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Various Machine Learning Algorithms

Richárd Farkas∗, György Szarvas† and András Kocsor∗,‡

Abstract

In this paper we introduce a statistical Named Entity recognizer (NER)
system for the Hungarian language. We examined three methods for identi-
fying and disambiguating proper nouns (Artificial Neural Network, Support
Vector Machine, C4.5 Decision Tree), their combinations and the effects of
dimensionality reduction as well. We used a segment of Szeged Corpus [5] for
training and validation purposes, which consists of short business news articles
collected from MTI (Hungarian News Agency, www.mti.hu). Our results were
presented at the Second Conference on Hungarian Computational Linguistics
[7]. Our system makes use of both language dependent features (describing
the orthography of proper nouns in Hungarian) and other, language indepen-
dent information such as capitalization. Since we avoided the inclusion of
large gazetteers of pre-classified entities, the system remains portable across
languages without requiring any major modification, as long as the few spe-
cialized orthographical and syntactic characteristics are collected for a new
target language. The best performing model achieved an F measure accuracy
of 91.95%.

Keywords: named entity recognition, statistical models, machine learning

1 Introduction

The identification and classification of proper nouns in plain text is of key im-
portance in numerous natural language processing applications. Take, for instance,
Information Extraction systems (IE), where proper names generally play roles hold-
ing important information about the text itself, and thus are targets for extraction,
or Machine Translation, which has to handle proper nouns and other sort of words
in a different way, due to the specific translation rules that apply to them.
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Hungary, E-mail: {rfarkas,kocsor}@inf.u-szeged.hu
†University of Szeged, Department of Informatics, 6720 Szeged, Árpád tér 2., Hungary, E-mail:
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The task of categorizing proper names was introduced during the 90s as a part
of the shared tasks in the Message Understanding Conferences. The goal of these
conferences was the identification and classification of proper nouns (like person, or-
ganization, location names), and phrases describing dates, time intervals, measures,
quantities and so on in texts collected from English newspaper articles.

As a part of the Computational Natural Language Learning conference in 2002
and 2003 [21] a shared task dealt with the development of such systems that were
able to identify the more difficult classes defined in earlier approaches at MUCs in
two different languages at the same time. These less obvious categories they focused
on were person, organization and geographical location names, along with all proper
nouns that not belong to these three classes, treated as miscellaneous proper names.
The text collection again consisted of newspaper articles, in Spanish + Dutch and
English + German, respectively. The best performing systems gave an accuracy
of 85-89% F measure for English (the best known results for any language). Since
we follow the task definition of the CONLL shared task series, where the NER was
focused mainly on proper names, the expressions ’proper noun/name recognition’
and ’named entity recognition’ are used synonymously here.

Research and development efforts in the last few years have focused mainly on
other languages [15], [23], or domains like biological scientific texts [8], or cross-
language recognition [16]. Hungarian named entity recognition fits in this trend
quite well, due to the special agglutinative property of the Hungarian language,
which makes most natural language processing tasks quite difficult.

Machine learning methods have been applied to the NER problem with remark-
able success, and a few of these systems have proved to be efficient in disambiguat-
ing NEs in more than one language at the same time without major modification.
While only one learning system [3] and seven rule-based classifiers were submitted
to the last MUC contest (in 1997), only statistical algorithms took part in the
shared task of CoNLL-2003 where the most frequently applied techniques were the
Maximum Entropy Model (ME) [6] and Hidden Markov Models (HMM) [13]. Sur-
prisingly only one ME and one clear HMM model was presented on the COLING
2004 Post-Conference Workshop (JNLPBA) [12]. Here the Support Vector Machine
(SVM) [14] - used in isolation or in combination with other models - was the most
popular.

There are some results on NER for the Hungarian language as well. A model
based on expert rules defined by linguist experts was developed and tested at the
Hungarian Research Institute on Linguistics [10], which also served as a basis for
the proper noun recognizer module of HumorESK, a syntactic parser for Hungarian
developed by MorphoLogic Ltd. [19]. However, to our knowledge, no statistical
models have yet been made for the Hungarian language.

