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Image reconstruction and correction methods in
neutron and X-ray tomography*

Zoltan Kiss! Lajos Rodek! and Attila Kubaf

Abstract

Neutron and X-ray tomography are imaging techniques for getting infor-
mation about the interior of objects in a non-destructive way. They recon-
struct cross-sections from projection images of the object being investigated.
Due to the properties of the image acquisition system, the projection images
are distorted by several artifacts, and these reduce the quality of the recon-
struction. In order to eliminate these harmful effects the projection images
should be corrected before reconstruction. Taking projections is usually an
expensive and time consuming procedure. One of our main goals has been to
try to minimize the number of projections — for example, by exploiting more
a priori information. A possible way of reducing the number of projections
is by the application of discrete tomographic methods. In this case a special
class of objects can be reconstructed, consisting of only a few homogenous
materials that can be characterized by known discrete absorption values. To
this end we have implemented two reconstruction methods. One is able to
reconstruct objects consisting of cylinders and spheres made of homogeneous
materials only. The other method is a general one in the sense that it can
be used for reconstructing any shape. Simulations on phantoms and physical
measurements were carried out and the results are presented here.

1 Introduction

Nowadays it is an interesting common task of physics and image processing to get
information about the interior of an object without damaging it in any way. For
this purpose several kinds of physical methods are deployed like X-ray, gamma, or
neutron imaging. In industrial metallic specimen examination, neutron radiation
is generally used. Tomography is an imaging tool for reconstructing objects from
their projection images. (A brief review of the principles of tomography is given in
Section 2.) However, the acquisition of neutron projections is a very time consuming
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and expensive procedure, hence the goal is to do the reconstruction using as few
projections as possible.

Discrete tomography (DT) is a special field of tomography where the object to
be reconstructed consists of a small number of homogeneous regions with known
absorption coefficients. For example, if the object is made of pure iron, the number
of regions is 2 (iron and air) and the reconstructed function can have only two
values: the absorption coefficients of iron and air. In DT we cleverly use the infor-
mation that the function has a known discrete range. This is the main difference
between the DT and the classical reconstruction techniques, as in the latter the
function/object can in general have arbitrary (non-negative) values. (Comparison
with other reconstruction techniques can be found in [7].) The knowledge of known,
discrete absorption values may allow us, using DT methods, to reconstruct such
objects from a small number of projections (e.g. 2-4) and/or to improve the quality
of the reconstruction (more details about DT see [5]).

Two DT methods have been developed at our department. Both consider the
reconstruction problem as an optimization task, but the main difference between
the two methods lies in the object representation. One of them represents the object
being investigated as a digital image and the other as a parameterized geometrical
model. These two methods and results obtained using them in phantom/measured
experiments are presented in Sections 5, 8 and 9, respectively. Both techniques
have been integrated into the system called DIRECT (DIscrete REConstruction
Techniques) [14], which is a framework available on-line that incorporates various
DT methods being developed at our department.

Since the neutron images we get are usually distorted by several different ef-
fects, it is common practice to apply some correction methods before doing any
reconstruction from the acquired projections. These effects are usually due to the
incorrect settings of the image acquisition apparatus and the physical properties
of the radiation used. These distorting effects and a description of the proposed
correction techniques are given in Section 4, and our success in dealing with the
former is outlined in Section 7.

2 Basic definitions

In this section we shall give a brief overview of the mathematical foundations of
tomography, describing the methods, techniques, and algorithms used in this paper.

In non-destructive testing (NDT) several kinds of objects are imaged by some
transmission rays like X-rays or neutron rays. The rays transmitted through the
object are then partially absorbed. The relation between the initial (unabsorbed)
and transmitted intensities, Is and Ip respectively, can be expressed as a function
that depends on the absorption coefficient () of the object. Namely,

D
— [ p(u)du
Ip(s,0)=Ig-¢ 5 . (1)

This equation is a basic relation in transmission tomography, where the cross-
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sections of the object being studied are to be determined from such measurements.
Mathematically the transmission tomography is modelled by the Radon transfor-
mation, giving the line integrals of a two-dimensional integrable function f, denoted
by Rf. Formally,

Rf](5,9) = / fy) du | @)

where s and u denote the variables of the coordinate system rotated by 9. The
function R f for a fixed value of ¢ is also called the ¥-angle projection of f.

Let f denote the absorption coefficients of the 2D object being studied. Then
the ¥-angle projection of f can be computed from the transmission measurements
after a suitable logarithmic transformation. That is

Rf)(5,9) = g (5,9) = In —22 3
[ f](87)_g(87)_nID(5779). ()

Then the reconstruction problem can be posed as one where the goal is to find
a function f such that its projections are equal to some given function ¢(s,®). In
other words, we are looking for the inverse of R, i.e., R™'g. The function f is
sometimes called the image function, or briefly the image.

[RS](s,90°)

[Rf](5,07)

Figure 1: Horizontal and vertical projections of a binary image (black: 0, white:
1).

