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Abstract

Sparkle is a theorem prover specially constructed for the functional pro-
gramming language Clean. In a pure functional language like Clean the vari-
ables represent constant values; variables do not change in time. Hence it
seems that temporality has no meaning in functional programs. However, in
certain cases (e.g. in interactive or distributed programs, or in ones that use
I/O), a series of values computed from one another can be considered as dif-
ferent states of the same “abstract object”. For this abstract object temporal
properties can be proved. This paper presents a method to describe abstract
objects and invariant properties in an extended version of the Sparkle Core
language. The creation of such descriptions will be supported by a refactoring
tool. The descriptions are completely machine processible, and provide a way
to automatize the proof of temporal properties of Clean programs with the
extended Sparkle system.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]:
Applicative (Functional) Programming; F.3.1 [Logics and meanings of pro-
grams]: Specifying and Verifying and Reasoning about Programs - invariants;

Key Words and Phrases: Verification, invariant properties, abstract func-
tional object, Clean, Sparkle

1 Introduction

The temporal logical operators describe how the values of the program variables
(the so-called program state) vary in time. They are very useful for proving cor-
rectness of (sequential or parallel) imperative programs. Some well-known such
operators are e.g. “nexttime”, “sometimes”, “always” and “invariant”. All these
operators can be expressed based on the “weakest precondition” operator [7, 13].

The weakest precondition of a program statement with respect to a postcon-
dition holds for a state “a” if and only if the statement starting from “a” always
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terminates in a state for which the postcondition holds. We can compute the
weakest precondition of a statement in an automated way: we have to rewrite the
postcondition according to the substitution rules defined by the statement.

When proving correctness of functional programs, the practicability of temporal
operators is not obvious. In a pure functional programming language a variable
is a value, like in mathematics, and not an “object” that can change its value in
time, viz. during program execution. Due to referential transparency, reasoning
about functional programs can be accomplished with a fairly simple mathematical
machinery, using, for example, classical logic and induction (see [22]). This fact is
one of the basic advantages of functional programs over imperative ones.

However, in certain cases it is natural to express our knowledge about the be-
haviour of a functional program (or rather our knowledge about the values the
program computes) in terms of temporal logical operators. Moreover, in the case
of parallel or distributed functional programs, temporal properties are exactly as
useful as they are in the case of imperative programs. For example, those invariants
which are preserved by all components of a distributed or parallel program, are also
preserved by the compound program.

In the authors’ approach, certain values computed during the evaluation of a
functional program can be regarded as successive values of the same “abstract ob-
ject”. This corresponds directly to the view which certain object-oriented functional
languages hold.

Clean [24], a lazy, pure functional language was chosen for this research. An
important factor in our choice was that a theorem prover, Sparkle [22] is already
built in the integrated development environment of Clean. Sparkle supports rea-
soning about Clean programs almost directly. The authors extended the basic logic
used by Sparkle with temporal operators.

Earlier, correctness proofs about interactive, concurrent (interleaved) Clean pro-
grams, namely Object IO processes have been provided in [14, 15]. However, these
proofs were carried out by hand. The authors argue that the extension of the
theorem prover with tools supporting temporal logical operators facilitates the rea-
soning about interactive, concurrent or distributed (see [16]) Clean programs, since
temporal logical reasoning can be performed within the theorem prover.

For formulating and proving temporal properties of a Clean program, the “ab-
stract objects” have to be determined, that is it has to be specified which functional
(mathematical) values correspond to different states of the same abstract object.
Furthermore, state transitions should also be expressible. Therefore, Clean and
correspondingly the Sparkle Core language have to be extended with some new
syntactical elements. This paper aims to present these extensions, to show how one
can describe abstract objects in these extended languages, to give the semantics
of the introduced language extensions, and to illustrate by means of some simple
examples that temporal reasoning is really useful for functional programs.

The rest of the paper is organized in the following way. In Section 2 the ob-
ject abstraction method is presented through a simplistic example. Then Section
3 describes an extension to the Clean language. Section 4 introduces the new lan-
guage constructs into the Sparkle Core language. Section 5 explains how temporal
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propositions can be expressed in the extended Sparkle framework. Next, Section 6
presents some more complex and more useful examples of temporal properties and
their proofs. Finally, in Section 7, the conclusions are drawn and future work is
defined.

2 Object abstraction

In Clean the uniqueness type system makes destructive updates possible without
violating referential transparency. In the case of unique values temporality has a
similar meaning as in imperative languages: unique values encode states. Destruc-
tive updates are not merely used to increase the efficiency of Clean programs, but
the I/O system of Clean is also defined in terms of state transitions over a “unique
environment”. (The other well-known technique to define I/O in a pure functional
language is the monadic approach, applied in the language Haskell [23].)

Programs written with the Object I/O library (a standard API for Clean) [1] are
reactive. They create a unique state space and define initialisation and state tran-
sition functions. The library supports interactive processes, which can be created
and closed dynamically. Each interactive process may consist of an arbitrary num-
ber of interactive objects. Since I/O processes may run in parallel (in an interleaved
manner), their behaviour can be described with a temporal logical machinery [4, 13]
(in contrast to e.g. [3, 10, 11]). The authors have researched this issue in [14, 15].

This paper exploits a more general method, discussed before in [17, 18]. In this
methodology one can reason about temporal properties of Clean programs even if
they do not use unique values or interactive Object I/O processes. Not only some
call-back functions of Object I/O can be state transition functions: the programmer
can demarcate state transitions explicitly in a more flexible way. Different values
computed by a functional program and stored in variables (in the functional sense of
variables) can be regarded as different states of the same object. A state transition
will thus be a piece of functional code that computes such a value from another
one.

The following simple example introduces shortly the object abstraction method.
The example program sort3 puts three integer values in increasing order. It uses
another function sort2, which, in turn, puts two integer values in increasing order.

sort3 a b c
# (a, b) = sort2 a b
# (b, c) = sort2 b c
# (a, c) = sort2 a c
= (a, b, c)

According to the scoping rules in Clean, this program is equivalent to the following
one:
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sort3 a1 b1 c1

# (a2, b2) = sort2 a1 b1

# (b3, c2) = sort2 b2 c1

# (a3, c3) = sort2 a2 c2

= (a3, b3, c3)

Here the values a1, a2 and a3 may be associated to the same abstract object,
e.g. obj1. Similarly, the values bi and ci may be associated to obj2 and obj3,
respectively. The let-before expressions (denoted by #) will hence become the state
transitions (atomic actions) of this program. Clean has to be extended with new
syntactical elements so that one can express this kind of “object abstraction”.

Although this example may seem too simplistic, it illustrates well the technique
used for introducing objects. For more complex examples the same technique can
be used, but the propositions may become less readable and the proofs substantially
longer. To address the first issue, the authors are planning to develop a tool that
provides support for object abstraction on a graphical user interface. Managing
the second issue requires the use of predefined libraries of domain-specific lemmas.

