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Combining metric and topological navigation of
simulated robots

Richéard Szabo*

Abstract

Mobile robotics and robot navigation is a growing area of scientific re-
search. Robot simulators are useful designing and analizing tools of this
domain.

Webots [1] is a well-known representant of these programs, a three-dimen-
sional mobile robot simulator. Various guidance principles can be developed
in C/C++ or Java programming language with the use of Webots controller
programs.

In this paper a short overview is given about the problems arising in
the process of the navigation, and a short taxonomy is presented about the
possible problem solving methods [2]. A brief introduction to the probabilistic
navigation techniques concerning Kalman filter and expectation maximization
is included with a special focus on occupancy grid.

Formerly I presented a metric navigation method based on occupancy
grid working in the Webots simulation environment [3]. As a continuation
of that research I created an enhancement of the former processes, a hybrid
metric-topological navigation mechanism. A topologic layer is introduced in
the environment exploration phase replacing the older value iteration [4]. The
implementation of a topologic graph of the explorable places using the metric
map enables the robot to navigate in a more efficient manner. A comparison
of the pure metric and the new hybrid methods is also given.

Keywords: robot simulation, probabilistic mapping, occupancy grid,
metric/topological navigation

1 Introduction

Mobile robotics can be the main propellant power of the development in the 21st
century. If robots will be able to take up humans’ not liked, monotone, everyday
tasks then the world will change more revolutionarily than with the rise of the
internet.
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The frequently heard answer to the question "When will we reach this new
era?’ is in ten years. The underestimation of the problem is driven by several
factors, high hopes of artificial intelligence is one of them. After all, an important
component of a future robot servant is a navigation module that can map and travel
the environment without human aid.

In this paper I present a method for building topological navigation graph on
the top of an occupancy grid in the Webots simulator. First of all T list some
basic problems of navigation. Then I outline a taxonomy of probabilistic mapping
methods. After that I show in brief the creation of an occupancy grid and the
environment exploration with value iteration. Finally I focus on the necessary
steps of the composition of the graph and the environment exploration utilizing the
evolved graph.

This project is part of my Ph.D. research with the main aim of the investigation
of mobile robot navigation. The primary tool for the experiments is the Webots
mobile robot simulator. After I was the runner up of the 1st Artificial Life Creators
Contest organized by Cyberbotics Ltd. in 1999, I won the second contest in 2000
and obtained the simulator license as the first prize. Details of the competitions
are discussed in [5].

2 The problem of navigation

During navigation the robot tries to determine the position of important objects
and itself. For this reason usually an internal map is handled. The task is twofold:
the robot has to navigate among objects using the actual map while it has to
refine the map with new measurements of the environment at the same time. The
problem is called simultaneous localization and mapping (SLAM) in the literature
[6]. In addition to this chicken-egg task other problems also arise.

The noise accompanying movement commands and sensor measurements worsen
the quality of navigation. If the noise is indepent of the position of the robot and
the time of the action then more gathered information leads to convergence after
a while. However in most cases noise has not got this sympathic property, for
instance measurement errors accumulate.

Another problem stems from multidimensionality of the environment: a detailed
two-dimensional map of a room contains many thousand elements, that increases
computational costs.

Problem of data association — which is probably the most important one —
raises the issue how it is possible to associate map elements of various viewpoint
and various time. For instance when a robot arrives to its starting point after
the exploration of a circular gallery how can it realize that the place was already
visited.

Fourth navigation problem results from the changes of the environment. Static
maps generated during the exploration of experimental terrains cannot hold on in
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real world where people are walking, doors are opening and closing, or when the
robot finds itself in a rearranged flat.

Beyond the others a well-performing navigation procedure has to work in real
time and has to be trustworthy. The final goal is generality, that is to say the robot
has to be capable of navigating in universal environment.

A good example of the state of the research and technology is the DARPA Grand
Challenge in the Mojave desert in March 2004 [7]. The best robot could accomplish
only 5 % of the targeted task (Figure 1). This fact justifies that autonomous
navigation is a really hard task.

Figure 1: An unlucky contestant

2.1 Probabilistic mapping

Navigation methods spred seriously in the nineties generally stands on probabilistic
base. One of the main reasons behind this fact can be that uncertainities caused by
noise are hard to handle with a monotonic map where later changes do not exist.
Common property of these methods is the usage of Bayes-theorem [8] generating
a maximum-likelihood map, that is to say they create the most probable map
according to the actual data.

2.1.1 Kalman filter

The Kalman filter is an efficient resolution of a linear difference-equation well-known
in other domains as well. The filter tries to find the noisy solution recursively on a
discrete timescale [9].