In this paper we are interested in a special kind of tomography called discrete
tomography, where the range of the function to be reconstructed is a known dis-
crete set. Such information is usually available in NDT, where the materials (and
their absorption coefficients) of the object being studied are known. The simplest
example of DT is when the range of the function f consists of only two values, like
0 and 1. In this case the image function is a binary image (see Fig. 1). A summary
of the theory, algorithms, and applications of DT is given in [5].
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3 Neutron and X-ray radiography

In order to get an image of an object, several kinds of radiation (gamma, neutron, X-
ray) can be used. The principle of the apparatus of neutron radiography presented
here is widely used nowadays, but it is employed in other imaging techniques as
well (Fig. 2).

The object to be investigated is placed on a rotating table. The table can be
rotated by a PC-controlled stepper motor, thus letting the beams pass through the
object in different directions. The beams attenuated by the object impact on a
scintillator, which then transforms the detected radiation into visible light detected
by a CCD camera. Since the camera can be damaged by direct radiation, an
optical mirror system conveys the light from the scintillator to the CCD camera.
The images taken by the camera are temporarily stored by the camera controller,
and finally a dedicated PC reads out the raw image data from it. A more thorough
description of the imaging apparatus can be found in [1].

In this paper we will assume that the radiation source emits parallel beams. This
assumption is not unrealistic since if the object being investigated is far enough from
the reactor core, the transmitted beams will be almost parallel, so no significant
geometric distortions will be introduced into the projections.

The remaining part of this section will discuss various artifacts often encoun-
tered during image acquisition.

Scintillator

Neutron
- Gamma radiation

. X-ray
1
; “Rotating table

_| ccb : Stepper motor

camera Gear, box PP
Camera Motor
controller controller
PC1 PC2

Figure 2: Apparatus for collecting projections.
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3.1 Imaging artifacts

In neutron as well as in X-ray radiography the projection images can be distorted
by several artifacts due to non-perfect imaging, errors of measurement, and errors
in the model. These distortions should be corrected as best one can before or during
the reconstruction, since reconstruction is a noise amplifying procedure.

Some of the distortions are due to the properties of the image acquisition system.
For example, if the detector system is not uniformly sensitive in the whole field of
view of projections, certain areas may be brighter, while others may be darker.
This nonuniformity may cause ring artifacts in the reconstruction.

Figure 3: One of the reconstructed cross-sections of a Vidicon tube without applying
the correction step.

A further problem might be when the intensity of the rays or the sensitivity of
the camera changes during the acquisition period (cold or warm camera electronics
may cause such effects, for instance). As a consequence of changing sensitivity,
brighter or darker projections may be acquired and such images with artifacts may
be reconstructed (see Fig. 3).

Another source of artifacts might be when the projections are taken not exactly
as they should be in their necessary positions. For example, when the projection of
the axis of rotation is not exactly in the centerline of the projection images. This
center of rotation problem may blur the contours in the reconstructed images.

In our experience it is common for the projection images to randomly contain
white isolated points owing to some problems with the detector system. For exam-
ple, some pixels may be burnt out in the detector plane.
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4 Pre-processing

The input data of the reconstruction procedure is the set of projection images taken
from different directions. In neuton tomography these images are not suitable for
direct reconstruction, as is shown in Section 3.1. Hence different pre-processing
steps are needed prior to the reconstruction procedure. The pre-processing steps
in our system are the following.

1. Logarithmic transformation In order to get an approximate values of the line
integrals of the object along the transmitting rays, we first have to perform a
logarithmic transformation on the measured intensity values, as given in (3).

2. Cropping. The projections of the object being investigated often cover only
a small part of the whole acquired images, so the relevant part is selected
and cropped from all projections (see Fig. 9). Only the cropped projections
with a smaller image size are used for the further pre-processing steps and
reconstruction. The reconstruction from cropped projections requires less
memory and computational time.

3. Motion correction. It can also happen that the settings of the projection
images were not perfect and that some of the images were not taken from the
right position. A consequence might be that the images are the rotated or
translated versions of the correct ones. In general, such distortions cannot be
corrected if we do not know anything about the movement during acquisition
or we have no information about the object to be reconstructed. Otherwise,
there is some chance of correcting these artifacts. For example, if the data
acquisition can be repeated (with the same or with some other object) and
the same setting errors occurred, then the translations and rotations can be
estimated and performed as a pre-processing step (e.g. ‘center of rotation
correction’ [8]). In another case, if we know that the object is circularly
symmetric (e.g. a circle or ring) then the projections from any direction are
very similar and in this way their right position can be determined by finding
the suitable geometric transformations between images, which can be done
by a kind of registration [3]. Actually, two methods have been implemented
in our system. Both correction methods can be separated into two sub-steps:

a) An estimation of parameters of the correction transformation.
b) The execution of the corrections transformation, obtaining a new, cor-

rected projection sequence employed in further steps.

The difference between the two methods lies in the choice of the transforma-
tion:

a) The first method can be applied if the positioning errors are the same
during each acquisition and they can be described such that the projec-
tion of the rotation axis translates only in the projection images (along
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a sine curve). In this case the necessary transformation is the transla-
tion of each projection image. Its parameter can be estimated from the
projection images of a previous experiment and the actual projections
can be moved to the right positions.

b) The second method presumes that the projections of the object are very
similar (e.g. the projections of a tube from directions perpendicular to
the tube’s axis) and by performing registration on all projections (see
[13]) we can estimate the correct settings of the projections. In our case
the transformation is rigid. If some of the projections are to be translated
or rotated following the registration then our correction program is able
to perform the necessary geometric transformation.