As we mentioned above, a wide variety of learning algorithms have been applied
to the NER task. Our goal in this paper is not only to examine some models
that were used less frequently, but to focus on the aggregation of dimensionality
reduction and classifier combination schemes as well. Since the combinations of
statistical methods with diverse theoretical bases often lead to even more accurate
models, as it’s often good to tackle a problem from many angles, we employed three
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algorithms of a very different nature. We decided to make use of the C4.5 decision
tree learning algorithm [20], feedforward artificial neural network [2], support vector
machine [22] classifiers and their combination. Finally we tested the applicability of
statistical models for NER in a language that has several special properties, making
many Natural Language Processing (NLP) tasks rather difficult.

In the next section we will discuss the Named Entity Recognition task, then
in Section 3 we introduce the learning model constructed by us to solve it. In
Section 4 the machine learning algorithms we applied are briefly described followed
by the description of some meta-learning methods that combine the hypotheses
produced by the learners into a joint and hopefully more accurate hypothesis. In the
experiments section we discuss in detail our investigation on each model separately,
the combined model and the results of feature selection as well. After, in Section
6, we summarize the main characteristics of the Named Entity Recognizer system
we developed, discuss our results and offer some suggestions for future research.

2 Named Entity Recognition for the Hungarian

Language

The identification of proper names can be regarded as a tagging problem where
the aim is to assign the correct tag (label) for each token in a plain text. This
classification determines whether the lexical unit in question is part of a proper
noun phrase and if it is, which category it belongs to.

Here we follow the task definition used in the CONLL conferences to distinguish
four classes of entities: person names, organization names, place/geographic names,
miscellaneous entity names. The latter class includes all proper nouns that do not
belong to any of the other three classes. This way a comparison of our results
with those published for other languages is more pertinent and this categorization
is straightforward for IE purposes, where the system will be applied [1]. Earlier
approaches define additional classes of phrases describing measures, dates and so
on. Such phrases are rarely proper nouns, they are simpler to identify and at the
University of Szeged there is another application that handles such phrases [18], so
this task will not be included.

This entity identification and class assignment is not straightforward in many
cases and even a human annotator might need additional information about the
context and some background knowledge to decide the appropriate class. Take,
for instance, the names of business organizations that can frequently refer to the
product itself they make (Audi, Nokia, etc.) and hence such terms can belong either
to the organization or the miscellaneous classes. Occasionally it may happen that
a phrase can fall into any one of the four categories, depending on the context (like
”Ford”, which can refer to a person, the concern, an airport or the car type).

In many approaches given in the literature the starting tokens of Named Entities
are distinguished from the inner parts of the phrase [21]. This turns out to be useful
when several proper nouns of the same type follow each other, because it enables
the system to separate them instead of treating them as one entity. When doing so,



636 Richárd Farkas, György Szarvas and András Kocsor

one of the ”I-”, ”B-” (for inside and begin) labels also has to be assigned to each
term that belongs to one of the four classes used. In our experiments we decided
not to do this for two reasons. First, for some of the classes we barely have enough
examples in our dataset to separate them well, and it would make the data available
even more sparse. Second, in Hungarian texts, proper names following each other
are almost always separated by punctuation marks or a stopword. We manually
checked a small part (3%) of our training corpus and found only one case where
such a distinction would have proved to be useful, so it definitely would have done
more harm than good to the model to deal with this.

A segment consisting of short business news articles of Szeged Corpus [5] was
used for training and testing the model. Our dataset consisted of 9600 sentences
altogether, which had a full syntactic annotation1, and the correct classification of
NEs had also been added. In our model we only used the part-of-speech tags out
of the several syntactic features, because a proper name classifier module should
come immediately after the POS tagging in an information extraction application.
This way the output of the NE tagger can aid the performance of the syntactic
parser with the class labels assigned and the contraction of several tokens into one
proper noun. Several articles in the literature claim that more knowledge about the
syntax (identification of heads of noun phrases for example) can be beneficial to NE
recognition [9], (in CONNL2003, 9 out of 16 systems used chunking information for
English NER, including the best performing system [21]), but as we stated earlier
this works both ways thus we decided not to use such information. This way recog-
nition with our system can be performed without intensive syntactic analysis. To
get part-of-speech information we used a morphologic analyzer (Humor), a guesser
module that does rough a morphological analysis of words judged to be unknown
words by Humor and a part of speech tagger (we did not use the disambiguated
POS codes in the corpus to model a real life application).