3 Extending Clean with object abstraction

For the demarcation of “abstract objects” two new language constructs are needed.
One of the constructs will be used to define which values (functional variables)
correspond to different states of the same abstract object. The other construct
will mark the state transitions of the program: in each state transition, one or
more objects may change their values. State transitions will be regarded as atomic
actions with respect to the temporal logical operators, and will be referred to as
“steps” in the forthcoming sections.

The first construct will be denoted by “.|.”. It has two arguments: an ob-
ject identifier and a value identifier, like in “ .|. object_id value_id ”. This
means that the value identified by value_id is associated to the abstract object
identified by object_id, or, for short, value_id identifies a state of object_id.
The second construct, used for marking steps, is similar to the let-before (#) con-
struct of Clean, hence a similar syntax has been chosen for that: “.#.”.

The Clean syntax has been extended with the two constructs in the following
way. The original definition of Variable has been changed to include an alternative
“Object”.

Variable = LowerCaseId
| Object

Object = .|. LowerCaseId LowerCaseId

Therefore, an Object can be used wherever a Variable can be used in (the original)
Clean, under the following conditions. A function definition may introduce objects,
only if the body of the function is made up of let-before constructs. (The current
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implementation of the extended Sparkle system can handle multiple function alter-
natives, but does not allow objects in functions with guards and rule alternatives.)
The objects are local to the function definition, and the same object name refers
to the same object in this scope. (Defining multiple objects with the same name
within the same function definition is disallowed.) Objects can only be used in
“steps”. In every binding within a step (a so called StepBind, see later), the same
object can appear at most once on the left, and at most once on the right-hand
side. Obviously, the variables constituting the states of an abstract object must be
of the same type. Finally, it has to be noted that currently only objects within a
single function definition are supported: the variables that make up the states of
the object must be defined in the same function. (In the near future the authors
plan to develop an enhanced version of extended Clean and extended Sparkle in
which object abstraction is not restricted to happen within the boundaries of a
single function.)

The rule for LetBeforeExpression has also been extended with a new
alternative, StepExpression, to support the second introduced new con-
struct. A StepExpression can be used in the extended Clean wherever a
LetBeforeExpression can be used in Clean.

LetBeforeExpression = # {GraphDef}+
| #!{GraphDef}+
| StepExpression

StepExpression = .#. {GraphDef}+

The example program expressed in the extended Clean language is the following.

sort3 (.|. obj1 a1) (.|. obj2 b1) (.|. obj3 c1)
.#. ((.|. obj1 a2), (.|. obj2 b2)) = sort2 (.|. obj1 a1) (.|. obj2 b1)
.#. ((.|. obj2 b3), (.|. obj3 c2)) = sort2 (.|. obj2 b2) (.|. obj3 c1)
.#. ((.|. obj1 a3), (.|. obj3 c3)) = sort2 (.|. obj1 a2) (.|. obj3 c2)
= ((.|. obj1 a3), (.|. obj2 b3), (.|. obj3 c3))

This program text is much harder to read than the original Clean program. Note,
however, that the extended Clean language is just an intermediate language used
between two programs. A refactoring tool [25], integrated into an interactive soft-
ware development environment, will be used to produce extended Clean code. The
input to the refactoring tool is the original Clean code, and interactive instruc-
tions from the programmer regarding which values belong to which objects. The
extended Clean code will be processed by a proof system, namely an extended
version of Sparkle.

The semantics of Clean can be expressed in terms of Sparkle Core [21]. The
Sparkle Core language is a part of the formal framework used by the Sparkle theo-
rem prover, which has been developed for reasoning about Clean programs. Essen-
tially, Sparkle Core corresponds to the internal representation of Clean programs
in the Clean compiler. It is possible to express the semantics of the extended Clean
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language in terms of a variant of Sparkle Core. The next sections present how
Sparkle Core was modified to support extended Clean, and how Sparkle is to be
modified to enable formulating and proving invariants of abstract objects.

4 Extending the Sparkle Core language

In order to adapt Sparkle for reasoning about temporal properties of abstract ob-
jects, the constructs .|. and .#. of the extended Clean language have been intro-
duced into Sparkle Core. Here an incomplete description of this extended version
of Sparkle Core is provided for the interested Reader, focusing only on the new
elements added to Sparkle Core. An informal explanation of these new elements
are also given, but for further details on the formal syntax and semantics of Sparkle
Core the Reader is referred to [21]. (For the sake of readability, at certain points
the notations of Sparkle Core have been simplified.)

The expressions (E) of Sparkle Core are made up of variables, basic values, (func-
tion, delta-rule and constructor) symbols, applications, case-expressions, (lazy and
strict) let-expressions, and (typed) “undefined” expressions. Two more alternatives
have been introduced: object definitions and steps. Object definitions associate ob-
ject identifiers (from O) to expression-variable identifiers (from Ve). Steps are sim-
ilar to let expressions, they contain bindings of local expression variables (V•

e ) and
objects to expressions. The resulting definition of expressions, Eext, is as follows.
(The new elements are framed.)

Eext = { var x | x ∈ Ve}
∪ Odef

∪ {basic b | b ∈ Bv}
∪ {symbol s σs es | s ∈ Se, σs ∈ 〈T 〉, es ∈ 〈Eext〉

| |σs| = Arity1(s) ∧ |es| ≤ Arity2(s)}
∪ {apply e1 to e2| e1 ∈ Eext, e2 ∈ Eext}
∪ {case e of alts| e ∈ Eext, alts ∈ 〈Alt〉}
∪ {let binds in e| binds ∈ 〈LetBind〉, e ∈ Eext}
∪ {step stepbinds in e| stepbinds ∈ 〈StepBind〉, e ∈ Eext}
∪ {let! x1 = e1 in e2| x ∈ V•

e , e1 ∈ Eext, e2 ∈ Eext}
∪ {⊥σ | σ ∈ T }

StepBind = {x binds e | x ∈ V•
e ∪ Odef , e ∈ Eext}

Odef = {obj o x | o ∈ O, x ∈ Ve}
O = {objid z| z ∈ Z}

Note that in StepBind not only object states can be bound, but (local) variables
as well (x ∈ V•

e ). There is a technical reason for that: this is how the “current
state” of an object can be retrieved and used in an expression.
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The changes to E induce further modifications, e.g. in the definition of functions
(Fdef) in Sparkle Core. The modifications make it possible to use objects both in
the formal parameter list and in the body of functions, granted that the same object
identifier does not occur more than once in the formal parameter list.

