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Abstract

In the therapy of the hearing impaired one of the key problems is how to
deal with the lack of proper auditive feedback which impedes the development
of intelligible speech. The effectiveness of the therapy relies heavily on accu-
rate phoneme recognition [1, 4, 17]. Because of the environmental difficulties,
simple recognition algorithms may have a weak classification performance, so
various techniques such as normalization and classifier combination are ap-
plied to increase the recognition accuracy. This paper examines Vocal Tract
Length Normalization techniques [5, 13] focusing mainly on the real-time pa-
rameter estimation [12], and the majority of classifier combination schemes,
including the traditional (Prod, Sum, Min, Max) [7], basic linear (simple,
weighted, AHP-based [6] averaging), and some special linear (Bagging, Boost-
ing) combinations. Based on the results we conclude that hybrid combinations
can improve the effectiveness of the real-time normalization methods.

1 Introduction

In the therapy of the hearing impaired one of the central problems is how to deal
with the lack of proper auditive feedback that hinders the development of intelligi-
ble speech. Our Phonological Awareness Teaching System, the ”Speech- Master”
package, seeks to apply speech recognition technology to speech therapy techniques.
It provides a visual phonetic feedback for replacing the insufficient auditive feedback
of the hearing impaired. We designed and implemented computer-aided training
software that uses an effective phoneme recognizer and provides a realtime visual
feedback in the form of flickering letters on calling pictures.

Since the system should work reliably both for children and teachers of different
ages, the recognizer has to be trained with the voices of users of both genders and
of practically any age. The task is also special because it has to recognize isolated
phones, so it cannot rely on language models. Consequently, there is a heavy burden
on the acoustic classifier, and we need to apply any helpful trick that might improve
the overall performance.

∗Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and Univer-
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Nasal Cavity

Lips

Tongue Body Vertebral
Column

Larynx

Figure 1: Vocal Tract Length

One such technique is speaker normalization, or more specifically, vocal tract
length normalization (VTLN), which proves very useful when the targeted users
vary greatly in age and gender. Applying off-line vocal tract length normalization
algorithms [3, 5, 13, 16, 18, 19, 21] one can build recognizers that work robustly with
voice samples from males, females and children. However, we were also faced with
the requirement that the normalization parameters had to be estimated on-line. To
solve this problem we used nonlinear regression methods of machine learning [12].
Based on the experiments on-line approximations closely approach the recognition
results of the off-line methods.

Another technique is classifier combination [11, 20], which aggregates the re-
sults of many classifiers, overcoming the possible local weakness of the individual
inducers, thus producing a more robust classification performance. Classifier com-
binations offer classifier methods for improving their recognition accuracy.

Our aim is to examine how the combination techniques affect the performance of
the on-line normalization techniques, and we will show that with a careful selection
of combiners it is possible to surpass the accuracy of the off-line methods.

This paper is organized as follows. The following section gives a brief description
of the Vocal Tract Length Normalization, and then examines the various parameter
estimation techniques. In Section 3 we offer an overview of classifier combination
techniques, focusing on the traditional and linear combination schemes. The exper-
imental section compares the performance of the various VTLN and combination
methods. Lastly, we give some brief conclusions and ideas for future research.

2 Vocal Tract Length Normalization

One of the major physiological sources of inter-speaker variation is the vocal tract
length of the speakers (Fig. 1). In [3] the average vocal tract length for men was
reported to be 17 cm, for women it was 15 cm, and for children it was 14 cm.
The formant frequency positions are inversely proportional to vocal tract length
and this causes a shift of the formant center frequencies. Consequently, VTLN is
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Figure 2: Vocal Tract Length dependent Frequency shifting. The graph drawn with
solid and dashed line shows the spectrum of a vowel uttered by a man and a girl,
respectively.

usually performed by warping the frequency scale.
Modelling the vocal tract as a uniform tube of length L, the format frequencies

are proportional to 1/L. Thus the simplest approaches use a linear warp. In reality,
however, the vocal tract is more complex than a uniform tube. That is why many
more sophisticated warping functions have been proposed in the literature [5, 18].
Some of the commonly applied warping functions are shown in Figure 3.