First half of the problem is described below.

xp = Axp—1 + Bug—1 + wp—1

Here zy, is the vector describing the state of the environment at moment k, in
case of navigation, it is the position of the robot and the neighbouring objects.
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2 mainly depends on the previous state (xx_1), secondly the commanding
actions (ux—1), while there is a Gaussain noise as well (wy_1).

The robot does not sense the state of the environment directly, rather through
its sensors. It is modelled by the second equation.

s, = Hxp, + v,

Here s means the perceived environment, also biased with a Gaussian noise
(vk) -

The Kalman filter solves the above difference-equation with the knowledge of
A, B, H matrices and the parameters of the noise distributions.

Positive property of the filter is the iterativity, that is to say previous calcula-
tions can be used in the actual estimation. Drawback of the method is the lack of
data assocation.

2.1.2 Expectation maximization

This method is also a general tool for finding unknown parameters of a system
with sampling [2, 10]. Expectation maximization means the alternative repetition
of two steps until convergence. Firstly — during navigation — the expected value of
the robot position has to be calculated using the actual map and the senses.

Q(mlmg) = Em, [p(2, s|my)|s]

In the second step the actual position and the perception determine the alter-
ation of the map, namely most probably map is searched in the space of maps.

Mp+1 = argmaz,,Q(m|my)

Expectation maximization gives an efficent solution of data association contrary
to Kalman filter, moreover it handles arbitrary noise distribution. A major disad-
vantage of the method is that it does not work iteratively. The map has to be
prepared from scratch every time step, or an auxiliary method is necessary. Hence
only offline learning is possible because of the immense calculation costs.

2.1.3 Occupancy grid

This general structure manages a tesselation of the plane or space in cells. Each
cell of the occupancy grid contains a probability value which is an estimation that
the represented position is occupied by some object. Advantages of this method
are that it is simple to implement and the iterative work. Among drawbacks worth
mentioning the precondition of independent noise and the difficulty to navigate
with.
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3 Previous work

My former goal was to create a metric navigation module for a modified Khepera
robot in the Webots simulation environment, that is to say I focus on metric spatial
properties of objects like distances, and coordinates. The developed robot has to
build a cognitive map — “a view from above” — of a square-shaped room in the
size of a few square meters while it visits every reachable location [3]. Figure 2,
Figure 3, Figure 4, and Figure 5 show some typical experimental area.
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Figure 2: A maze in Webots

File Edit Simulation He\pl

Cads DM Bams |3

-

-

Figure 4: Radial maze
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Figure 3: An office-like room
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Figure 5: AAAI contest maze

The adopted method of metric navigation is based on the occupancy grid model
pioneered by Moravec and Elfes [11, 12]. The important steps of the map building,
in accordance with Thrun’s work [4], are the following:
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sensor interpretation
integration over time

pose estimation

global grid building
exploration with value iteration

During sensor interpretation sonar scalar values are converted to occupancy
values around the robot, which means that p(occ,,,|s) probabilities are determined
for every s sonar measurement of cell (x,y).

The integration phase summarizes different measurements at different time.
Using Bayes-theorem and the assumption that sensations are independent of the
time of their collections, complex occupancy probabilities can be calculated with
the following equation:

D (occx,y|s(1), s@ s(T)> =

-1
1o (14 Ploceesls) pr_ploceeylsD) 1= plocesy) (1)
wls™)  plocesy)

p (0cey s, sP, ... s(T)) is the combined probability of occupancy of cell
(x,y) using sonar measurements from time 1 to T'. p(occg ) is the prior prob-
ability which if set to 0.5 the last fraction can be left out.

Pose estimation is omitted because the main focus of the research was creation of
the occupancy map. Instead of self-localization a GPS is used for the determination
of robot position.

Global grid is built in a merging process of local information. On one hand this
process means the transformation of polar coordinates to Cartesian. On the other
hand it is the moment of the sensor integration.

Figure 6 shows the occupancy grid of a maze during the process of the explo-
ration.

3.1 Value iteration

After the robot is ready to create a map of its environment, a driving force is
needed to urge the robot to explore all the reachable places, otherwise it would
wander randomly. For this reason a variant of value iteration is implemented. This
technique is well-known in the domain of reinforcement learning [13].

The selected algorithm helps to find the minimum cost-path to unexplored re-
gions of the occupancy grid. A cost matrix is calculated iteratively and after con-
vergence for every occupancy grid cell the cost of travelling to an unexplored grid
cell from the actual cell is given.

