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Abstract

This note deals with the closedness of nilpotent deterministic root-to-

frontier tree languages with respect to the Boolean operations union, inter-

section and complementation. Necessary and sufficient conditions are given

under which the union of two deterministic tree languages is also determin-

istic. The paper ends with a characterization of the largest subclass of the

class of nilpotent deterministic root-to-frontier tree languages closed under

the formation of complements.

1 Introduction

In [3] we introduced nilpotent DR tree languages and characterized them by means
of syntactic monoids. For string languages there is another well known characteri-
zation of nilpotency: a language L is nilpotent if and only if L or the complement
of L is finite. Obviously, this implies that the complements of nilpotent languages
are also nilpotent. This result is true for tree languages recognized by nilpotent
frontier-to-root tree recognizers (see, [2]), but it does not hold for nilpotent DR
tree languages. In this note we study the closedness of nilpotent DR tree languages
under the Boolean operations: union, intersection and complementation. We intro-
duce the concepts of union and intersection direct products of DR tree recognizers,
which turn out to be very useful in studying unions and intersections of determin-
istic tree languages. We give necessary and sufficient conditions under which the
union of two deterministic tree languages is also deterministic. Moreover, we deter-
mine that subclass of the class of nilpotent DR tree languages which is closed under
complementation. It will turn out that unary tree languages play an important role
in these classes.

Deterministic tree languages have been intensively studied by E. Jurvanen. In [5]
she gives several counter examples, among others, for the closedness of deterministic
tree languages under union.
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2 Notions and notations

In this paper Σ is always a ranked alphabet, i.e. a finite nonempty set of operation
symbols, and for each m ≥ 1, we denote by Σm the set of m-ary symbols in Σ. We
assume that there are no nullary symbols in Σ, but instead a finite non-empty leaf
alphabet X is used. The set TΣ(X) of Σ-terms over X is the least set such that

(1) X ⊆ TΣ(X), and

(2) σ(p1, . . . , pm) ∈ TΣ(X), whenever m ≥ 1, σ ∈ Σm and p1, . . . , pm ∈ TΣ(X).

Such terms are regarded as trees in the usual way and we call them ΣX-trees (or
just trees). A ΣX-tree language is any subset of TΣ(X).

A (finite) DR Σ-algebra consists of a non-empty (finite) set A and a Σ-indexed
family of root-to-frontier operations

σA : A −→ Am (σ ∈ Σ),

where the arity m is that of σ(∈ Σm). We write simply A = (A, Σ). A DR ΣX-
recognizer is a system A = (A, a0, α), where A = (A, Σ) is a finite DR Σ-algebra,
a0 ∈ A is the initial state, and α : X → ℘A is the final state assignment. (℘A
denotes the power set of A.)

We extend α to a mapping αA : TΣ(X) → ℘A in the following way:

(1) xαA = xα for each x ∈ X ,

(2) pαA = {a ∈ A | σA(a) ∈ p1αA × . . . × pmαA} for p = σ(p1, . . . , pm).

The tree language recognized by A is defined as the set

T (A) = {p ∈ TΣ(X) | a0 ∈ pαA}.

A ΣX-tree language is DR-recognizable if it is recognized by some DR ΣX-
recognizer.

The path alphabet Σ̂ associated with a ranked alphabet Σ is defined by

Σ̂ =
⋃

m>0

Σm × {1, . . . , m}.

Any element (σ, i) of Σ̂ is regarded as a letter of an ordinary alphabet, and for
convenience we write it as σi. Words over Σ̂ are used for representing paths leading
from the root to a leaf in a ΣX-tree. In a letter σi appearing in such a representa-
tion, the component σ gives the label of a node while the i indicates the direction
taken at that node.

For any x ∈ X , the set gx(p) of x-paths in a given ΣX-tree p is defined as follows:

(1) gx(x) = {e}, where e is the empty word;

(2) gx(y) = ∅ for y ∈ X , y 6= x;
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(3) gx(p) = σ1gx(p1) ∪ . . . ∪ σmgx(pm) for p = σ(p1, . . . , pm).