Given a warping function, the normalization can be implemented either by
re-sampling and interpolating the spectrum or modifying the width and center
frequencies of the mel (Bark) filter bank.

2.1 VTLN parameter estimation

The linear discriminant (LD) criterion is defined using the covariance matrices of
a given sample set over a speech database. Each sample is placed in a phonetic
class and the samples that belong to a given speaker are extracted using the same
warping parameter. The task is then to optimize these parameters for each speaker
according to the LD criterion:

LD =
|B|
|W | , (1)

where B is the between-class and W is the within-class covariance matrix. The
value of the LD criterion is small if the different classes are spaced out and each of
them has a small scatter around the class centers. While optimizing the warping
parameters of all the speakers at the same time is impractical, an iterative process
(Algorithm 1) can be applied.

This optimization method, however, works off-line. So a natural question then
arises. Is it possible to efficiently estimate the optimal parameters obtained by
off-line algorithms using machine learning regression methods that work on-line?
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Figure 3: Examples of VTL warping functions. The figures show the mapping
between the original (horizontal axis) and the warped (vertical axis) frequencies.

Algorithm 1 LD-VTLN parameter estimation
Choose an initial warping factor for each speaker and warp the samples
while the average warping factor variation is above the set threshold do

for all speakers do
calculate the LD criterion for each α value in a small neighborhood of the
current warping parameter
select the best warping parameter

end for
Update the sample set using the optimal warping factors that are obtained

end while



Classifier Combination Schemes in Speech Impediment Therapy Systems 389

Extractor 1
Feature

Classifier N

Classifier 1

Classifier 2

Classifier 3
Feature

Feature

Feature

Feature

Pattern Class
LabelData

Combiner

Extractor N

Extractor 3

Feature

Extractor 2

Figure 4: General parallel combination scheme

2.2 Real-time VTLN

LD-VTLN parameter estimation requires all the utterances in advance. Real-time
recognition systems, however, require an instantaneous response. To have the ad-
vantages of the speaker normalization in on-line systems, machine learning methods
can be applied to the estimation of the correct parameters. Out of the many possi-
ble regression techniques we chose to experiment with neural nets. Their task was
to estimate the optimal LD-VTLN warping parameter for each speaker based on the
actual spectral frame without warping. One of our previous papers [12] compared
the performance of these kinds of on-line method with those off-line LD-VTLN
parameter estimation techniques.

3 Classifier Combinations

Classifier combination (see Fig. 4) is an effective way of improving classification
performance. It aggregates the results of many classifiers, overcoming the possible
local weakness of the individual inducers, producing a more robust recognition.
From a combination viewpoint, classifiers can be categorized into the following
types:

• abstract: the classifier yields only the most probable class label

• ranking: it generates a list of class labels in order of their probability

• confidence: the probabilities for each class are known

In the following we will only deal with the confidence type.

3.1 Selecting Classifiers

To work optimally, a combination requires nearly independent classifiers. In prac-
tice there are special techniques for generating the appropriate classifier sets:
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• Training using different parameter sets

• Training on different data-sets

– Database Rotation: the dataset is divided into n parts and reassembled
using m < n parts (n-fold cross-validation, m = n − 1)

– Bootstrapping: the elements are randomly drawn with replacement from
the same data-set (Bagging),

– Weighted bootstrapping: like Bootstrapping, but the elements are drawn
according to a given distribution (Boosting),

• Inserting random noise.

3.2 Combinations

In the following let x mean a pattern, and (ω1, . . . , ωn) the set of possible class
labels. pj

i will represent the output of i-th classifier for the j-th class. Furthermore,
let L(x) denote the correct class labelling for each training sample x ∈ S, and Ci

refer to a function that maps the pattern x to the class label assigned by the i-th
classifier:

Ci(x) = ωk, k = argmax
j

pj
i (x).

The combined class probabilities p̂j are calculated from the corresponding values
of classifiers pj

i according to combination rules described later. The class label Ĉ(x)
selected by the combiner is the one with the largest probability:

Ĉ(x) = ωk, k = argmax
j

p̂j(x).