4. Homogeneity correction. Sometimes the detector plane is not uniformly sen-
sitive in the whole field of view. This problem can be lessened if an ‘empty’
image is available. The empty image is acquired by imaging a homogeneous
neutron flux. If the detector system is uniformly sensitive then this image
is almost constant. Otherwise, the empty image shows how much correction
(multiplication) is necessary, pixel by pixel on each projection, in order to ob-
tain more constant images. The correction can be described mathematically
in the following way. For each pixel ¢ of all Py projections

1
Pempty (Z) ’

where R is the homogenity corrected image, and Pempty is the empty image.

Ry(i) = Py (i) -

5. Intensity correction. It might happen that the total intensities of the projec-
tion images vary during the acquisition period. The reason could be variations
in the neutron flux or the electronics of the camera. When this occurs the
images should be multiplied by suitable constants such that the average in-
tensity in the background area is roughly the same. After this correction the
flickering, which is often visible while playing the projection sequence like a
movie, diminishes. This correction step can be divided into two sub-steps as
well:

a) The calculation of the correction factors for each projection on a selected
background area.

b) The execution of the correction method, which yields a new corrected
projection sequence for further correction steps and reconstruction.

6. Isolated points. The neutron projections often contain white pixels (as shown
in Fig. 11(b)) and some statistical noise, which both appear as isolated points
having a very different intensity value compared with its neighborhood. In or-
der to eliminate this kind of noise in the projections we performed thresholded
median filtering. For each pixel i of each Py projection

Ro(i) = Py(i) if |Py(i) — med(NRH(Py,4,n))| < thr,
o) = med(NRH(Py,i,n)) otherwise,
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where R is the corrected image, med(.) is the median operator, thr is a suitable
threshold constant, and NRH(P, i, n) is a set which contains the intensity val-
ues of the n-neighborhood pixels of 7 in the image P. Such an n-neighborhood
for n = 8 is depicted below.

The results of these pre-processing steps are given in Section 7.

Figure 4: The 8-neighborhood of the black pixel is represented by gray pixels.

5 The reconstruction methods

Both methods essentially treat the reconstruction problem as an optimization task.
Then we have to minimize the following objective functional

©(f) = YIRS = Poll* + 1 f = fol®, (4)
1]

where Py denotes the input projection of angle 9, f is the two-dimensional image
function that approximates the solution, [Rf] () denotes the projection of the
image f taken at angle ¢, ||.|| is the Euclidean norm, and v > 0 is the so-called
regularization parameter. Lastly fo is the prototype function. It is an image
function like f that has the same domain and range, and is similar to the expected
reconstruction result.

In (4) the first term is a function, which represents the distance between the
projections of the current f and the given projection data Py. This term expresses
how well the projections of the current f approximate the given projections. It
should be noted that such reconstruction problems occur quite frequently; some
typical applications are described in [5], say.

As mentioned earlier, the smaller the number of projections used, the more a
priori information should be exploited. Some pieces of a priori information can be
incorporated into the second term of (4). One important piece of information — if
the prototype of the object is known — is a formula for fy. The difference between
the actual f and a given prototype object fo can be described in the second term.
If the object fy is the zero image, then it tells us that such a solution is sought
which is smooth enough. Finally, the non-negative v regularization parameter is
suitable for balancing the relative importance of the first and second terms. If ~
is big, the optimization procedure returns a solution that is more similar to the
prototype fo and less suitable for the given projection data.
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Two reconstruction methods were implemented. The basic difference between
them lies in their choice of object representation. The first one is a pixel-based
method, while the second one is a kind of parameterized object reconstruction.
Both methods reduce the reconstruction to the optimization problem described
above, which is solved by applying simulated annealing (SA) [11]. Since simulated
annealing is a statistical iterative optimization technique, the result is achieved
through a sequence of approximating images, where the (I + 1)** image is con-
structed by modifying the I** image according to a predefined modification rule.
The two reconstruction methods basically differ in the representation of the object
f and choice of the modification rule used.

5.1 Pixel-based method

In this method the image f is represented as a digital image. The objects take their
intensity values from a predefined known discrete set of attenuation coefficients
{p1, 2, ..., pa}, where d is the number of homogeneous materials from which the
object is made. In the case of binary images the set of attenuation coefficients is
{0, 00}, thus the pixel values can be 0 or 1. In the SA procedure the pixel values
will be modified. The modification rule used is simple. Let us take a pixel of f at
random and change the 0 or 1 intensity to the other intensity value. More generally,
if the image is not binary then the modification rule we apply changes the intensity
value p; to pg at random, where k # i and 1 < k < d.

The annealing schedule (i.e. setting the parameters) of SA is a cornerstone of
successful optimization. (Parameters needed in SA being described in detail in [12],
say). One of the most important parameters is the initial temperature. If it is too
high the optimization procedure can be too slow. However, with a low temperature
there is a possibility that the algorithm will not find the global minimum but will
get stuck in a local one. As was pointed out in [4], the optimal initial temperature
is 4 degrees centigrade in practice. In this case the choice of the initial image can
be arbitrary.