As an illustration, the two definitions of the function sort3 (expressed in Clean,
in Section 2 and in extended Clean, in Section 3) turned into Sparkle Core and
extended Core are provided. It is instructive to see the differences between the two
definitions, without trying to understand all their details. First, let us have a look
at the one without objects. (Almost the same information is available in Sparkle –
using the appropriate options offered by its user interface – as in the Sparkle Core
code below.)

fundef sort3 αs σs1 τ 〈(var (exprvar 1)),
(var (exprvar 2)),

(var (exprvar 3))〉
let 〈 (exprvar 4)

binds (symbol sort2 σs2 〈(var (exprvar 1)) (var (exprvar 2))〉 ),
(exprvar 5) binds (symbol tupleselect 2 1 σs3 〈 (var (exprvar 4)) 〉 ),
(exprvar 6) binds (symbol tupleselect 2 2 σs3 〈 (var (exprvar 4)) 〉 ),
(exprvar 7)

binds (symbol sort2 σs2 〈 (var (exprvar 6)), (var (exprvar 3)) 〉 ),
(exprvar 8)

binds (symbol tupleselect 2 1 σs3 〈 (var (exprvar 7)) 〉 ),
(exprvar 9)

binds (symbol tupleselect 2 2 σs3 〈 (var (exprvar 7)) 〉 ),
(exprvar 10)

binds (symbol sort2 σs2 〈 (var (exprvar 5), (var (exprvar 9)) 〉 ),
(exprvar 11)

binds (symbol tupleselect 2 1 σs3 〈 (var (exprvar 10)) 〉 ),
(exprvar 12)

binds (symbol tupleselect 2 2 σs3 〈 (var (exprvar 10)) 〉 ) 〉
in symbol tuple3 σs4 〈(var(exprvar 11)),

(var(exprvar 8)),
(var (exprvar 12))〉

Compare the above definition with the following extended Sparkle Core code:

fundef sort3 αs σs1 τ 〈(obj (objid 1) (exprvar 1)),
(obj (objid 2) (exprvar 2)),

(obj (objid 3) (exprvar 3))〉
step 〈 (exprvar 4)

binds (symbol sort2 σs2 〈 (obj (objid 1) (exprvar 1)),
(obj (objid 2) (exprvar 2)) 〉 ),

( obj (objid 1) (exprvar 5))
binds (symbol tupleselect 2 1 σs3 〈 (var (exprvar 4)) 〉 ),
( obj (objid 2) (exprvar 6))
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binds (symbol tupleselect 2 2 σs3 〈 (var (exprvar 4)) 〉 ) 〉
in step 〈 (exprvar 7)

binds (symbol sort2 σs2 〈 (obj (objid 2) (exprvar 6)),
(obj (objid 3) (exprvar 3)) 〉 ),

( obj (objid 2) (exprvar 8))
binds (symbol tupleselect 2 1 σs3 〈 (var (exprvar 7)) 〉 ),

( obj (objid 3) (exprvar 9))
binds (symbol tupleselect 2 2 σs3 〈 (var (exprvar 7)) 〉 ) 〉

in step 〈 (exprvar 10)
binds (symbol sort2 σs2 〈 (obj (objid 1) (exprvar 5)),

(obj (objid 3) (exprvar 9)) 〉 ),
( obj (objid 1) (exprvar 11))
binds (symbol tupleselect 2 1 σs3 〈 (var (exprvar 10)) 〉 ),

( obj (objid 3) (exprvar 12))
binds (symbol tupleselect 2 2 σs3 〈 (var (exprvar 10))〉 ) 〉

in symbol tuple3 σs3 〈(obj (objid 1) (exprvar 11))
(obj (objid 2) (exprvar 8))

(obj (objid 3) (exprvar 12))〉

The semantics of Sparkle Core has been changed in such a way that object defi-
nitions and steps are only used during the formulation and proof of temporal prop-
erties. Otherwise objects can be reduced to variables and steps to let-expressions.
The reduction rules expressing this are the following.

obj o x
x

step letbinds in e
let letbinds in e

Note that the “stepbinds” part of a step have to be reduced to a “letbind” (by
reducing all objects of a stepbind to variables) before reducing it to a let-definition.

5 Temporal propositions

For formulating temporal properties of abstract objects, the logical framework of
Sparkle has to be made capable to manage temporal propositions. This paper shows
how safety properties, namely invariants and unless properties should be handled
in this extended framework. The definition P of propositions has been changed to
include temporal propositions. To describe e.g. invariants, P inv is introduced:

Pext = P ∪ P inv ∪ . . .

P inv = {p inv (f cxs) q | q ∈ P , p ∈ OP , f ∈ F , cxs ∈ 〈E〉}

An invariant proposition “p inv (f cxs) q” means that proposition p holds invari-
antly during the evaluation of “f cxs” with respect to the precondition q. In the
definition above, f is a function symbol, and cxs is an actual parameter list con-
taining expressions of (the original) Sparkle Core. Furthermore, q is a proposition
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of the basic logic of (the original) Sparkle, referring to the variables occurring in
cxs. On the other hand, p is an “object proposition” (OP), which can refer to
object identifiers as well. OP differs from P in that the expressions occurring in
it come from a modified set of expressions Etemp instead of E . The definition of
Etemp adds the alternative O to E . (Notice the difference between Etemp and Eext.
The latter introduces an alternative for Odef, not O, and a further alternative for
steps.)

As an example, consider the following invariant property of the sort3 function.
It states that, given the precondition x+ y+ z = 0, the sum of the three objects is
equal to 0 during the evaluation of “sort3 x y z”.

∀x∀y∀z (obj1 + obj2 + obj3 = 0) inv (sort3 x y z) (x+ y + z = 0)

The names identifying the objects (obj1, obj2 and obj3) are declared in the sort3
function: the object names appearing in an invariant proposition are resolved in
the scope of the function the proposition is referring to.

In extended Sparkle Core the above invariant is formulated in the following way:

(forall exprs (exprvar 53) (forall exprs (exprvar 54) (forall exprs (exprvar 55)
((symbol (+) σs 〈 (objid 1),

(symbol (+) σs 〈 (objid 2), (objid 3) 〉) 〉)
equals (basic (int 0)) )

inv (sort3 〈 (var (expvar 53)), (var (exprvar 54)), (var (exprvar 55))〉)

((symbol (+) σs 〈 (var (exprvar 53)),
(symbol (+) σs 〈 (var (exprvar 54)), (var (exprvar 55)) 〉) 〉)

equals (basic (int 0))) )))

Invariants should follow from the precondition, and must be preserved by the
(atomic) state transitions [4, 13]. The preservation of a statement with respect to
a state transition is expressed with the weakest precondition operator wp [7]. In
this case there are three state transitions, corresponding to the three evaluations
of sort2. Let us abbreviate “obj1 + obj2 + obj3 = 0” with p and “x + y + z = 0”
with q. After introducing (fixing) the universally quantified variables x, y and z,
the invariant can be rewritten to the conjunction of the following four proposition.