There are numerous combination rules mentioned in the literature. The traditional
combination methods are listed here:

Product Rule:

p̂j(x) =
N∏

i=0

pj
i (x) (2)

Sum Rule:

p̂j(x) =
N∑

i=0

pj
i (x) (3)

Max Rule:
p̂j(x) =

N
max
i=0

pj
i (x) (4)

Min Rule:

p̂j(x) =
N

min
i=0

pj
i (x) (5)
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Voting Rule:

p̂j(x) =
N∑

i=0

δCi(x),ωj
(6)

Here δij is the Kronecker symbol:

δij =
{

1 if i = j
0 otherwise

3.3 Linear combiners

In the case of linear combinations, the elements of the combined class probability
vector (p̂j) are equal to the linear combination of the output classifiers pj

i , i.e. :

p̂j(x) =
N∑

i=1

wip
j
i (x) (7)

Various methods can be applied to determinate the weighting factors wi, e.g.:

• Simple Averaging

• Weighted Averaging

• AHP-based Linear Combination

• Minimal Squares Combination

• Bagging

• Boosting

In the following we will provide brief descriptions of these methods.

3.4 Averaging Techniques

In Simple Averaging the calculation of the weights is very simple. The elements of
the vector w can be the same constant:

wi =
1
N

. (8)

This method is thus equivalent to the traditional Sum Rule. As a more general
solution one might apply weighted averaging [9, 10], where the weights of the clas-
sifiers are chosen to be proportional to their performance measured on a selected
data set S′:

wi =
1
Ei

, (9)

where
Ei =

∑
x∈S′

Ci(x) �= L(x). (10)
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3.5 AHP-Based Linear Combination

The Analytic Hierarchy Process (AHP) [15] is an intuitive and efficient method
for Multi-Criteria Decision-Making (MCDM). AHP-based combinations [6] apply a
pairwise comparison matrix A to calculate the weighting factors. The aij element of
the comparison matrix A represents the relative ”importance” of the i-th classifier
against the j-th one. This relative ”importance” refers to the relative performance
of the classifiers measured on a randomly generated data-set, while the performance
is calculated as the reciprocal of the number of wrongly qualified patterns.

aij =

∑
x∈Sij

Cj(x) �= L(x)∑
x∈Sij

Ci(x) �= L(x)
(11)

Let us now focus on the computation of the weights w for a selected crite-
rion. The elements of a given pairwise comparison matrix approximate the relative
importance of the choices, hence

aij ≈ wi

wj
, (12)

where the elements of the unknown vector w are the importance weighting factors.
A matrix M is said to be consistent if its components satisfy the following set of
equalities:

mij =
1

mji
, (13)

and
mij = mikmkj ∀ i, j, k. (14)

If A is not consistent, it is not possible to find a vector w that satisfies the equation

aij =
wi

wj
. (15)

To compute the weighting factors, one way might be to calculate the eigenvalues
of the comparison matrix A and get the eigenvector corresponding to the largest
eigenvalue. A way of measuring the consistency of the matrix A is by defining the
consistency index (CI) as the negative average of the remaining eigenvalues:

CI =

∑
λ<λmax

λ

n − 1
=

λmax − n

n − 1
(16)

If all the performance errors are measured on the same test data set, i.e. Sij = S
for all possible i and j pairs, the comparison matrix A will be consistent, and the
elements of the eigenvector whose corresponding eigenvalue will be N , that is

wi =
1
Ei

(17)
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are the same as those as generated by weighted averaging. However, this method
allows us to make pairwise comparisons of different inducers applied on different
(e.g. randomly generated) test sets, taking advantage of the stabilizing effect of
AHP. This leads to more a robust classification performance, especially in noisy
environments.

3.6 Least Squares Combination

With the Least Squares Combination method the weights are selected to minimize
the sum of squares between the combined p̂j(x) and the desired target tj(x) class
probabilities: ∑

x∈S

∑
j

[p̂j(x) − tj(x)]2 (18)

The tj(x) target functions can be the same as those for artificial neural networks,
namely:

tj(x) =
{

1 if L(x) = ωj

0 otherwise (19)

3.7 Bagging

The Bagging (Bootstrap aggregating) algorithm [2] makes classifiers generated
by different bootstrap samples (replicates) vote for the class label. A bootstrap
sample is generated by uniformly sampling m instances from the training set with
replacement. T bootstrap samples B1, B2, ..., BT are generated and a classifier
Ci is built from each bootstrap sample Bi. A final classifier Ĉ is built from
C1, C2, ..., CT whose output is the class predicted most often by its sub-classifiers
(majority voting).