Another important parameter is the annealing function, which determines the
speed of the temperature reduction. If the temperature decreases too quickly, the
optimization can stop again in a local minimum, but if it decreases too slowly
then slow annealing process decelerates the algorithm. The experimentally chosen
cooling strategy in our system is defined as follows:

ttm+1)=t(m)-c,

where ¢(m) returns the temperature (in degrees centigrade) in the mth iteration,
and ¢ € ]0,1[ is a feasible constant taking its value from the interval [0.85, 0.95].

The optimization can be accelerated if the initial image is not far from the
solution. Then the initial temperature can be decreased and SA finds the opti-
mum faster than it does when starting it from an initial temperature of 4 degrees
centigrade. What the right initial temperature is should be investigated further,
however.
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5.2 Parameter-based reconstruction method

In this method the image function f represents a three-dimensional object consist-
ing of geometric primitives (cylinders and spheres) determined by a small number
of parameters. More precisely, we assume that the object to be reconstructed con-
sists of a tube encompassing a solid cylinder called the interior (i.e. the inner space
of the tube), which contains a known number of disjoint solid spheres or cylinders
made of homogeneous materials. In the present implementation the range of f
may consist of at most four distinct values. The object to be reconstructed should
consist of the following parts:

e The tube;

e the interior encompassed by the tube;

e the spheres and cylinders contained in the interior;

e and the background surrounding the object, which is usually air or a vacuum.

It should be noted that our aim was to perform a so-called truly 3D reconstruc-
tion, as opposed to our earlier approaches [9, 10] when the 3D problem was reduced
to 2D sub-problems, that is to the reconstruction of 2D cross-sectional slices of the
object.

In addition to the a priori information mentioned above, other assumptions were
made here. These are the following:

e The cylinders of the wall of the tube are concentric.

e The interior of the tube may contain either spheres or cylinders, but not both.
Moreover, their number is known.

e The absorption coefficients are known, at least approximately. In addition,
the absorption coefficient of the background is zero or nearly zero, making its
effects negligable.

e The projections are taken along parallel beams using equidistant detector
spacing.

e The axis of rotation of every cylindrical component is perpendicular to the
projecting beams.

Every sphere in the object is uniquely determined by its radius and the coordi-
nates of its center, which are the parameters of the sphere. Cylinders and the tube
can be parameterized in a similar way. Furthermore, the absorption coefficients
(11, p2, p3) corresponding to the three materials (i.e. the material of the tube, that
of the interior, and that of the spheres and cylinders) are also considered as pa-
rameters. (Note here that the absorption of the background material is assumed
to be zero.) Such objects can then be uniquely described by a vector of parameters
called a configuration.
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Our second reconstruction method is also an iterative procedure. We start with
an initial configuration and during the iterations the current configuration (i.e. the
current image) is altered in order to get a hopefully better approximation of the
object to be reconstructed. The current image function f is considered admissible
if certain geometric constraints are met. These are the following:

e The cylinders of the tube remain concentric, the tube is contained by image f,
and it has a non-negative wall thickness. Note that allowing a zero thickness
may be useful in the case when the object is in fact a solid cylinder containing
some spheres or cylinders. This property is used, for instance, in the physical
experiments shown in Section 9.2.

e The radius of the interior equals the inner radius of the tube, so that the
interior completely fills the inner volume of the tube.

e All distance parameters (namely radii, heights) are positive numbers.

e All the spheres and cylinders are located within the interior, and they are
pairwise disjoint.

It is a relatively straightforward task to check all of these conditions during the
modification of the current configuration.

It is often desirable to generate random configurations automatically for testing
and simulation studies — see Section 9.1, say. Our implementation allows this by
letting the user specify how the various parameters may vary, then randomly gen-
erating a new configuration based on these settings, while maintaining the above-
mentioned geometric restrictions.

The optimization of the functional ®(f) is performed in the parameter space.
At each iteration step, a new configuration is built by modifying one of the pa-
rameters of the current configuration. This is done so that every parameter may
be selected with the same probability (i.e. uniformly), and the amount of modifi-
cation is chosen randomly (again, uniformly) from the whole set of feasible values.
Those configurations which are inadmissible are always rejected. The projections
[Rf](s,9) of f are then calculated analytically. It should be remarked that the
computation of ®(f) can be speeded up by some orders of magnitude by restricting
calculations to the sub-domain in which the value of ®(f) has changed in the last
iteration step.

In order to keep the number of configuration changes as low as possible it is
important to find a good initial configuration. The SA algorithm can probably find
the optimum in a fewer number of steps when an initial image is quite near the
optimum. The initial configuration for our system is constructed as follows.

