1 ∧ · · · ∧ Ln and

L1 ∧ · · · ∧Ln ∧L are logically equivalent, i.e., in any model L1 ∧ · · · ∧Ln is true iff
L1 ∧ · · · ∧ Ln ∧ L is true. This latter equivalence must be proven.

Right-to-left is evident. For the reverse: in a model, L1 ∧ · · · ∧Ln is true iff Lj

is true for all j (1 ≤ j ≤ n). Hence, Li is true. Since L = Liσ, L is true. Hence,
L1 ∧ · · · ∧ Ln ∧ L is true.

Definition 24 (Redundancy of clause in branch). A clause {L1, . . . , Ln} is
redundant in a branch B iff for some i (1 ≤ i ≤ n) Li is redundant in B as a
conjunction.

Definition 25 (Redundancy of extension). An extension (E, θ) is redundant
in a branch B iff Eθ is redundant in Bθ.

By using the redundancy of an extension, a simplification called the Redundancy
Check can be introduced: do not apply an extension E to a branch B if E is
redundant in B.

5.2 Clause Simplifications

Definition 26 (Redundancy in disjunction). A literal L is redundant in a
disjunction of the literals L1, . . . , Ln iff for some i (1 ≤ i ≤ n) there is a substitution
σ such that Lσ = Li.

Theorem 27. If a literal L is redundant in a disjunction of the literals
L1, . . . , Ln then L is redundant in L1 ∨ · · · ∨ Ln w.r.t. ∨.

Proof. By Definition 26, L is redundant in a disjunction of the literals L1, . . . , Ln

iff for some i (1 ≤ i ≤ n) there is a substitution σ such that Lσ = Li.
By Definition 21, L is redundant in L1 ∨ · · · ∨ Ln w.r.t. ∨ iff L1 ∨ · · · ∨ Ln and

L1 ∨ · · · ∨Ln ∨L are logically equivalent, i.e., in any model L1 ∨ · · · ∨Ln is false iff
L1 ∨ · · · ∨ Ln ∨ L is false. This latter equivalence must be proven.

Right-to-left is evident. For the reverse: in a model, L1 ∨ · · · ∨Ln is false iff Lj

is false for all j (1 ≤ j ≤ n). Hence, Li is false. Since Li = Lσ, L is false. Hence,
L1 ∨ · · · ∨ Ln ∨ L is false.

Definition 28 (Redundant clause). A clause C is redundant iff L is redundant
in C\L as a disjunction for some L ∈ C.

336 Gergely Kovásznai

The next definition and theorem are for simplifying a redundant clause to a non-
redundant one.

Definition 29 (Non-redundant variant). A clause C′ is a non-redundant vari-
ant of a clause C iff C′ ⊆ C, C′ ≡ C, and C′ is not redundant.

Theorem 30.
(I) Of any clause, a non-redundant variant exists.

(II) If there are more than one such variants then they are renamed variants of
each other.

Proof. Let C be a clause {L1, . . . , Ln}. Let us define the following function on
clauses:

r(D) =
∣∣{L | L ∈ D and L is redundant in D\L as a disjunction}

∣∣.

(I) The proof is inductive on r(C).

(1) If r(C) = 0 then C itself is a non-redundant variant of C since C ⊆ C,
C ≡ C, and C is not redundant.

(2) Assume that r(C) ≥ 1, and there is a non-redundant variant of any
clause D if r(D) < r(C). Prove that there is a non-redundant variant of
C.
By Definition 28, there is an L ∈ C such that L is redundant in C′ = C\L
as a disjunction. Since r(C′) < r(C), there is a non-redundant variant
C′′ of C′, i.e., C′′ ⊆ C′, C′′ ≡ C′, and C′′ is not redundant. By Theorem
27 and Definition 21, C′ ≡ C. Since C′′ ⊆ C′ ⊆ C, C′′ ≡ C′ ≡ C, and
C′′ is not redundant, C′′ is a non-redundant variant of C.