The mappings gx are extended to ΣX-tree languages in the natural way, and for
any T ⊆ TΣ(X) and x ∈ X , we write Tx = gx(T ). These sets Tx ⊆ Σ̂∗ are called
the path languages of T . A ΣX-tree language T is said to be closed if p ∈ T for
any ΣX-tree p such that gx(p) ⊆ Tx for every x ∈ X . As shown in [1] and in [7], a
regular tree language is DR-recognizable iff it is closed.

The following result is from [4].

Theorem 1. For any closed ΣX-tree language the following conditions are equiv-
alent:

(1) T ∈ DRecΣ(X);

(2) there is a congruence on Σ̂∗ of finite index saturating all of the path languages
Tx (x ∈ X);

(3) µT is of finite index.

The quotient monoid PM(T ) = Σ̂∗/µT is called the syntactic path monoid of
T (⊆ TΣ(X)). As usual, set Σ̂+ = Σ̂∗\{e}, and denote by the same µT the restriction
of µT to Σ̂+. Then PS(T ) = Σ̂+/µT is called the syntactic path semigroup of T .
Immediately from Theorem 1 one gets

Corollary 2. A closed tree language is DR-recognizable iff its syntactic path
monoid is finite.

Let A = (A, Σ) be a DR Σ-algebra, a ∈ A an element and p ∈ TΣ(X) a tree.
Define the word fr(ap) ∈ A∗ in the following way:

1) if p = x ∈ X then fr(ap) = a,

2) if p = σ(p1, . . . , pl) then fr(ap) = fr(a1p1) . . . fr(alpl), where (a1, . . . , al) =
σA(a).

For a ΣX-tree p set mh(p) = min{|u| : u ∈
⋃

(gx(p) : x ∈ X)}, where |u| denotes
the length of u. In words, mh(p) is the length of the shortest path leading from the
root of t to a leaf.

A DR Σ-algebra A = (A, Σ) is nilpotent if there are an integer k ≥ 0 and an
element ā ∈ A such that for all a ∈ A and p ∈ TΣ(X) with mh(p) ≥ k, fr(ap) = āl

for a natural number l. This ā is the nilpotent element of A and k is called the
degree of nilpotency of A. A DR ΣX-recognizer A = (A, a0, α) is nilpotent if A is
nilpotent. Moreover, a ΣX-tree language T is nilpotent if it can be recognized by
a nilpotent DR ΣX-recognizer.

A semigroup S is nilpotent if it has a zero-element 0 and there is a non-negative
integer k such that s1 . . . sk = 0 for all s1, . . . , sk ∈ S. The integer k is the degree
of nilpotency of S.

For notions and notations not defined here, see [3] and [4].
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3 Union

Let A = (A, Σ) and B = (B, Σ) be DR Σ-algebras. Their direct product A × B =
(A × B, Σ) is given by

σA×B((a, b)) = ((π1(σ
A(a)), π1(σ

B(b))), . . . , (πm(σA(a)), πm(σB(b))))

(σ ∈ Σm, (a, b) ∈ A × B). Take two DR ΣX recognizers A = (A, a0, α) and
B = (B, b0, β). Their union direct product is

A ×∪ B = (A×B, (a0, b0), α ×∪ β),

where (α ×∪ β)(x) = (α(x) × B) ∪ (A × β(x)) (x ∈ X).

Theorem 3. Let A and B be two normalized DR ΣX-recognizers. Then T (A) ∪
T (B) is deterministic if and only if T (A) ∪ T (B) = T (A×∪ B).

Proof. Assume that T (A) ∪ T (B) is deterministic. Observe that

T (A) ∪ T (B) ⊆ T (A×∪ B)

holds for arbitrary DR ΣX-recognizer A and B. Take a p ∈ T (A ×∪ B). Then,
by the definition of the union product, using the assumption that A and B are
normalized, we obtain that gx(p) ⊆ gx(T (A)∪ T (B)) for each x ∈ X . Therefore, p
is in the closure of T (A) ∪ T (B). However, since T (A) ∪ T (B) is deterministic, it
is closed, i.e it coincides with its closure. Therefore, p ∈ T (A) ∪ T (B).

The converse statement is obvious, since A ×∪ B is deterministic.

We show that in order to study whether the union of two given nilpotent DR
ΣX-languages is nilpotent, it is enough to check if their union is deterministic. For
this, we need

Lemma 4. Let A = (A, a0, α) be a nilpotent DR ΣX-recognizer. There exists a
normalized nilpotent DR ΣX-recognizer B = (B, b0, β) with T (A) = T (B).