1. First, the initial locations of the tube and its interior are estimated from
the projections (see Fig. 5(a)). This is done after using filtered versions of
the input projections, obtained by applying a Gaussian and several averaging
filtering kernels to every projection. The boundary of the projection of the
tube, namely the coordinates of its centerline, its radius, and its upper and
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(a) (b)

Figure 5: (a) One of the projections of the original object. (b) One of the reduced
projections generated by subtracting the projection of the tube and its interior from
the projection shown in (a).

lower ends can be found by defining a threshold for the background noise,
and scanning the filtered projections for the leftmost, rightmost, uppermost,
and lowermost values above this threshold. The boundary of the interior of
the tube can be determined in a similar way. The threshold is calculated as a
user-specified percentage of the maximum value of the projections, based on
an assumed level of noise.

Using the location of the tube and its interior, their projections can be sub-
tracted from the input projections. This is shown in Fig. 5(b).

[Rf](s,0%) [Rf](s,0%)

(a) (b) (c) (d)

Figure 6: (a) Cross-section of the original object depicted in Fig. 5(a). (b) Cross-
section of the reduced projection shown in Fig. 5(b). (¢) Elimination of the projec-
tion of a disc from the projection displayed in (b). (d) Discs detected in projection

(b).

3. Next, the initial positions of the spheres or cylinders in the interior are to

be guessed based on the reduced projections (see Fig. 6). In the present im-
plementation this task has, for simplicity, been reduced to 2D sub-problems,
but it may be possible in future to extend the process to 3D. Currently this
procedure is performed in two steps:
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Figure 7: (a) Initial intersections of the cross-section shown in Fig. 5(a) using a
horizontal and a vertical projection. (b) Deletion of intersections after choosing the
disc with the largest radius.

a) First, the locations of discs are found in each cross-section separately
(see Fig. 6(a)). That is, the intersections of the spheres or cylinders
with the 2D cross-sections orthogonal to the axis of rotation have to be
found. This is accomplished by the following greedy algorithm based on
geometric considerations:

i.

ii.

iii.

Possible projections of discs are located within the 1D projections of
the cross-sections (see Fig. 6(b)) by the application of model-fitting,
i.e. disc parameters are estimated. In particular, a deterministic
relaxation algorithm called iterated conditional modes (ICM, [2]) is
used to find the parameters of the projection of a disc which best
fits the 1D reduced projections. After storing these parameters,
the projection of the disc is eliminated from the already reduced
projections (see Fig. 6(c)). This process is repeated until no more
discs can be detected (see Fig. 6(d)).

The centers of the discs found in the previous step are ‘projected
back’ into the plane of the 2D cross-section, thus forming several
pairs of intersection points and radii of the discs associated with
them (see Fig. 7(a)). Those intersections whose distance from one
another is below a given limit will be merged into a single inter-
section. Whatever the case, the radius associated with a particular
intersection is calculated by taking the minimum of the radii of the
corresponding discs found in the 1D projections.

The discs actually located in the 2D cross-section are selected by a
greedy strategy: The center of a candidate disc is chosen to be the
intersection which was defined by the maximum number of possible
projections. Should there be more than one such intersections, the
one with the largest radius associated with it will be taken. The in-
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tersection chosen is removed instantly from the list of intersections.
We should remark here that some additional intersections may be
deleted as well in order to retain consistency between the intersec-
tions and the 1D projections (see Fig. 7(b)). If this disc results in
an admissible configuration, it will be added to the 2D configuration
of the cross-section. Otherwise, another intersection will be chosen.
This procedure is repeated until no more intersections are left.

b) Lastly, the initial positions of the spheres or cylinders are determined
from the discs found in neighboring cross-sections. Specifically, the discs
detected in the previous step are treated as solid cylinders of unit height.
An auxiliary 3D configuration can be built by stacking the cross-sections
onto each other, that is placing these discs into a 3D coordinate system.
This configuration is then examined to find candidate spheres and cylin-
ders that will be included in the initial configuration.

6 Modelling the noise

In order for the conditions to be as realistic as possible in the simulation experi-
ments, artificial noise was generated with a uniform distribution and then added
to the projections. An example of this is shown in Fig. 8.

[RS] (s,90°)

[Rf](s,0°)

WY

Figure 8: Horizontal and vertical projections of a binary image with 10% noise.
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7 Results of correction methods

The pre-processing steps discussed in Section 4 were tried out on the projections
of a VIDICON tube (see Fig. 9). There were 360 projections taken in 1° angular
steps using X-ray radiation.

Figure 9: One of the projections of the VIDICON tube (height ~ 10 cm, width
~ 4 cm). The white lines indicate the cropped area.

The first step involved cropping the relevant area from the original projections
when the object to be reconstructed covered only a small portion of the projections.

The second step of pre-processing was the correction of the motions during the
image acquisition. As a result of the analysis of the projections (using registration)
we found that in this case each projection had to be translated along a sine curve
having a phase of 90° and amplitude of 2 pixels.

When an empty projection image is available as well (as was the case here),
homogeneity correction can be performed. Homogeneity correction eliminates the
effects of the non-uniformly sensitive detector system.

The results of the pre-processing steps (cropping, motion and uniformity cor-
rections) can be seen in Fig. 11.

The intensity correction step of the pre-processing multiplies the projections
by suitable coefficients such that the total intensity of the corrected projections is
practically constant for each projection (see Fig. 10).