1. q ⇒ p

2. q ∧ p ⇒ wp(obj1, obj2 = sort2 obj1 obj2)(p)

3. q ∧ p ⇒ wp(obj2, obj3 = sort2 obj2 obj3)(p)

4. q ∧ p ⇒ wp(obj1, obj3 = sort2 obj1 obj3)(p)

Since the precondition may only refer to variables, and not to objects (q ∈ P), it
can be used as a hypothesis in each generated propositions.
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The meaning of the invariant proposition, of course, is given with respect to
a program context, e.g. the definition of the function sort3. In the appendix
the function computing the semantical value of invariant propositions is provided.
Applying this semantical function, the semantics of the above invariant is obtained
in the Sparkle system.

(forall exprs (exprvar 53) (forall exprs (exprvar 54) (forall exprs (exprvar 55)
binary (binary (binary propinit and prop1) and prop2) and prop3

)))

with the following abbreviations:

propinit =
(forall exprs (exprvar 56) (forall exprs (exprvar 57) (forall exprs (exprvar 58)
(binary ((symbol (+) σs 〈 (var (exprvar 53)),

(symbol (+) σs 〈 (var (exprvar 54)), (var (exprvar 55)) 〉) 〉)
equals (basic (int 0)))

implies
(binary ( binary ( binary ( (var (exprvar 56) ) equals (var (exprvar 53) ) )

and ( (var (exprvar 57) ) equals (var (exprvar 54) ) ) )
and ( (var (exprvar 58) ) equals (var (exprvar 55) ) ) )

implies
((symbol (+) σs 〈 (var (exprvar 56)),

(symbol (+) σs 〈 (var (exprvar 57)), (var (exprvar 58)) 〉) 〉)
equals (basic (int 0)) ) ) ) )))

prop1 =
(forall exprs (exprvar 59) (forall exprs (exprvar 60)
(forall exprs (exprvar 61) (forall exprs (exprvar 62) (forall exprs (exprvar 63)
(binary ((symbol (+) σs 〈 (var (exprvar 53)),

(symbol (+) σs 〈 (var (exprvar 54)), (var (exprvar 55)) 〉) 〉)
equals (basic (int 0)))

implies
(binary ((symbol (+) σs 〈 (var (exprvar 59)),

(symbol(+) σs 〈 (var (exprvar 60)), (var (exprvar 61)) 〉) 〉)
equals (basic (int 0)))

implies
(binary (binary (binary ( (var (exprvar 4))

equals ( symbol sort2 σs2 〈 (var (exprvar 59)), (var (exprvar 60) )〉 ) )
and ((var (exprvar 62)) equals (symbol tupleselect 2 1 σs3

〈 (var (exprvar 4))〉 )) )
and ((var (exprvar 63)) equals (symbol tupleselect 2 2 σs3

〈 (var (exprvar 4))〉 ) ) )
implies

((symbol (+) σs 〈 (var (exprvar 62)),
(symbol (+) σs 〈 (var (exprvar 63)), (var (exprvar 61)) 〉) 〉)

equals (basic (int 0))) )))
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prop2 =
(forall exprs (exprvar 64) (forall exprs (exprvar 65)
(forall exprs (exprvar 66) (forall exprs (exprvar 67) (forall exprs (exprvar 68)
(binary ((symbol (+) σs 〈 (var (exprvar 53)),

(symbol (+) σs 〈 (var (exprvar 54)), (var (exprvar 55)) 〉) 〉)
equals (basic (int 0)))

implies
(binary ((symbol (+) σs 〈 (var (exprvar 64)),

(symbol (+) σs 〈 (var (exprvar 65)), (var (exprvar 66)) 〉) 〉)
equals (basic (int 0)))

implies
(binary (binary (binary ( (var (exprvar 7))

equals ( symbol sort2 σs2 〈 (var (exprvar 65)), (var (exprvar 66) )〉 ) )
and ((var (exprvar 67)) equals (symbol tupleselect 2 1 σs3

〈 (var (exprvar 7))〉 )) )
and ((var (exprvar 68)) equals (symbol tupleselect 2 2 σs3

〈 (var (exprvar 7))〉 ) ) )
implies

((symbol (+) σs 〈 (var (exprvar 64)),
(symbol (+) σs 〈 (var (exprvar 67)), (var (exprvar 68)) 〉) 〉)

equals (basic (int 0))) )))

prop3 =
(forall exprs (exprvar 69) (forall exprs (exprvar 70)
(forall exprs (exprvar 71) (forall exprs (exprvar 72) (forall exprs (exprvar 73)
(binary ((symbol (+) σs 〈 (var (exprvar 53)),

(symbol (+) σs 〈 (var (exprvar 54)), (var (exprvar 55)) 〉) 〉)
equals (basic (int 0)))

implies
(binary ((symbol (+) σs 〈 (var (exprvar 69)),

(symbol (+) σs 〈 (var (exprvar 70)), (var (exprvar 71)) 〉) 〉)
equals (basic (int 0)))

implies
(binary(binary (binary ( (var (exprvar 10))

equals ( symbol sort2 σs2 〈 (var (exprvar 69)), (var (exprvar 71) )〉 ) )
and ((var (exprvar 72)) equals (symbol tupleselect 2 1 σs3

〈 (var (exprvar 10))〉 )) )
and ((var (exprvar 73)) equals (symbol tupleselect 2 2 σs3

〈 (var (exprvar 10))〉 ) ) )
implies

((symbol (+) σs 〈 (var (exprvar 72)),
(symbol (+) σs 〈 (var (exprvar 70)), (var (exprvar 73)) 〉) 〉)

equals (basic (int 0))) )))
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6 Some more complex examples

In this section two more complex examples are presented. The first example in-
troduces a simple program modelling a database of financial transactions, and an
invariant property of this program is provided. The second example is an imple-
mentation of the dining philosophers’ problem, and it is used to illustrate unless
properties.

6.1 Transactions with an invariant property

In this example a transaction is made up of a timestamp, describing when the trans-
action occurred, and an integer number describing the amount of money transferred
in the transaction. The database contains a list of transactions and the overall sum
of the amounts transferred in the transactions. The following definitions are written
in Clean.

The representation of the type Timestamp is irrelevant in this example, hence
this type is defined abstract. Two operations are needed on Timestamp, namely
“<” and “eval”. The type class “<” (from the standard library of Clean) denotes
an ordering, while the type class “eval” (from the standard library of Sparkle) is
used to rule out (partially) undefined expressions.

:: Timestamp
instance < Timestamp
instance eval Timestamp

The operations have to satisfy the following lemma. If the timestamps t1 and t2
are not partially undefined, then t1 < t2 is not partially undefined, either.

∀t1, t2 ∈ Timestamp : eval(t1) ∧ eval(t2) ⇒ eval(t1 < t2)

Type Transaction also has “<” and “eval” operations, furthermore, two getter
operations have been provided as well. Transactions are ordered according to their
timestamps, and a transaction is not partially undefined if (and only if) neither of
its two components are.