Algorithm 2 Bagging algorithm
Require: Training Set S, Inducer I
Ensure: Combined classifier Ĉ

for i = 1 . . . T do
S′ = bootstrap sample from S
Ci = I(S′)

end for
Ĉ(x) = argmax

j

∑
i:Ci(x)=ωj

1

3.8 Boosting

Boosting[8] was introduced by Shapire (1990) as a method for boosting the perfor-
mance of a weak learning algorithm. Here we will focus on AdaBoost, sometimes
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called ”AdaBoost.M1”. Like Bagging, the AdaBoost algorithm generates a set
of classifiers and makes a decision based on their votes. However, in other ways,
the two algorithms substantially differ. The AdaBoost algorithm generates the
classifiers sequentially, while Bagging can generate them in parallel. AdaBoost also
changes the weights of the training instances provided as input for each inducer,
based on classifiers that were previously built. The final decision is made using
a weighted voting scheme for each classifier, and the weights will depend on the
performance of the training set used to build it.

Algorithm 3 Boosting algorithm
Require: Training Set S of size m, Inducer I
Ensure: Combined classifier Ĉ

S′ = S with weights assigned to be 1/m
for i = 1 . . . T do

S′ = bootstrap sample from S
Ci = I(S′)
εi =

∑
x∈S′:Ci(x) �=L(x)

weight of x

if εi > 1/2 then Exit
βi = εi

(1−εi)

for all xj ∈ S′ such that Ci(x) = L(x) do
weight of x = weight of x · βi

end for
normalize the weights of the instances

end for
Ĉ(x) = argmax

j

∑
i:Ci(x)=ωj

log
1
βi

The AdaBoost algorithm requires a weak learning algorithm whose error is
bounded by a constant strictly less than 1/2. In the case of multi-class classification
this condition might be difficult to guarantee. Some implementations of AdaBoost
make use of boosting by re-sampling because the inducers employed are unable to
support weighted instances. Using appropriate classifiers one can try re-weighting,
which might work better in practice.

3.9 Multi-Model classifier

Multi Model Classifiers is a special classifier combination, where the combined class
probabilities are given by:

p̂j(x) =
N∑

i=1

wi(x)pj
i (x) (20)
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Here the weight vector w depends on the current pattern. In addition only one
component of w can be non-zero, so this weighting selects a classifier whose output
appears as the output of the given combination, i.e.:

wi(x) =
{

1 if i = σ(x)
0 otherwise , (21)

where σ is a special function which selects a classifier for the current pattern. To
implement this function any possible machine learning method can be applied.

4 Experiments and Evaluation

Firstly we will describe the corpus, the feature extraction technique, then the clas-
sifiers and regression algorithms used in the tests.

• Corpus: For training and testing purposes we recorded samples from 240
speakers, namely 60 women, 60 men, 60 girls and 60 boys. The children were
aged between 6 and 9. The speech signals were recorded and stored at a
sampling rate of 22050 Hz in 16-bit quality. Each speaker uttered all the
Hungarian vowels, one after the other, separated by a short pause. Since we
decided not to discriminate their long and short versions, we only worked
with 9 vowels altogether.

• Feature Sets: The signals were processed in 10 ms frames, the log-energies
of 24 critical-bands being extracted using FFT and triangular weighting [14].
The energy of each frame was normalized separately, which meant that only
the spectral shape was used for classification.

• Classifiers: In all the classification experiments the Artificial Neural Nets
(ANNs) [1] employed here were the well-known three-layer feed-forward MLP
networks trained with the back-propagation learning rule. The number of
hidden neurons was equal to 16.

4.1 Warping parameter estimation

In order to test the performance of the VTLN techniques, we transformed the
original features of the databases using the calculated α warping parameter for each
pattern and then generated a database for each set of output data. To estimate
parameter values the following methods were applied:

• LD-VTLN: The initial value of the warping parameter α was set to 0. For
the optimization the value of α in this interval was quantized – it could take
one of 15 discrete values. The iteration was stopped when the average change
in the warping parameter fell below 10−2.