Proof. Assume that A is nilpotent of degree k with the nilpotent element ā. Nor-
malize A in the following way: if σ(a) (σ ∈ Σ, a ∈ A) contains a 0-state and ā
is a 0-state then replace it by σ(a) = (ā, . . . , ā). (Observe that none of the states
is a 0-state if ā is not a 0-state.) Let us denote by A∗ = (A∗, a0, α) the resultant
recognizer. Then A∗ is normalized, deterministic and T (A∗) = T (A) (see, p. 115
in [4]). It remains to show that A∗ is nilpotent. It is enough to deal with the
case when ā is a 0-state. Let a ∈ A be a state and p a tree with mh(p) ≥ k. The
computing of p in A and A∗ starting in a coincides up to the point when A arrives
at a 0-state. At this node A∗ will be in state ā and it remains there during the
computing of the subtree belonging to this node. Therefore, A∗ is nilpotent also of
degree k with the nilpotent element ā.

Theorem 5. Let S, T ⊆ TΣ(X) be two nilpotent DR tree languages. Then S ∪ T
is nilpotent if and only if it is deterministic.
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Proof. If S ∪ T is nilpotent then it is deterministic by definition.
Conversely, assume that S ∪ T is deterministic. Let S = T (A) and T = T (B)

where A and B are normalized nilpotent DR recognizers such that the degree of
nilpotency of A is k and that of B is l. By Lemma 4, such A and B exist. Moreover,
by Theorem 3, S ∪ T = T (A ×∪ B). It can be checked in an obvious way that
A×∪ B is nilpotent with degree of nilpotency max{k, l}.

Next we give necessary and sufficient conditions under which the union of two
deterministic tree languages is not deterministic.

Theorem 6. Let S and T be DR ΣX-languages. Then S ∪ T is not deterministic
if and only if there are a tree p ∈ TΣ(X), two variables x, y ∈ X and two different
paths u ∈ gx(p) and v ∈ gy(p) such that u ∈ gx(S) and u 6∈ gx(T ), and v ∈ gy(T )
and v 6∈ gy(S).

Proof. Assume that S ∪ T is not deterministic. Let A and B be normalized DR
ΣX-recognizers with S = T (A) and T = T (B). Since S ∪ T is not deterministic,
there is a tree p ∈ TΣ(X) such that p ∈ T (A ×∪ B), p 6∈ T (A) and p 6∈ T (B).
Therefore, for some x, y ∈ X , u ∈ gx(p) and v ∈ gy(p) we have u ∈ gx(S) \ gx(T ),
v ∈ gy(T ) \ gy(S) and u 6= v.

Conversely, assume that the conclusions of the theorem hold. Denote by w the
maximal initial segment of u and v. Then u and v are of form u = wσiu

′ and
v = wσjv

′, and i 6= j. Since u ∈ gx(S), there is a q ∈ S with u ∈ gx(q). Similarly,
there is a q′ ∈ T with v ∈ gy(q

′). Let r be the tree which is obtained from q′ by
replacing its subtree at wσi by the subtree of q at wσi. Obviously, r is not in S∪T ,
however it is in the closure of S ∪ T . Therefore, S ∪ T is not deterministic.

Obviously, the trees p satisfying the conditions of the previous theorem are not
unary. Therefore, from Theorem 6 we directly obtain

Corollary 7. Let S and T be two DR ΣX-languages. If S \ T ⊆ TΣ1
(X) or

T \ S ⊆ TΣ1
(X), then S ∪ T is deterministic.

This corollary, by Theorem 5, implies

Corollary 8. Let S and T be two nilpotent DR ΣX-languages. If one of them
differs from the other one only in unary trees then S ∪ T is nilpotent.

Let p ∈ TΣ(X) \X be a tree. Then root(p) = σ if p = σ(p1, . . . , pm). For a tree
language T ⊆ TΣ(X), set root(T ) = {root(p)|p ∈ T \ X}.

The following result directly follows from Theorems 6 and 5.

Corollary 9. Let S and T be nilpotent DR ΣX-languages. If

root(S) ∩ (root(T ) = ∅,

then S ∪ T is nilpotent.