:: Transaction = Tx Timestamp Int
timestamp (Tx timestamp amount) = timestamp
amount (Tx timestamp amount) = amount
instance < Transaction where (<) (Tx t1 a1) (Tx t2 a2) = t1 < t2
instance eval Transaction

where eval (Tx timestamp amount) = eval timestamp && eval amount

The database – given by the synonym type DB – is also an instance of the type
class “eval”. (In this simple example program it might be assumed, but it is not
obligatory, that the timestamp of the transactions is a primary key.)

:: DB :== (Int,[Transaction])
instance eval DB where eval (sum,list) = eval sum && eval list
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This example is based on the following database operations. The first one
creates an empty database, the second one adds a transaction to the beginning of
the transaction list, the third one removes the first transaction from the list and,
finally, the fourth one sorts the transactions according to their timestamps. These
operations describe some basic state transitions of the databases.

newDB :: DB
newDB = (0,[])

insertFirst :: Transaction DB -> DB
insertFirst tx=:(Tx tstamp amount) (sum,txs) = (sum+amount,[tx:txs])

removeFirst :: DB -> DB
removeFirst db=:(_,[]) = db
removeFirst (sum,[(Tx tstamp amount):txs]) = (sum-amount,txs)

sortDB (sum,txs) = (sum, isort txs)

For sorting we have applied a simple insertion sort function, also used by [20].

ins :: a [a] -> [a] | < a
ins e [] = [e]
ins e [x:xs] = if (x<e) [x:ins e xs] [e:x:xs]

isort :: [a] -> [a] | < a
isort [] = []
isort [x:xs] = ins x (isort xs)

Now a simple “scenario” application can be developed, built upon the basic
operations, which simulates an interactive session between a database management
application and an end-user. The input to this scenario is a database and a transac-
tion. First the transaction is inserted into the database, then the resulting database
is sorted, finally the first transaction stored in the (sorted) database is removed.

scenario :: DB Transaction -> DB
scenario db tx

# db = insertFirst tx db
# db = sortDB db
# db = removeFirst db
= db

Now this scenario can be rewritten in extended Clean, making use of the object
abstraction technique.

scenario (.|. obj db) tx
.#. (.|. obj db) = insertFirst tx (.|. obj db)
.#. (.|. obj db) = sortDB (.|. obj db)
.#. (.|. obj db) = removeFirst (.|. obj db)
= (.|. obj db)
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As mentioned earlier, the invariant property of databases is that the first com-
ponent equals to the total sum of the money transferred by the transactions stored
in the second component. In Sparkle, the definitions (functions and predicates)
required to formulate a theorem should be given in Clean. A function that sums
up the amounts of money appearing in a list of transactions will be used here.

sumUp :: [Transaction] -> Int
sumUp [] = 0
sumUp [tx:txs] = amount tx + sumUp txs

The invariant property can be formalised now:

∀db ∀tx :
(eval obj ∧ fst obj = sumUp (snd obj)

)
inv

(
scenario db tx

)

(eval tx ∧ eval db ∧ fst db = sumUp (snd db)
)

Let us introduce the following abbreviations:

I(x) = (eval x ∧ fst x = sumUp (snd x)
)

PRE = (eval tx ∧ I(db)
)

The “Invariant” tactic of extended Sparkle will introduce the universally quanti-
fied variables db and tx among the declared variables, and then rewrite the above
invariant into the following subgoals.

1. ∀db1: PRE ∧ db = db1 ⇒ I(db1)

2. ∀db1 ∀db2: PRE ∧ I(db1) ∧ db2 = insertFirst db1 tx ⇒ I(db2)

3. ∀db1 ∀db2: PRE ∧ I(db1) ∧ db2 = sortDB db1 ⇒ I(db2)

4. ∀db1 ∀db2: PRE ∧ I(db1) ∧ db2 = removeFirst db1 ⇒ I(db2)

These subgoals can then be proved with Sparkle – the proofs require about 300
steps.

6.2 Dining philosophers with an unless property

This example uses an implementation of Dijkstra’s famous “dining philosophers’
problem” [6]. In the middle of a dining room there is a table with a big plate of
spaghetti. Around the table there are five philosophers spending their lives thinking
and eating spaghetti. A philosopher needs two forks for eating spaghetti. However,
there are only five forks available, one between each pair of philosophers. Hence
two neighbouring philosophers can never eat simultaneously. At the beginning of
the program each philosopher is thinking. When a philosopher becomes hungry,
he tries to pick up the two forks that he is sharing with his two neighbours. If he



Extending the Sparkle Core language with object abstraction 433

manages to do so, he eats for a while, and then he releases the forks and starts
thinking. A hungry philosopher has to wait, if one of the neighbouring philosophers
is using the fork shared between them.

The example program uses concurrent ObjectIO processes. It has a graphical
user interface for the manipulation of the philosophers. Each philosopher is imple-
mented as a process with its own local state. Moreover, the application also contains
a server process that provides the necessary synchronisation. An important part
of the server process is the next_event function, which controls the critical state
transitions of the philosophers.

The local state of the philosopher processes is a value of type State.

:: State = Thinking | Hungry | Eating

The local state of the server process is a list of States. The ith element of this list
is invariantly equal to the local state of the ith philosopher process.

If a philosopher would like to change its local state from Thinking to Eating,
or from Eating to Thinking, the server computes the new states for all of the
philosophers. This computation is implemented in the next_event function.

next_event :: [State] Int -> [State]

The function has two arguments. The first one is the local state of the server
and the second one is the ordinal number of the philosopher requesting the state
transition. The result of the function is the new local state of the server.

In order to present an unless property in a very simple context, this concurrent
program will be simulated with the following function.

process_events:: [State] [Int] -> [State]
process_events states [] = states
process_events states [index:indices]
| index < 0 || index >= length states // illegal index

= process_events states indices // discarding...
| otherwise

# states = next_event states index // process index
= process_events states indices // process rest

Since the current implementation of the extended Sparkle system cannot handle rule
alternatives, the guards have to be eliminated and the second function alternative
has to be reformulated with an if-construct. Furthermore, the state transitions
have to be made explicit with let-before constructs: this justifies the presence of
the second, at first glance unnecessary, such construct in the following function
alternative.

process_events states [index:indices]
# states = if (index < 0 || index >= length states)

states // skip illegal index
(next_event states index) // process index

# states = process_events states indices // process rest
= states
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Let us introduce an object that corresponds to the local state of the server
process. Then the process_event function can be rewritten to extended Clean.

process_events :: [State] [Int] -> [State]
process_events (.|. obj1 states1) [] = (.|. obj1 states1)
process_events(.|. obj1 states1) [index:indices]
.#. (.|. obj1 states2) =

if ((index < 0) || (index >= length (.|. obj1 states1)))
(.|. obj1 states1)
( next_event (.|. obj1 states1) index )

.#. (.|. obj1 states3) process_events (.|. obj1 states2) indices
= (.|. obj1 states3)

The unless property expresses the following. Given a Hungry philosopher and
his Eating right neighbour, they will not change their states unless the Eating right
neighbour starts Thinking. To be less informal, this can be written in the following
way.