Finally, the isolated points correction was applied to each projection. This
correction means the application of a thresholded median filter (8-neighborhood,
thr = 20 assuming a maximum intensity level of 255). In Fig. 11(c) we see that
a part of the noise was eliminated from the projections and the reconstructed
cross-section became a bit more homogeneous compared with Fig. 11(f). This
homogeneity feature is especially noticeable in the interior of the dashed circle.
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Figure 10: Total intensity values in the first 180 projections before (gray line) and
after (black line) intensity correction.

8 Results of the pixel-based reconstruction
method

In this section we demonstrate the efficiency of the pixel-based reconstruction
method. First, software simulated phantom studies will be presented where we
show the effects of changing different parameters on the reconstruction. Then some
preliminary results on some neutron tomography data are described in Section 8.2.

In order to measure the accuracy (precision) of the reconstruction quantitatively,
we used the relative mean error (RME for short), which is defined here as

S - 1]
RME=-*— . 100% ,
S )

where f? and f; denote the value of the ith pixel of the original and the recon-

structed image functions, respectively. It is quite clear that RME > 0 and a smaller
RME value means a better reconstruction result.

8.1 Simulation studies

The simplest case is when the range of the image function to be reconstructed
contains only two values, 0 and 1. The results of such reconstructions can be seen
in Figs. 12 and 13.

First, we investigated how the number of projections influences the reconstruc-
tion (see Fig. 12). It is conspicuous that the pixel-based method was able to almost
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(e)

Figure 11: (a) One of the projections of a VIDICON tube after cropping hav-
ing the size 241 x 572. (White line indicates the cross-section shown below.) (b)
The same projection after motion and intensity corrections (the white circles in-
dicate isolated points to be corrected in the next step). (c¢) The same projection
an in (b) after homogeneity and isolated points corrections. (d) Reconstruction
(241 x 241) of the cross-section shown after cropping. (e) Reconstruction of the
cross-section shown after motion and intensity corrections. (f) Reconstruction of
the cross-section shown after homogeneity and isolated points corrections. The re-
construction was performed by the software package SNARK93 [15] (filtered back-
projection, cosine filter, cut-off frequency 0.5, Lagrange interpolation).
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# of Original Result Difference RME

projs (%)
8 12.57
10 6.98
12 0.10

Figure 12: Reconstruction of circles from different numbers of projections by the
pixel-based method (0% noise, 200 measurements/projection). First column: num-
ber of projections. Second column: original object. Third column: reconstructed
images. Fourth column: RME of the original and reconstructed images (black/gray:
when the corresponding pixels are black/white in both the original and recon-
structed images; white: when the corresponding pixel intensities are different).
Fifth column: RME of the original and reconstructed images.

reproduce the original phantom with just 12 projections.

We also studied the effect of noise on the reconstruction. 0%, 10%, and 40%
noise was added to the exact projections and then the reconstruction was done
with the noisy projections as well (see Fig. 13). As expected, the quality of the
reconstruction grew worse the higher the level of noise in the projections was chosen.
The same can be seen from the RMEs. But the object, however, is still recognizable
even with 40% noise.

8.2 Physical experiments

We had the chance to test our reconstruction methods with real physical data as
well. One of them was the battery from a pacemaker (Fig. 14(a)). As can be seen
in the image, especially in Fig. 14(b), the projections were almost noiseless and of
a good quality. In order to compare the results of the classic FBP technique with
our pixel-based one, we reconstructed several slices. One of them is shown in Fig.
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Noise Original Result Difference RME
(%) (%)
0 0.12
10 20.64
40 34.63

Figure 13: Reconstruction of circles from exact and noisy projections by the pixel-
based method (16 projections, 200 measurements/projection). First column: noise
level. Second column: original object. Third column: reconstructed images. Fourth
column: difference images. Fifth column: RME of the original and reconstructed
images.

14(a), and the corresponding reconstruction result, based on 200 projections and
using the FBP method of SNARK93 [15], can be seen in Fig. 15. This result can
be considered quite favourable as the object is reasonably distinguishable.

In order to compare the results of the classical method we perfomed an FBP
using 20 projections, and we ran our pixel-based technique with the same input data
as well. In Fig. 14(c) the results of FBP are presented, which contain streaks due to
the small number of projections used. In the case of the pixel-based method (Fig.
14(d)) these streaks are absent, but the quality of the results are still worse than the
previous one. The reason might be that the DT algorithm did the reconstruction
using only 21 intensity levels, but the object could not be considered one which
satifies our basic assumption: the object consists of only a few inhomogeneous
materials. This inhomogeneity or irregular material distribution is quite visible in
Fig. 15. In addition, we were not aware of the exact absorption coefficients. If the
object had been made of homogeneous materials, we would have hoped for better
results.
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.

(a)

:
:

(©)

Figure 14: (a) One of the neutron projections of a pacemaker battery. (b) The
bar diagram representing the intensity values of the projections in the indicated
row in (a). (c¢) Reconstructed cross-section in the position indicated in the row in
(a) (FBP method 20 projections, cosine filter, cutoff 0.5, Lagrange interpolation as
done in SNARK93 [15]). (d) Image of the same cross-section reconstructed via the
pixel-based method using 20 projections and 21 intensity levels.
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Figure 15: FBP reconstruction (as done in SNARK93 [15]) of the cross-section
shown in Fig. 14(a) using 200 projections.