The first step of the method is the initialization. Naturally the cost of unex-
plored cells — where occupancy value has not been changed — is 0, while the cost
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Figure 6: Occupancy grid of a maze

of explored cells is co. During the update loop the value of every explored cell is
recalculated. Cells with high occupancy probability get 1 as cost. For others the
modification is based on a minimum search in the vicinity, the cost together with
the probability of occupancy of the neighbouring cells determine the new value of
the investigated cell. The € component is necessary to punish the length of the
path.

vV explored (z,y):

min(1, =% {Votiyrj +p(0cCariyis)} +€) otherwise

j=—1,0,1

1 if p(ocCrtiytj) >1—0
Vi y

Figure 7 and Figure 8 shows the results of value iteration.
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Figure 7: Cost matrix of the open area Figure 8: Cost matrix of the maze

Exploration direction is then a resultant of the cost matrix, the actual direction
of the robot, and an obstacle-avoidance behaviour.



408 Richard Szabo

4 Building a topological graph from occupancy grid

Exploration using value iteration is a very time-consuming task. Values of the
cells of the cost matrix are calculated by a process which scans through the whole
matrix many times. Furthermore the next exploration direction is based on this
gradient map and it does not necessarily take into account the constraint of the
robot dynamism, sometimes resulting a fairly clumsy movement.

Accordingly it seems a natural improvement to replace the value iteration mod-
ule with a topological graph. The topological graph emphasizes the links between
landmarks, the possibility to move from one place to another. Graph edges repre-
sent traversable corridors of the environment and graph nodes are the crossings or
end points. Navigation using the graph is much faster since its size is some order
of magnitude smaller than of the cost matrix. Chapter 2 of my book [5] compares
metric and topological navigation in detail.

There are quite many different ways of creating a navigation graph using a met-
ric map. Skeletonization, calculating Voronoi-diagrams, matching opposite con-
tours, sparse pixel approaches are among the possibilities [4, 14]. In any case the
occupancy grid can be viewed as a two-dimensional greyscale image of the environ-
ment, hence digital image processing methods are valid approaches [12].

According to [15] there are enough efficient digital image processing algorithms
so for basic tasks we should not reinvent them or design new ones, this is why I use
well-known procedures.

Another attitude what I consider important is that the main goal of vectoriza-
tion is not to produce highest but acceptable quality vectors in the shortest amount
of time.

Since I selected skeletonization, steps of the creation of topological navigation
using the occupancy grid are the following:

o skeletonization

e chaining the skeleton to form edges
e graph optimization

e navigation with the graph

4.1 Skeletonization

I decided to produce the skeleton of the explored and unoccupied region of the
environment. At the end of the process skeleton points are those places where the
robot is hopefully not blocked by any obstacles and can reach all regions of the
terrain.

For this reason I utilized medial axis transform (MAT) [16]. An interior point
of the shape belongs to the medial axis if this point lies at the same distance
from two or more nearest contour points. Unfortunately one drawback of MAT
appeared during my tests: medial axis of discrete objects and shapes — like the
discrete occupancy grid to be projected — may be disconnected. This deficiency is
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Figure 9: Labeling of points in thinning

not acceptable in our case since the resulting skeleton has to contain all connected
routes among important places of the environment.

As a second attempt, instead of using medial axis transform, I applied a thinning
algorithm to “peel the union”, in other words I iteratively shrank the object to its
one pixel wide skeleton [17]. During this process the border pixels are deleted
successively while topology and morphology of the object is preserved, that is to
say no pixels are deleted at the end of a line or at the connection of two regions.

The thinning algorithm works as it is described in Algorithm 1. Figure 9 shows
the labeling of pixels around P .

Algorithm 1 The thinning algorithm

Z0(P1) - the number of zero to mnonzero translations in the sequence
{P2,Ps,Py,Ps,Ps,Pr,Ps,Py, P>}

NZ(P1) - the number of nonzero neighbours of P,

Steps:

1. Scan through all the points of the image.

2. Calculate Z0(Py), NZ(P1), ZO(P2), ZO(Py), for all points.

3. Delete P; if the following conditions simultaneously satisfied:

2 <= NZ(P,) <= 6,
Z0(P) =1,
P2 * P4 * Pg = 0 or ZO(PQ) 7&

1
PQ*P4*P6:OOI‘Z0(P4)§£1

Figure 10 and Figure 11 are examples of the result of the skeletonization process
using the thinning algorithm.

4.2 Chaining

Navigation on the skeleton of the explored and unoccupied territory is possible and
can be more effective than the calculation of the cost matrix of the value iteration
because thinning results a data compression. Nevertheless it is advisable to use the
skeleton as a basis for further processing.