∀i ∈ domain(states) :
statesi = Hungry ∧ statesrightneighbour(i) = Eating
unless(process events)
statesrightneighbour(i) = Thinking

The property “P unlessprog Q” means that during the execution of the program
“prog”, the statement P remains to hold until the statement Q becomes true. This
kind of safety properties can be expressed with the weakest precondition operator:
for every atomic state transition of the program “prog”, the weakest precondition
of P ∨Q with respect to the state transition follows from P ∧ ¬Q.

∀st ∈ prog : P ∧ ¬Q ⇒ wp(st, P ∨Q)

Now let us formulate the unless property in a more precise way. To increase
readability, the syntax of the extended Sparkle Core is not followed rigorously.

∀states ∀indices ∀i:

(eval states) ∧ (eval indices) ∧ (i >= 0) ∧ (i < length states) ∧
(obj1!!i == Hungry) ∧ (obj1!!(rightneighbour obj1 i) == Eating)

UNLESS (process_events states indices)

(obj1!!(rightneighbour obj1 i) == Thinking)

The appendix provides the function computing the semantical value of unless
propositions. Let us investigate what proposition results from applying this seman-
tical function. In the extended Clean version of the function process_events there
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are two steps, two atomic state transitions affecting the object obj1. The first step
is the if-construct, and the second step is the recursive call to process_events.
When reasoning about safety properties, proofs about recursive calls of functions
with the same object argument(s) can be omitted. Hence there is only one propo-
sition to prove for the afore-mentioned unless property:

∀states ∀indices’ ∀i ∀states’ ∀index ∀indices

(eval states) ∧ (eval indices’) ∧ (i >= 0) ∧ (i < length states) ∧
(states!!i == Hungry) ∧
(states!!(rightneighbour states i) == Eating) ∧
¬ (states!!(rightneighbour states i) == Thinking) ∧
(indices’ = [index:indices]) ∧
(states’ = if (index < 0 || index >= length states)

states
(next_event states index))

⇒
(
(eval states’) ∧ (eval indices’) ∧ (i >= 0) ∧ (i < length states’) ∧
(states’!!i == Hungry) ∧
(states’!!(rightneighbour states’ i) == Eating)

)

∨ (states’!!(rightneighbour states’ i) == Thinking)

7 Conclusions and future work

The authors have studied a method that allows the formulation and proof of safety
properties (namely invariants and unless) in pure functional languages. The concept
of object abstraction has been presented, which is based on contracting functional
variables into objects with dynamic (temporal) behaviour. Language constructs
describing object abstraction have been introduced into the purely functional pro-
gramming language Clean. This extended Clean language is considered as an inter-
mediate language: programs written in this language are intended to be generated
by an appropriate integrated development environment containing a refactoring
tool. Support for the new language constructs will thus be provided by an interac-
tive environment.

Programs written in the extended Clean language are processed by a theorem
prover framework. This framework was obtained by enabling Sparkle, the theorem
prover designed for Clean, to manage object abstraction and temporal propositions.
This paper describes invariant and unless propositions, with a focus on the semantic
function computing the meaning of invariant propositions in the logic framework
of the Sparkle system.

In the future the object abstraction technique will be generalised to enable
the definition of the states of the same object within more than one function.
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This will make it possible to express that the atomic state transitions of an object
can be spread among many function bodies. This generalisation requires a more
sophisticated view of “time” (with respect to temporal operators) and a hierarchical
system of state transitions.

The authors also plan to implement an integrated software development environ-
ment, which supports object abstraction in the user interface and related refactoring
possibilities. This IDE will eliminate the need for programming in extended Clean.
Furthermore, the Sparkle framework will be made capable of handling additional
temporal propositions, so that it will be possible to express progress propositions
(such as “ensures” and “leads-to” [4]) as well. Finally, in order to make temporal
reasoning less cumbersome in practice, the authors will provide useful theorems
about temporal operators (such as the “weakening” rule or the “conjunction with
invariants” rule [13]) as axioms.

The main advantage of the method described in this paper is that in this ex-
tended logical framework certain important properties of programs can be expressed
conveniently and briefly, at a high level of abstraction. The sophisticated logical
operators of temporal logics can neatly express safety and progress properties of
programs, and these properties, as the examples of this paper have illustrated, are
sensible and useful also in the world of functional programming. Moreover, the
addition of theorems about temporal logical operators can make reasoning about
programs even less tiring and less complicated.

Another important issue of this approach is that the proofs constructed in the
extended Sparkle system are represented in a completely machine processable form.
As a consequence, not only the program, but also its proved temporal properties
and the proofs themselves can be stored, transmitted and checked by a computer.
This allows the transmission of safe code among (components of) applications. A
detailed presentation of this proof-carrying code technique can be found in [8].
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A The semantics of invariant and unless proposi-
tions

The semantics of an invariant and an unless proposition in a program context ψ
can be computed according to the following definition:

Sem ((p unless f cxs q), ψ)

=

j
SemFunUnless(p,Def(f, ψ), cxs, q) if cxs = Arity2(f)

undef otherwise

SemFunUnless : OP × (〈V•
e ∪Odef〉 × 〈V•

t 〉 × Eext) × 〈Eext〉 × P → P
SemFunUnless (p, (xs, αs, e), cxs, q)

= SemExprUnless(p, q, e, T rue)

SemExprUnless : OP × OP × Eext × P → P
SemExprUnless(p, q, (let binds in e), pred) = SemExprUnless(p, q, e, pred)

SemExprUnless(p, q, (step stepbinds in e), pred)
= SemExprUnless(p, q, e, (binary pred and (WpImpCalcUn(p, q, stepbinds))))

SemExprUnless(p, q, , pred) = pred

WpImpCalcUn : OP × OP × 〈StepBind〉 → P
WpImpCalcUn(p, q, stepbinds)

= ObjToV arLeft((binary p or q),
ObjToV arRight((binary p and (unary not q)), nil, stepbinds,nil), nil, nil)

Sem ((p inv f cxs q), ψ)

=

j
SemFunInv(p,Def(f, ψ), cxs, q) if cxs = Arity2(f)

undef otherwise

SemFunInv : OP × (〈V•
e ∪Odef〉 × 〈V•

t 〉 × Eext) × 〈Eext〉 × P → P
SemFunInv (p, (xs, αs, e), cxs, q)

= SemExprInv(p, e, (ForallP red(q, (binary q implies

ObjSubst(Parameter(xs, cxs), p)))), q)

SemExprInv : OP × Eext × P × P → P
SemExprInv(p, (let binds in e), pred, q)

= SemExprInv(p, e, pred, binary q and BindsToEqs(binds))
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SemExprInv(p, (step stepbinds in e), pred, q)
= SemExprInv(p, e, (binary pred and

(ForallP red(q, (binary q implies WpImpCalc(p, stepbinds))))), q)