From the point of view of timing the technique cannot be said to be fast. Its
speed greatly depends on the input data. In accordance with our experiences the
technique terminates within 60 seconds in case of noiseless phantom images on a
3 GHz Intel Pentium 4, where the size of the images is at most 400 x 400 pixels
using less than 20 projections. However, a reconstruction using real projections can
cost up to 5—10 minutes.

9 Results of the parameter-based reconstruction
method

In this section we will present the results of the parameter-based reconstruction
method. First, simulation studies will be discussed, focussing on the effects of
various parameters on the reconstruction. These parameters include the geometric
complexity of the object, the amount of noise in the projections, and the number
of projections. Afterwards, some results of the physical experiments will be given.

In order to assess the accuracy of this method quantitatively, the RME measure
defined in Section 8 was used throughout the experiments with a slight modification:
the image function was converted to a {0,1} binary image before calculations. It
should be mentioned that a more precise way of measuring would be to compute
RME analytically instead of using the digitized image, which is one of our future
plans. The models of objects are visualized using the Virtual Reality Modeling
Language (VRMLIT [16]).
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9.1 Simulation experiments

Software experiments were performed in order to investigate the effects of key recon-
struction parameters: the geometric complexity of the object to be reconstructed,
noise level, and the number of projections. Another important thing we need to
know is how the value of the objective function ®(f) changes during iterations.
A typical plot of ®(f) is shown in Fig. 16, produced during the reconstrucion of
3 spheres from 4 noisy projections. As expected, the objective function decreases
rapidly at the beginning of the optimization, and more slowly near the global min-
imum.

Millions
=]
|

=
I

Objective function

0 T T T T T T T T
1 51 101 151 201 251

Accepted configurations

Figure 16: The value of the objective function ®(f) as a function of the number
of accepted configurations. (The total number of accepted configurations was 291.
The reconstruction of 3 spheres using 4 projections degraded with 10% noise, with
100 x 100 measurements/projection.)

The aim of the first experiment was to study the influence of the geometric
complexity of the object (see Fig. 17) using only 2 projections degraded with 10%
noise. As can be seen in Fig. 18, it is hard to get an acceptable result with just 5
spheres. The algorithm, however, can successfully reconstruct fewer spheres with
good precision.

We also looked at the effects of noise on our reconstruction using the parametric
object shown in Fig. 19. The noise level was again set to 0%, 10%, or 40% as we did
in the simulation experiments using the pixel-based reconstruction method. It is
remarkable that the parameter-based reconstruction method still works even with
40% noise (see Fig. 20).

In the last simulation experiment we analyzed the impact of the number of pro-
jections on the results (see Fig. 21). Since real physical measurements are usually
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Figure 17: Perspective view of 3D parametric phantoms consisting of (a) 3, (b) 4,
and (c) 5 spheres in a tube.

distorted by some noise, the same experiment was performed using noiseless pro-
jections as well as adding 10% or 40% noise to the projections. It is quite apparent
here that the reconstruction of these parameterized objects does not depend much
on the number of projections used. As Fig. 21 indicates, it is usually sufficient to
use just two projections for simpler objects (e.g. three spheres). Actually, having
more projections does not necessarily improve the precision of the result by much.
At the same time, the algorithm is more sensitive to the geometrical complexity of
the object to be reconstructed, as is demonstrated by the third row in Fig. 18.

9.2 Physical experiments

In addition to the software-generated data described above, the effectiveness of
the parameter-based reconstruction method was also evaluated using physically
measured data. However, before proceeding with a discussion of the results, two
remarks should be made. First, due to the limitations of the imaging system and
the measurement errors, the projections were distorted and quite noisy. To help
the algorithm produce the best results possible, it was necessary to perform the
pre-processing steps described in Section 4. Second, as the exact values of the
absorption coefficients were unknown, they had to be estimated here.

The first physical experiment was performed on a phantom object called the
reference cylinder, a diagram of it being shown in Fig. 22. The object is a solid



580 Zoltan Kiss, Lajos Rodek, and Attila Kuba

# of Result Difference RME

sph. (%)
3 | L 0.97
4 | L 0.66
5 | 4L 6.27

Figure 18: Reconstruction by the parameter-based method using a different number
of spheres (original object: see Fig. 17; parameters: 10% noise, 2 projections,
100 x 100 measurements/projection). First column: number of spheres. Second
column: reconstructed object. Third column: difference between the reconstructed
and original object (only mismatching voxels are painted). Fourth column: RME
of the original and reconstructed image.
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<

Figure 19: Perspective view of the 3D parametric phantom object consisting of 3
spheres in a tube.

cylinder made of Plexiglas, and it contains three holes of different diameter and
various depths in an asymmetric arrangement. The lower part of the hole with
the largest depth was filled with aluminum screws. This region is clearly visible
on the projection images, which were taken using an X-ray source. One of these
projections is shown in Fig. 23(a) after applying every pre-processing step except
that for the filtering of isolated points.