The data we used also has some interesting properties regarding the distribution
of class labels which arise from the domain specificity of the texts. The organization
class for instance, which turned to be harder to recognize than person names, occurs
more often in our corpus than those used in the CONLL conferences.

Table 1: Corpus details

Tokens Phrases
Non-tagged tokens 200067 -
Person names 1.921 982
Organizations 20.433 10.533
Locations 1.501 1.294
Misc. entities 2.041 1.662

1The project was carried out together with MorphoLogic Ltd. and the Academy’s Research

Institute for Linguistics
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3 The learning model

To build a learning model we collected various types of numerically encodable in-
formation describing each term and its surroundings. These constituted the vector
of attributes for the classification (which is partially based on the model described
in [6]). A subset of the features used tries to capture the orthographical regularities
of proper nouns, like capitalization, inner-word punctuation and so on. Another
set of attributes denotes the role of the word and its neighboring words in the sen-
tence; part of speech and case codes are examples of information of this type. The
remaining parameters try to formalize and provide the system with some of the
background knowledge a human annotator has and uses for disambiguating named
entities. These are various lists of trigger words, ratios of the word appearing
capitalized and lowercased in large corpora (or in everyday language).

The word form itself, along with gazetteers of pre-classified NEs frequently
appearing in business news were not used to aid recognition, to improve the gener-
alization capability of the system on unknown words and texts. Using such word
lists would undoubtedly increase the performance on domain specific corpora, by
reducing the need for the automatic classification to those words that cannot be
found in the database. Practical natural language applications usually have their
own, domain specific lexicons, and automatic named entity recognition can help to
them when these lexicons do not cover the parsed text entirely. In these cases a
general-purpose NE lexicon is likely to be of little use.

The features we employed were the following:

• part-of-speech code (for the word itself and for its +/-4 words neighborhood),

• case code,

• type of initial letter of the word,

• one that tells if the word contains digits inside the word form,

• one that tells if the word contains capitalized letter inside the word form,

• one that tells if the word contains punctuation inside the word form,

• the word in the beginning of a sentence or not,

• the word between quotation marks or not,

• word length,

• the word is an arabic or roman number,

• memory that tells whether the word in question received an NE tag earlier in
the actual document (one article) or not, and what type,

• the ratio of lowercase and capitalized frequency in Szószablya [11] term fre-
quency dictionary,

• the ratio of mid-sentence uppercase frequency and general uppercase fre-
quency in Szószablya,
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• feature telling us whether the word is in one of the trigger word dictionar-
ies (we used dictionaries of surnames, organization forms, geographic name
types and stopwords, and a very small gazetteer containing the names of the
countries of the world and names of the biggest cities).

Using the above features - with unary representation, except for the word length
- each term had 120 different attributes and the correct NE label assigned to it.
This way Named Entity Recognition is defined as a classification problem which can
be solved using algorithms which apply some kind of inductive learning approach.

To evaluate our system we used two reasonably well performing naive algo-
rithms. The first one was based on the following decision rule: For every term that
is part of an entity assign the organization class. This simple method achieved a
score of 71.9% precision and 69.8% recall on the evaluation sets (70.8% F mea-
sure). These good results are due to the fact that the knowledge of what an NE
is (and is not) was added to the baseline algorithm and the characteristics of the
domain (in business news articles the organization class dominates the other three).
The second baseline algorithm selected the complete unambiguous named entities
appearing in the training data and attained a 77.81% F measure accuracy. These
results are slightly better than those published for different languages, which is once
again due to the unique characteristics of business news texts where the distribution
of entities is biased towards the organization class.

4 Learning algorithms, meta-learning, attribute
selection

To solve classification problems effectively it is worth applying various types of
classification methods, both separately and in a combination. Since the optimal
single or hybrid method varies from domain to domain, to perform NE recognition
we decided to test methods from diverse areas of machine learning. Apart from
the classifier selection problem, however, other issues have to be dealt with as well.
For instance, using an insufficiently high dimensional embedding feature space for
constructing the classification models may have certain drawbacks. Superfluous
features can have a detrimental influence on the classification methods. A general
observation is that performing a careful dimension reduction - prior to learning
- can significantly increase the classification performance. This is true for NLP
applications in particular, where features are often correlated and might hold little
evidence on the target variable. In this section we describe the learning algorithms
applied, the classifier combination technique used and the feature (or attribute)
selection methodology we employed during the tests.