Skeleton of the explored region is a set of pixels, this structure can be trans-
formed to a graph. First of all, those points have to be determined where skeleton
branches meet. These pixels are the crossing points of corridors. After I have se-



410 Richard Szabo

Figure 10: Skeleton of a maze Figure 11: Skeleton of an office

lected the crossing points I cycle through the skeleton branches. This procedure
issues in chains, what are pixel sequences from crossing point to crossing point
or from crossing point to skeleton end point [14]. Algorithm 2 reveals the main
structure of the procedure.

Algorithm 2 Excerpt of the chaining algorithm
while there are nodes left do
¢ = newChain()
while there are non-null neighours left do
if not found getNonNode4Neighbour(q) then
if not found getNode4Neighbour(q) then
if not found getNonNode8Neighbour(q) then
if found getNode8Neighbour(q) then
append(q,c)
end
endChain(c)
else
append(q,c)
end

else
append(q,c)
endChain(c)
end
else
append(q,c)
end
end
end

The first draft of the graph is calculated during the chaining process. Skeleton
crossing point and end points take part in the graph as nodes. Graph edges connect
those nodes between which a chain exists.

During my investigation it turned out that the cited algorithm has two minor
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problems that, in special cases, corrupts the graph. On Figure 12 and Figure
13 chain creation starts from nodes (marked by ’0’) and cycles through all the
neighbours of the node (marked by ’x’). Non-node elements are cancelled after
they take part in a chain.

First problem rises in situations similar to the one shown on Figure 12. Pixel x
marked by 1 (x-1) is cancelled during the chain creation starting from x-2. In the
next step — since all the neighbours of nodes have to be processed — chain creation
tries to start from an already cancelled node: x-1.

X X
X X
X|=T12 X 1
OX|[=12 O X 2
X[=13
X
X
Figure 12: Chaining problem 1 Figure 13: Chaining problem 2

Another problem is indicated on Figure 13. If the chain creation starts from x-2
then in the next step the search should turn to x-3 and chain the pixels downwards.
However there is no explicit constraint in the algorithm to prevent the continuation
after x-2 in the direction of x-1, what is obviously wrong, since it leaves x-3 without
a connection to the node. After I corrected these mistakes the chaining algorithm
created the draft of the navigation graph.

4.3 Graph optimization

First version of the graph is not applicable to navigate because chains may ramble
far away from edges and if the robot simply follows the way of an edge it could
meet with obstacles.

To cope with this problem it is possible to recursively split the edge in question
and ensure that the new particles track the slues of the chain better. There are
two different algorithm-family for this approximation.

Wall and Danielsson calculate the area of the surface between the edge and
the chain [18]. The iterative computation is performed by determining the sum
of successive triangles. If the size of the surface exceeds a certain threshold then
splitting of the edge is necessary.

Rosin and West’s algorithm measures the maximal distance between the edge
and the chain [19]. This method splits the edge at its maximum deviation point
recursively until all the created new edges are acceptable approximations of the
chain (Figure 14).

As a comparison of the methods [14] states that Wall and Danielsson can be
implemented very efficiently but on the other hand it is less accurate than Rosin
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Figure 14: Splitting (taken from the slides of [14])

and West’s method. Additionally the second mentioned algorithm may split up
edges into small pieces near junctions.

Since I would like to use the topological graph for navigation at the end, it is
important that edges do not cross or reach obstacles and walls. In other words
fidelity of the graph to the calculated chain is important so I have chosen and
implemented Rosin and West’s algorithm. The procedure is described in Algorithm
3.

Algorithm 3 Algorithm of Rosin and West

split_edge(graph,start_point,end_point) {
while chain is not finished do
get_act_point(chain,act_point)
h = height(start_point,end_point,act_point)
if h > LIMIT then
delete_edge_from_graph(graph,start_point,end_point)
add_node_to_graph(graph,act_point)
add_edge_to_graph(graph,start_point,act_point)
add_edge_to_graph(graph,act_point,end_point)
split_edge(start_point,act_point)
split_edge(act_point,end_point)
end
end

When the recursive splitting is finished, pruning of edges is useful especially
near to unexplored regions. Otherwise, if the robot simply moves to an end node
where unexplored territory is nearby, then accidentaly it could run into a wall.

Figure 16 shows the optimized graph of Figure 15 after recursive edge splitting
and pruning.