Since our model assumes that the cylindrical holes are filled with the same ma-
terial, the lower half of the projections had to be thrown away (see Fig. 23(b)). The
size of the projection images was 155 x 212 pixels before and 155 x 113 pixels after
cropping, respectively. It is evident that the remaining part of the object is suit-
able for discrete tomographic reconstruction, since it consists of two homogeneous
regions containing air and Plexiglas (background and holes, respectively).

The model reconstructed using 4 projections is illustrated in Fig. 23(c) to
Fig. 23(e). Since the exact structure of the object was known, it was possible
to create an ‘original’ model, and thus to measure the precision of the reconstruc-
tion. The difference between the original and the reconstructed model is shown in
Fig. 23(f), with an RME of 2.45%. This relatively high value is due to two facts:
the projections were fairly small and noisy, and the exact value of the absorption
coefficient of Plexiglas was unknown.

A phantom object very similar to the one mentioned above was used in the
second physical experiment. The structure of this object was identical to that
shown in Fig. 22, but the solid cylinder here was made of aluminum. The hole with
the biggest diameter was partly filled with acetone and the two others contained
water.

At first sight this object seems unsuitable for our parametric object model,
since the bores consist of three homogeneous regions: acetone, water, and air. It
turned out, however, that the absorption coefficients of the acetone and of the water
are almost equal for the neutron rays used for image acquisition. The size of the
projection images was 365 x 400 pixels, and one of them can be seen in Fig. 24(a)
after applying the same pre-processing steps as in the first experiment. Moreover,
those sections of the bores which contained air are hardly recognizable. Hence
the object can be considered to be composed of three approximately homogeneous
materials: aluminum, fluid, and air (background).
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Noise Result Difference RME
(%) (%)
0 0.22
10 0.97
40 2.94

Figure 20: Reconstruction by parameter-based method from noise free and noisy
projections (original object: see Fig. 19; parameters: 2 projections and 100 x 100
measurements/projection). First column: noise level. Second column: recon-
structed object. Third column: difference between the reconstructed and original
object. Fourth column: RME of the original and reconstructed image.
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Number of projections

Figure 21: The RME value versus the number of projections without noise (black
curve), with 10% (solid gray curve) and with 40% noise (dashed gray curve), re-
spectively. (Reconstruction of 3 spheres using 2, 4, 6, 8, 10 and 12 projections, and
100 x 100 measurements/projection.)
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Figure 22: Diagram of the phantom object used in the experiments (dimensions
are shown in mm.)
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Figure 23: Projection and reconstruction results of the Plexiglas object given in
Fig. 22. (a) One of the original projection images. (b) One of the cropped projection
images. (c) 0° view of the reconstructed model. (d) 90° view of the reconstructed
model. (e) Top-down view of the reconstructed model. (f) Difference between the
reconstructed model and the original one (RME = 2.45%).

The model reconstructed using 4 projections is shown in Fig. 24(b), (c¢) and
(d). As the structure of the object is identical to the one used in the previous
experiment, an ‘original’ model can be created again, thus allowing one to test
the precision of the reconstruction. The difference between the original and the
reconstructed model is shown in Fig. 24(e). Even though the precise radius of
the bore with the smallest diameter in the reconstructed result is somewhat larger
than the real one, the RME is only 1.01%. This is because the RME is calculated
using the digitized image function, and the number of voxels is much larger than in
the former case. The discrepancies between the original and the resulting models
are due to the following: the axis of rotation was precessing, the exact values of
the absorption coefficients were unknown and, despite our earlier assumption, the
absorption coefficients of water and of acetone were quite different.

It is notable that the parameter-based method performs somewhat faster than
its pixel-based counterpart. In particular, typical running times are a few (5-10)
seconds on a 3 GHz Intel Pentium 4, using 4 projections and assuming that the
size of the image function to be reconstructed is at most 100 x 100 x 100 voxels.
On the other hand, when the image function is as large as that in the last physical
experiment (i.e. 365 x 365 x 400 voxels), it may take even 3—5 minutes to complete
the reconstruction process.
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(b)
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Figure 24: Projection and reconstruction results of the aluminum object given in

Fig. 22. (a) One of the original projection images. (b) 0° view of the reconstructed
model. (c) 90° view of the reconstructed model. (d) Top-down view of the recon-
structed model. (e) Difference between the reconstructed model and the original
one (RME = 1.01%).

10 Future plans

Though the techniques presented here produced promising and even acceptable
results, we are planning to improve several things in the future. It would be desir-
able to make pre-processing as automated as possible in both methods, and for the
absorption coeflicients to be estimated automatically — for instance by using some
kind of calibration procedure. For the pixel-based method, the most useful im-
provements would be to make it less sensitive to noise and to reduce the number of
projections necessary for reconstruction. We would also like to make this approach
work better for objects containing three or more materials. Further research could
be done for situations where the projections are not a parallel beam but fan-beam,
say. Finally, some practical extensions of the parameter-based algorithm might
allow five or more materials, using more complex prior knowledge of the object,
computing the RME analytically, and employing another kind of parametric object
representation like a deformable model.
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