Later we shall use the following obvious result.
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Lemma 10. Let S, T ⊆ TΣ(X) be nilpotent DR tree languages. Then for each
x ∈ X, if both gx(S) and gx(T ) are infinite then gx(S) \ gx(T ) and gx(T ) \ gx(S)
are finite.

Corollary 11. Let S and T be nilpotent DR ΣX-languages such that S \ T 6⊆
TΣ1

(X). If for an x ∈ X, gx(T ) \ gx(S) is infinite, then S ∪ T is not nilpotent.

Proof. Take a p ∈ S \T with p 6∈ TΣ1
(X). Then there exist a variable y ∈ X and a

path u ∈ gy(p) such that u 6∈ gy(T ). Assume that the degree of nilpotency of S is k
and that of T is l. Then for the variable x satisfying the condition of the corollary,
all the trees r ∈ TΣ(X) of the form f̄r(r) = xt with mh(p) ≥ l are in T . Let q be
the tree which is obtained from p by replacing each leaf, except for the leaf at u, by
a tree r for which mh(r) ≥ max{k, l} and f̄r(r) = xt under some t. By Lemma 10,
gx(S) is finite, thus q obviously satisfies the conditions of Theorem 6. Therefore,
S ∪ T is not nilpotent.

From Corollary 11 we directly obtain

Corollary 12. Let S and T be two nilpotent ΣX-languages. If S is finite, T is
infinite and S \ T 6⊆ TΣ1

(X), then S ∪ T is not nilpotent.

4 Intersection

Let A = (A, a0, α) and B = (B, b0, β) be DR ΣX-recognizers. Their intersection
direct product is

A ×∩ B = (A×B, (a0, b0), α ×∩ β),

where (α ×∩ β)(x) = α(x) × β(x) (x ∈ X).

Theorem 13. Let A and B be DR ΣX-recognizers. Then T (A) ∩ T (B) =
T (A×∩ B).

Proof. Obvious.

It is also obvious that the intersection direct product of nilpotent DR tree
recognizers is nilpotent. Thus, from Theorem 13, we obtain

Theorem 14. The class of the nilpotent DR ΣX-languages is closed under inter-
section.

5 Complementation

Let T ⊆ TΣ(X) be a tree language. The complement TΣ(X)\T of T will be denoted
by c(T ). Moreover, for all tree languages T ⊆ TΣ(X) and variables x ∈ X , T (x)
will stand for T ∩ TΣ1

({x}), i.e. T (x) consists of all (unary) trees from T whose
leaves are x.
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Lemma 15. Assume that Σi = ∅ for all i > 1. Then a tree language T ⊆ TΣ(X)
is nilpotent if and only if T (x) or c(T )(x) is finite for each x ∈ X.

Proof. If T is nilpotent, then obviously, each T (x) (x ∈ X) is nilpotent. Since in
the unary case we can apply the well known characterization of nilpotent string
languages, T (x) or c(T )(x) is finite.

Conversely, assume that the conclusions of our lemma hold. Observe that in this
special case the path language gx(S) of S and the path language gx(S(x)) of S(x)
coincide for all x ∈ X and S ⊆ TΣ(X). Moreover, again by a well known classical
characterization of nilpotent string languages (see, [6]), the syntactic semigroups
of nilpotent string languages are nilpotent. Therefore, the syntactic semigroup of
gx(T ) and that of gx(c(T )) are nilpotent. This, by the proof of Theorem 5 in [3],
implies that both T and c(T ) are nilpotent.

From the above theorem we directly obtain

Corollary 16. If Σi = ∅ for all i > 1, then a tree language T ⊆ TΣ(X) is nilpotent
if and only if its complement c(T ) is nilpotent.

Lemma 17. Suppose that Σ contains at least one operational symbol with arity
greater than 1, and let T ⊆ TΣ1

(X) be a tree language. Then T is nilpotent if and
only if it is finite. Moreover, if T is nilpotent then so is its complement c(T ).

Proof. Assume that T is infinite and nilpotent, and that it is recognized by the
nilpotent DR ΣX-recognizer A = (A, a0, α) with degree of nilpotency k. Let ā
be the nilpotent element of A. Since T is infinite, there exists a p(x) ∈ T with
h(p) ≥ k. Therefore, ā ∈ α(x). Thus, all trees q ∈ TΣ({x}) with mh(q) ≥ k are
also in T , which contradicts the assumption that T ⊆ TΣ1

(X).
Conversely, assume that T ⊆ TΣ1

(X) is finite. Construct a DR ΣX-recognizer
A = (A, a0, α) in the following way. Let k = max{h(p) | p ∈ T}. Set

A = {u ∈ Σ̂∗ | |u| ≤ k} ∪ {∗}.