SemExprInv(p, , pred, q) = pred

WpImpCalc : OP × 〈StepBind〉 → P
WpImpCalc(p, stepbinds)

= ObjToV arLeft(p, ObjToV arRight(p,nil, stepbinds,nil), nil, nil)

ObjToV arLeft : OP × (P , 〈StepBind〉, 〈(O,V•
e )〉) × 〈LetBind〉 × 〈(O,V•

e )〉 → P

ObjToV arLeft(p, (oldp, nil, changedlist), letbinds, leftchangedlist)
= CreateForalls(changedlist ∗ leftchangedlist,

binary oldp implies

( binary BindsToEqs(letbinds)
implies ObjListChangeInPred(changedlist, p) ) )

ObjToV arLeft(p, (oldp, cons ( (obj o x) binds e) sbs, changedlist),
letbinds, leftchangedlist)

= ObjToV arLeft(ObjChange(o, ox, p), (oldp, sbs, changedlist),
cons (ox binds e) letbinds, cons (o, ox) leftchangedlist),

where ox = NewV ar()

ObjToV arLeft(p, (oldp, cons ( x binds e) sbs, changedlist),
letbinds, leftchangedlist)

= ObjToV arLeft(p, (oldp, sbs, changedlist),
cons (x binds e) letbinds, leftchangedlist), if x ∈ V•

e

CreateForalls : 〈(O,V•
e )〉 × P → P

CreateForalls(nil, pred) = pred

CreateForalls(cons (o, x) changedlist, pred)
= CreateForalls(changedlist, forall exprs x (pred))

BindsToEqs : 〈LetBind〉 → P
BindsToEqs(nil) = constant true

BindsToEqs(cons (x binds e) bs)
= binary ( (var x) equals e) and BindsToEqs(bs)

ObjToV arRight: OP × 〈StepBind〉 × 〈StepBind〉 × 〈(O, V•
e )〉

→ (P , 〈StepBind〉, 〈(O, V•
e )〉)
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ObjToV arRight(p, changedbinds, nil, changedlist)
= (newp, changedbinds, (changedlist ∗ newchangedlist)),

where (newp, newchangedlist) = ObjToNewV ars2(p)

ObjToV arRight(p, changedbinds, cons (x binds e) bs, oldchangedlist)
= ObjToV arRight(ObjListChangeInPred(changedlist, p),

changedbinds ∗ (cons (x binds changedexpr) nil),
ObjListChangeInBinds(changedlist, bs),

(oldchangedlist ∗ changedlist)),
where (changedlist, changedexpr) = ObjToV arInExpr(e)

ObjListChangeInPred : 〈(O, V•
e )〉 × OP → OP

ObjListChangeInPred(nil, p) = p

ObjListChangeInPred(cons (o, x) oxs, p)
= ObjListChangeInPred(oxs, ObjChange(o, x, p))

ObjListChangeInBinds : 〈(O, V•
e )〉 × 〈StepBind〉 → 〈StepBind〉

ObjListChangeInBinds(oxs, nil) = nil

ObjListChangeInBinds(oxs, cons (x binds e) es)
= cons ( x binds (ObjListChangeInExpr(oxs, e)) )

ObjListChangeInBinds(oxs, es)

ObjToV arInExpr : Eext → (〈(O, V•
e )〉, E

ObjToV arInExpr(var x) = (nil, var x)

ObjToV arInExpr(obj o x) = (cons (o, ox) nil, var ox),
where ox = NewV ar()

ObjToV arInExpr(basic b) = (nil, basic b)

ObjToV arInExpr(symbol s σs es)
= (changedlist, symbol s σs changedexprlist),

where (changedlist, changedexprlist) = ObjToV arInExprList(es)

ObjToV arInExpr(apply e1 to e2)
= (changedlist1 ∗ changedlist2, apply changedexpr1 to changedexpr2),

where (changedlist1, changedexpr1) = ObjToV arInExpr(e1),
(changedlist2, changedexpr2)

= ObjToV arInExpr(ObjListChangeInExpr(changedlist1, e2))

ObjToV arInExpr(case e of alts)
= (changedlist, case changedexpr of alts),

where (changedlist, changedexpr) = ObjToV arInExpr(e)

ObjToV arInExpr(let binds in e)
= (changedlist, let binds in changedexpr),

where (changedlist, changedexpr) = ObjToV arInExpr(e)
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ObjToV arInExpr(step stepbinds in e)
= (changedlist1 ∗ changedlist2, step changedstepbinds in changedexpr),

where (changedlist1, changedstepbinds) = ObjToV arInBinds(stepbinds),
(changedlist2, changedexpr)

= ObjToV arInExpr(ObjListChangeInExpr(changedlist1, e))

ObjToV arInExpr(let! x1 = e1 in e2)
= (changedlist1 ∗ changedlist2, let! x1 = changedexpr1 in changedexpr2),

where (changedlist1, changedexpr1) = ObjToV arInExpr(e1),
(changedlist2, changedexpr2)

= ObjToV arInExpr(ObjListChangeInExpr(changedlist1, e2))

ObjToV arInExpr(⊥σ) = (nil, ⊥σ)
ObjToV arInExprList : 〈Eext〉 → (〈(O, V•

e )〉, 〈E〉
ObjToV arInExprList(nil) = (nil, nil)

ObjToV arInExprList(cons e es)
= (changedlist1 ∗ changedlist2, cons changedexpr changedexprlist),
where(changedlist1, changedexpr) = ObjToV arInExpr(e),

(changedlist2, changedexprlist)
= ObjToV arInExprList(ObjListChangeInExprList(changedlist1, es))

ObjToV arInBinds : 〈StepBind〉 → (〈(O, V•
e )〉, 〈LetBind〉)

ObjToV arInBinds(nil) = (nil, nil)

ObjToV arInBinds(cons sb sbs)
= (changedlist1 ∗ changedlist2, cons changedbind changedbinds)
where (changedlist1, changedbind) = ObjToV arInBind(sb),

(changedlist2, changedbinds)
= ObjToV arInBinds(ObjListBindsChange(changedlist1, sbs))

ObjToV arInBind : StepBind→ (〈(O, V•
e )〉, LetBind)

ObjToV arInBind((obj o x) binds e)
= (cons (o, ox) changedlist, ox binds changedexpr),

where ox = NewV ar(),
(changedlist, changedexpr)

= ObjToV arInExpr(ObjListChangeInExpr(cons (o, ox) nil, e))

ObjToV arInBind(x binds e) = ObjToV arInExpr(e), if x ∈ V•
e

ObjListBindsChange : 〈(O, V•
e )〉 × 〈StepBind〉 → 〈StepBind〉

ObjListBindsChange(oxs, nil) = nil

ObjListBindsChange(oxs, cons sb sbs)
= cons ObjListBindChange(oxs, sb) ObjListBindsChange(oxs, sbs)