• RT-VTLN: For the learning of the parameter α of the warping function
a special MLP network was constructed with one output neuron and two
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LD−VTLN
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RT−VTLN

Multi−Model

All
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Boys

Woman

Man

Recognition accuracy

Table 1: Recognition accuracy without combination (in percent)

hidden layers with 32 and 24 neurons, respectively. Training was performed
with respect to mean square error.

4.2 Tests without combination

The experiments were conducted as follows. We employed 5-fold leave-one-out
cross-validation, keeping the ratio of boys, girls, men and women uniform in each
case. So the train and test sets had a ratio of 4 : 1. Separating the original database
named ”All” according to the speakers gender and age, we obtained databases
for ”Men”, ”Women”, ”Boys”, ”Girls”, and ”Children”. On each database we
trained an ANN classifier. For the database ”Multi model”, we divided the train
set into 3 categories: men, women, and children. On each of them we trained an
ANN as classifier, and afterwards we trained an ANN with 16 hidden neurons to
select the category of a given pattern. Because the parameter estimation of LD-
VTLN requires all pattern data in advance, this method cannot be utilized in real
recognition systems, so we treated its performance as a reference value for the other
normalization techniques. To make our regression-based normalization RT-VTLN
more robust, we generated a database ”Concat” that, besides the warped features,
contains the original features as well.

Table 1 shows the classification accuracies measured on the chosen databases. It
was clear that the performance on the separated categories was significantly better
than that of the original, the ’Multi Model’ method being based on this experiment.
Of the VTLN techniques we applied, LD-VTLN performed the best, improving the
accuracy by 36 %. But being off-line technique, it requires all data in advance to
work, so this cannot be applied to real classification problems. The run-time VTLN
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Base
RT−VTLN
Concat

Table 2: Recognition accuracy on the databases with combination (in %). The
various bars in each triplet correspond to the databases, and bar-triplets represent
the applied combiner.

produced a moderate performance compared to the LD-VTLN, but this difference
could be halved using not only the warped but the original features (”Concat”).

4.3 Tests with combination

For the combiners ”Max”, ”Min”, ”Prod”, ”Sum”, ”Voting”, and ”AHP” we ex-
ploited the 8-fold rotation of the database to generate 8 data-sets as training sets
for the classifiers. After training ANN-s on the corresponding sets we utilized a
given set of combiners on them, and measured their performances on a common
test data-set. ”Bagging” and ”Boosting” generated their own sequence of train-
ing data-sets; in these cases we ran the methods on the original database directly,
setting the max iteration number to 50.

The experimental results are shown in Table 2. For each combiner the recog-
nition accuracy was measured on 3 different databases: ”All”, ”RT-VTLN”, and
”Concat”. The effect of the classifier combination depends on the database com-
plexity. With the ”All” database, each of the combiners has a better performance
than that for the original classification. On the warped databases (”RT-VTLN” and
”Concat”) the traditional combinations have less influence. Bagging and Boosting
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gave the best scores due to the large number of classifiers used.
Comparing the above results with the reference figure of LD-VTLN (92.55 %),

we may conclude that with a properly selected combination scheme the regression
based real-time VTLN method (Boosting on Concat, 92.67%) can outperform the
results of the off-line method LD-VTLN.

5 Conclusions

In this paper we examined the effect of Vocal Tract Length Normalization tech-
niques with classifier combination methods on classification performance. Based on
the test results here we can say that the off-line method LD-VTLN can decrease the
recognition error of the base classifier by 36 %. Using our regression-based on-line
estimation of VTLN parameter (RT-VTLN), the difference in performance between
the base classifier and LD-VTLN method can be halved. Classifier combinations
further improve the performance, achieving nearly the same performance as the
off-line normalization version, while applying Bagging and Boosting may produce
classifiers with better performances than those for LD-VTLN. If they do, we can
produce a more robust speech recognition system for speech impediment therapy.
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[6] L. Felföldi and A. Kocsor. Ahp-based classifier combination. In The 4th In-
ternational Workshop on Pattern Recognition in Information Systems (PRIS-
2004), Porto, 2004.
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