Moreover, for all m > 0, σ ∈ Σm and u ∈ Σ̂∗, let

σA(u) = (uσ1, . . . , uσm),

if |u| < k, and

σA(u) = σA(∗) = (∗, . . . , ∗),

otherwise. Finally, let a0 = e, and α(x) = gx(T ) (x ∈ X). It is obvious that
A = (A, a0, α) is nilpotent and T = T (A). It is also clear that A′ = (A, a0, α

′)
with α′(x) = A \ α(x) (x ∈ X) recognizes c(T ).

Lemma 18. Suppose that Σ contains at least one operational symbol with arity
greater than 1, and let T ⊆ TΣ(X) be an infinite nilpotent tree language. If c(T ) 6⊆
TΣ1

(X), then c(T ) is not nilpotent.
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Proof. Suppose that T can be recognized by a nilpotent DR ΣX-recognizer A =
(A, a0, α) with degree of nilpotency k. Let ā be the nilpotent element of A. Since
T is infinite, there is a z̄ ∈ X such that ā ∈ α(z̄). Assume that c(T ) 6⊆ TΣ1

(X) is
nilpotent and can be recognized by the nilpotent DR ΣX-recognizer B = (B, b0, β)
with the nilpotent element b̄. Suppose that the degree of nilpotency of B l. Take a
tree p ∈ c(T ) with p 6∈ TΣ1

(X). Then for some (not necessarily different) variables
x, y ∈ X , there are different paths u ∈ gx(p) and v ∈ gy(p) such that a0u 6∈ α(x)
or a0v 6∈ α(y). Assume that a0u 6∈ α(x). Suppose that l ≥ k. Replace in p the
variable y at v with an arbitrary r ∈ TΣ({z}) (z ∈ X) of height greater than or
equal to l, and denote the resultant tree by q. Obviously, q ∈ c(T ). Then b̄ ∈ β(z)
for all z ∈ X . Thus, for every tree t ∈ TΣ(X) with mh(t) ≥ l we have t ∈ c(T ).
Moreover, by our assumptions, every tree t ∈ TΣ({z̄}) with mh(t) ≥ l is also in T ,
which is a contradiction. The case k > l can be treated in a similar way.

Using Lemma 18, we give a simple example showing that there exists a nilpotent
tree language whose complement is not nilpotent.

Example 19. Let Σ = σ2 = {σ} and X = {x, y}. Take the DR Σ-algebra
A = (A, Σ) with A = {a0} and σA(a0) = (a0, a0). Finally, let A = (A, a0, α) be
the ΣX-recognizer, where α(x) = {a0} and α(y) = ∅. Obviously, A is nilpotent
and T (A) = TΣ({x}). Since T (A) is infinite and Σ1 = ∅, by Lemma 18, c(T (A))
is not nilpotent.

We now state a result characterizing those DR tree languages T for which both
T and c(T ) are nilpotent. The case Σ = Σ1 is settled by Lemma 15.

Theorem 20. Suppose that Σ contains at least one operational symbol with arity
greater than 1, and let T ⊆ TΣ(X) be a tree language. Then T and c(T ) are
simultaneously nilpotent if and only if one of the following two statements is true:

(i) T ⊆ TΣ1
(X) and T is finite.

(ii) c(T ) ⊆ TΣ1
(X) and c(T ) is finite.

Proof. If (i) holds, then, by Lemma 17, both T and c(T ) are nilpotent. Case (ii)
can be treated in the same way.

Conversely, assume that T and c(T ) are simultaneously nilpotent. If T is finite,
then c(T ) is infinite. Thus, by Lemma 18, T ⊆ TΣ1

(X). Therefore (i) holds. If
T is infinite, then c(T ) ⊆ TΣ1

(X) by Lemma 18. From this, using the assumption
that c(T ) is nilpotent, by Lemma 17, we obtain that c(T ) is finite. Therefore, (ii)
holds.
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