ObjListBindChange : 〈(O, V•
e )〉 × StepBind→ StepBind

ObjListBindChange(nil, bs) = bs

ObjListBindChange(cons ox oxs, bs)
= ObjListBindChange(oxs, ObjBindChange(ox, bs))

ObjBindChange : (O, V•
e ) × StepBind→ StepBind
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ObjBindChange((objid z), x), (objid z) binds e)
= x binds ObjExprChange(e)

ObjBindChange((objid z), x), (objid y) binds e)
= (objid y) binds ObjExprChange(e), if z 	= y

ObjBindChange((objid z), x), w binds e)
= w binds ObjExprChange(e), if w ∈ V•

e

ObjListChangeInExprList : 〈(O, V•
e )〉 × 〈Eext〉 × 〈Eext〉

ObjListChangeInExprList(oxs, nil) = nil

ObjListChangeInExprList(oxs, cons e es)
= cons ObjListChangeInExpr(oxs, e) ObjListChangeInExprList(oxs, es)

ObjListChangeInExpr : 〈(O, V•
e )〉 × Eext → Eext

ObjListChangeInExpr(nil, e) = e

ObjListChangeInExpr(cons(o, x) oxs, e)
= ObjListChangeInExpr(oxs, ObjExprChangeext(o, x, e))

ObjExprChangeext : O × V•
e × Eext → Eext

ObjExprChangeext(o, x, (var y)) = var y
ObjExprChangeext((objid z), x, (obj (objid z)) w) = var x

ObjExprChangeext((objid z), x, (obj (objid y)) w))
= obj (objid z)) w if y 	= z

ObjExprChangeext(o, x, (basic b)) = basic b

ObjExprChangeext(o, x, (symbol s σs es))
= symbol s σs ObjExprChangeListext(o, x, es)

ObjExprChangeext(o, x, (apply e1 to e2))
= apply ObjExprChangeext(o, x, e1) to ObjExprChangeext(o, x, e2)

ObjExprChangeext(o, x, (case e of alts))
= case ObjExprChangeext(o, x, e) of alts

ObjExprChangeext(o, x, (let binds in e))
= let binds in ObjExprChangeext(o, x, e)

ObjExprChangeext(o, x, (step stepbinds in e))
= let ObjListBindChange((cons (o, x) nil), stepbinds) binds

in ObjExprChangeext(o, x, e)

ObjExprChangeext(o, x, (let! x1 = e1 in e2))
= let! x1 = ObjExprChangeext(o, x, e1) in ObjExprChange

ext(o, x, e2)

ObjExprChangeext(o, x, (⊥σ)) = ⊥σ

ObjExprChangeListext : O × V•
e × 〈Eext〉 → 〈Eext〉

ObjExprChangeListext(o, x, nil) = nil
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ObjExprChangeListext(o, x, cons e es)
= cons ObjExprChange(o, x, e) ObjExprChangeListext(o, x, es)

ObjSubst : 〈EQV ars〉 × OP → P
ObjSubst(nil, p) = ObjToNewV ars(p)

ObjSubst(cons ((objid z) equals e) eqs, p)
= ObjPropSubst((var ox) equals e, eqs, ObjChange((objid z), ox, p)),

where ox = NewV ar()

ObjSubst(cons ((var z) equals e) eqs, p)
= ObjPropSubst((var z) equals e, eqs, p)

ObjPropSubst : P times 〈EQV ars〉 × OP → P
ObjPropSubst(prop, nil, p) = binary prop implies ObjToNewV ars(p)

ObjPropSubst(prop, cons ((objid z) equals e) eqs, p)
= ObjPropSubst(binary prop and (var ox equals e), eqs,

ObjChange((objid z), ox, p)), where ox = NewV ar()

ObjPropSubst(prop, cons ((var z) equals e) eqs, p)
= ObjPropSubst(binary prop and ((var z) equals e), eqs, p)

ObjChange : O × V•
e × OP → OP

ObjChange(o, x, unary op p) = unary op ObjChange(o, x, p)

ObjChange(o, x, binary p op q)
= binary ObjChange(o, x, p) op ObjChange(o, x, q)

ObjChange(o, x, quantor q p) = quantor q ObjChange(o, x, p)

ObjChange(o, x, e1 equals e2)
= ObjExprChange(o, x, e1) equals ObjExprChange(o, x, e2)

ObjChange(o, x, var px) = var px
ObjChange(o, x, constant c) = constant c

ObjExprChangetemp : O × V•
e × E temp → E temp

ObjExprChangetemp(o, x, (var y)) = var y
ObjExprChangetemp((objid z), x, (objid z)) = var x
ObjExprChangetemp((objid z), x, (objid y)) = objid y if y 	= z
ObjExprChangetemp(o, x, (basic b)) = basic b

ObjExprChangetemp(o, x, (symbol s σs es))
= symbol s σs ObjExprChangeListtemp(o, x, es)

ObjExprChangetemp(o, x, (apply e1 to e2))
= apply ObjExprChangetemp(o, x, e1) to ObjExprChangetemp(o, x, e2)
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ObjExprChangetemp(o, x, (case e of alts))
= case ObjExprChangetemp(o, x, e) of alts

ObjExprChangetemp(o, x, (let binds in e))
= let binds in ObjExprChangetemp(o, x, e)

ObjExprChangetemp(o, x, (let! x1 = e1 in e2))
= let! x1 = ObjExprChangetemp(o, x, e1)

in ObjExprChangetemp(o, x, e2)

ObjExprChangetemp(o, x, (⊥σ)) = ⊥σ

ObjExprChangeListtemp : O × V•
e × 〈E temp〉 → 〈E temp〉

ObjExprChangeListtemp(o, x, nil) = nil

ObjExprChangeListtemp(o, x, cons e es)
= cons ObjExprChange(o, x, e) ObjExprChangeListtemp(o, x, es)

EQV ars = {e1 equals e2 | e1 ∈ {var x | x ∈ V•
e } ∪ O, e2 ∈ Eext}

Parameter : 〈V•
e ∪ Odef〉 × 〈Eext〉 → 〈EQV ars〉

Parameter(nil, nil) = nil

Parameter(cons (obj o x) xs, cons e es)
= (cons (o equals e) nil) ∗ Parameter(xs, es)

Parameter(cons (exprvar z) xs, cons e es)
= (cons ((var (exprvar z)) equals e) nil) ∗ Parameter(xs, es)

The definitions above used some simple functions which are not formally defined
here. Informally, they calculate the following:

ObjToNewV ars : OP → P Transforms the object identifiers in an
object proposition to fresh variables, so it creates an object-less proposition.

ObjToNewV ars2 : OP → (P , 〈(O, V•
e )〉) Same as the previous, but it

returns the applied mapping from objects to variables.

NewV ar : V•
e It gives a fresh variable.

ForallPred : P × P → P Here ForallPred(q, pred) creates a “forall
exprs x,, quantor to pred for every free expression-variable x of q.