(II) In the proof for (I), an inductive method for computing non-redundant vari-
ants is used, where literals are eliminated in C one by one until a non-
redundant clause gets computed. Let us prove that it does not matter in
what order they are eliminated, i.e., the possible resulting clauses are re-
named variants.

It is sufficient to prove that the elimination of two literals results either in
one single clause or in renamed variants. That is, the case when r(C) ≥ 2 is
focused. Without loss of generality, it can be assumed that L1 is redundant
in the disjunction of {L2, . . . , Ln}, and L2 is redundant in the disjunction of
{L1, L3, . . . , Ln}. By Definition 26, L1σ = Li for some i ∈ {2, . . . , n} and
some σ, and L2θ = Lj for some j ∈ {1, 3, . . . , n} and some θ. There are three
distinct cases:

(1) i, j /∈ {1, 2}: both L1 and L2 are eliminated, thus the resulting clause is
{L3, . . . , Ln}.

HyperS Tableaux – Heuristic Hyper Tableaux 337

(2) i /∈ {1, 2} and j = 1: L2θ = L1, hence L2θσ = Li, which leads to the
previous case.

(3) i = 2 and j = 1: L1σ = L2 and L2θ = L1, hence L1σθ = L1. This holds
iff σθ = ε, which holds iff σ and θ are renaming substitutions. Thus
the possible resulting clauses {L2, L3, . . . , Ln} and {L1, L3, . . . , Ln} are
renamed variants.

Based on Theorem 30, we propose two simplifications:

(1) As an initializing step, simplify all the clauses in the clause set C you want to
refute, i.e., try to refute the clause set that consists of non-redundant variants,
exactly one of each clause in C.

(2) As a simplification of an extension (E, θ), replace E with one of its non-
redundant variants.

6 Conclusion

In this paper, we proposed a new calculus called hyperS tableaux, which is a
refinement of the hyper tableaux calculus. HyperS tableaux eliminate the non-
automatable and unwanted solutions in hyper tableaux, automate the clause set
generation, and perform a kind of heuristic lookahead. We proved the soundness
and completeness of this calculus. We proposed several facilities based on redun-
dancy for tableau reduction. Furthermore, we discussed the requirements for using
parametric variables, which are necessary for a theorem prover to be able to give
compound answers.

References

[1] P. Baumgartner, U. Furbach, I. Niemelä, “Hyper Tableaux”. Proc. JELIA ’96,
Vol. 1226 of LNAI, Springer, 1996.

[2] M. Fitting, “First-Order Logic and Automated Theorem Proving”. Springer-
Verlag, 1996.

[3] R. Hähnle, “Tableaux and Related Methods”, Handbook of Automated Reason-
ing, by J. A. Robinson and A. Voronkov, Vol. 1, Chapter 3, p. 100-178, Elsevier
and MIT Press, 2001.

[4] M. Kühn, “Rigid Hypertableaux”, Proc. KI ’97: Advances in Artificial Intelli-
gence, Vol. 1303 of LNAI, Springer, 1997.

[5] R. Letz, K. Mayr, C. Goller, “Controlled Intergration of the Cut Rule into
Connection Tableau Calculi”, Journal of Automated Reasoning, Vol. 13, p. 297-
328, 1994.

338 Gergely Kovásznai

[6] F. J. Pelletier, “Seventy-Five Problems for Testing Automatic Theorem
Provers”, Journal of Automated Reasoning. Vol. 2, p. 191-216, 1986.

[7] J. A. Rosinson, “Automated Deduction with Hyper-Resolution”, International
Journal of Computer Mathematics. Vol. 1, p. 227-234, 1965.

[8] R. M. Smullyan, “First-Order Logic”. Springer-Verlag, 1968.

[9] K. Pásztorné Varga, M. Várterész, “A matematikai logika alkalmazásszemléletû
tárgyalása”. Panem, 2003.