4.4 Navigation

When creation of the graph of the explored and not occupied region is complete,
the robot has to determine the next exploration direction. Generally the robot is
aimed to sweep through all the reachable places of the environment. This is why
those nodes of the graph where unexplored region is close can be considered as goal
nodes.
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Figure 15: Graph after chaining Figure 16: Optimized graph

Figure 17: Navigation graph of the maze

To localize these elements I performed a general A* algorithm [20]. This classical
algorithm finds the shortest path from the predefined start node of the graph to a
goal node. Start node of the graph in our case is the actual position of the robot.
The A* algorithm then calculates the shortest path from the actual position to a
node where exploration could be fruitful.

Using the shortest path as a list to be processed, the robot can turn to the next
node of the graph in the list and move directly ahead while it does not reach the

last node in the list.

Besides the topological graph and the A* algorithm the final robot movement is
comprised another behaviour pattern as well. The role of this normal move module
is to stimulate the robot straight ahead on clear sights, and it also ensures obsta-
cle avoidance motion in case of necessity. Since the generation of the topological
graph is time-consuming, this job is not done continuously. When the normal move

module does not explore efficiently, in other words the explored surface does not
grow enough, creation of the graph takes place and navigation is governed by the
A* algorithm. This alternating comportment incorporates the advantages of the

two behaviour modules.
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5 Results

The navigation algorithms were tested in five different environments in several
experiments from various starting points. The environments were selected to cover
a wide range of possible situation that could arise during map-building.

The terrains were the following: an open area with some round obstacles, a
radial maze taken from [21] well-known in cognitive map researches (Figure 4), a
maze (Figure 2), an office-like room (Figure 3) which was one of the fields of the
Artificial Life Creators Contest, and a labyrinth used at the 1994 AA AT autonomous
mobile robot competition (Figure 5, [4]).

The open area is 1 m?, the AAAI maze is 1.85 m?, while the others are 2.25
m?. Five attempts were performed in every field with both algorithm. The robot
could explore all the environments by the two methods.

In the small and easily solvable open area the robot spends 8 and 6.4 minutes on
an average in robot performance time using value iteration and topological graph
respectively. Radial maze does not cause any difficulties for the two programs, both
solves it in around 6 minutes on an average.

The most significant advance can be reached in the office environment: the
20 minutes time drops to 12.4 minutes. In the maze the time profit is smaller:
the 22 minutes of value iteration is reduced to 14.5 minutes. The AAAIT contest
environment is easier to solve than the maze, hence time frames of value iteration
and graph navigation are 14 and 11.7 respectively.

These results are collected in Table 1.

Table 1: Time comparison of the navigation methods

Value iteration (min) | Topological graph (min)
Open room 8 6.4
Radial 6.3 6
Office 20 12.4
Maze 22 14.5
AAAT contest 14 11.7

The acceleration between the two methods is a consequence of the smaller num-
ber of entities with which the algorithms have to deal (Table 2). There are between
11600 and 28900 pixels in the cost matrix of the value iteration, and the number
of graph nodes are between 20 and 120, depending on the size and the complexity
of the environment.

6 Conclusions

This paper presents a method to build a topological graph for navigation based
on occupancy grid in the simulation environment of Webots. Besides the fact that
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Table 2: Number of entities in the navigation methods

Value iteration | Topological graph
(pixels) (graph nodes)
Open room 12800 50
Radial 11600 20
Office 28900 110
Maze 28900 120
AAAT contest 23700 105

already known algorithms are used, significantly better accomplishments related to
the pure occupancy grid method justify this navigation approach.

Using topological graph instead of value iteration for the determination of ex-
ploration direction seems a beneficial modification. On one hand it approximates
better the nature of the navigation. On the other hand the new algorithm performs
better.

First of all, the number of manipulated entities — pixels for the value iteration,
and graph nodes for the topological navigation — differ in the two approaches. This
gap is more than two orders of magnitude, so the graph navigation dramatically
reduces the need for resources, especially the need for memory.

Secondly, better total exploration time can be achieved with the newer control
procedure. Differences in the acceleration among various test fields follow from
the fact that the graph mostly helps in elongated parts of the territory and at
the connections of the large spaces. Open spaces are easily explorable by random
obstacle avoidance so the necessary time for open room and radial maze is not
diminished essentially. For the maze, the office, and the AAAT contest environment
the effects are easily recognizable, since time profit exceeds 20%.

7 Future work

There are quite many different ways of continuing the research. Some of them are
mentioned below:

e Testing the algorithms in real robot.

e Higher level task can be performed by the robot after successful exploration.

e Moving around in dynamic environments is a serious challenge, this extension
would make the problem more interesting.

e Using pose estimation may make the robot fully automate.

e Introduction of new sensor types especially video cameras may enhance the
occupancy grid creation and position estimation as well.
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