4.1 C4.5

C4.5 [20] is based on the well-known ID3 tree learning algorithm. It is able to
learn pre-defined discrete classes from labeled examples. The result of the learning
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process is an axis-parallel decision tree. This means that during the training, the
sample space is divided into subspaces by hyperplanes that are parallel to every
axis but one. In this way, we get many n-dimensional rectangular regions that are
labeled with class labels and organized in a hierarchical way, which can then be
encoded into the tree. Since C4.5 considers attribute vectors as points in an n-
dimensional space, using continuous sample attributes naturally makes sense. For
knowledge representation, C4.5 uses the ”divide and conquer” technique, meaning
that regions are split during learning whenever they are insufficiently homogeneous.
Splitting is done by axis-parallel hyperplanes, and hence learning is very fast. One
great advantage of the method is time complexity; in the worst case it is O(dn2),
where d is the number of features and n is the number of samples. Based on this
we used the C4.5 algorithm lots of times to perform preliminary tests to decide
whether the inclusion of further features in beneficial to the model or not.

4.2 Artificial Neural Networks (ANN)

Since it was realized that, under proper conditions, ANNs can model the class
posteriors [2], neural nets have become evermore popular in the Natural Language
Processing community. ANNs are based on the parallel architecture of the brain.
We can imagine it as a simple multiprocessor system with a large number of inter-
connections and interactions between the processing units using scalar messages.
Describing the mathematical background of the ANNs is beyond the scope of this
article. Besides, we believe that they are well known to those who are acquainted
with pattern recognition. In the ANN experiments we used the most common feed-
forward multilayer perceptron network with the backpropagation learning rule.

4.3 Support Vector Machines

Theoretical discoveries generally have their own very different, unique histories
before they find any practical application. One such example is the ”kernel-idea”,
which had appeared in several fields of mathematics and mathematical physics
before it became a key notion in machine learning. The kernel idea can be applied
in any case where the input of some algorithm consists of the pairwise dot (scalar)
products of the elements of an n-dimensional dot product space. In this case, simply
by a proper redefinition of the two-operand operation of the dot product, we can
have an algorithm that will now be executed in a different dot product space, and is
probably more suitable for solving the original problem. Of course, when replacing
the operand, we have to satisfy certain criteria, as not every function is suitable
for implicitly generating a dot product space. The family of Mercer Kernels is
a good choice (according to Mercer’s theorem) [17]. The well-known and widely
used Support Vector Machines (SVMs) [22] is a kernel method that separates data
points of different classes with the help of a hyperplane. The created separating
hyperplane has a margin of maximal size with a proved optimal generalization
capacity. Another significant feature of margin maximization is that the calculated
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result is independent from the distribution of the sample points. Perhaps the
success and the popularity of this method can be attributed to the above property.

4.4 Stacking

The learning methods discussed above showed promising results during the exper-
iments we made, the best models achieving or even exceeding 90% accuracy rate.
There are several well known meta-learning algorithms in the literature that can
lead to a ’better’ model (in terms of classification accuracy) than those serving as
a basis for it, or can significantly decrease the time consumption of the learning
phase without loss of accuracy. Since in our case the time needed for learning was
not really relevant (all the three algorithms can deal with a database of this size
in a relatively short time, ranging from several minutes to a few hours), we con-
centrated on improving the accuracy of the system. Decreasing the learning time
by dividing the training data between different learners would be necessary for a
corpus with a size of 1 million tokens or more.

To combine the results we used the Stacking method, which is in fact a decision
function defined over several different learners trained on the same dataset. In
many cases the forecast produced by this decision (or we can say voting) function
achieves better accuracy rates than the initial models. The theoretical assump-
tion underlying Stacking is that hypotheses made by inherently different learning
methods usually cover different parts of the solution space well, which means that
their error surface is not necessarily the same. This way hybrid methods can com-
bine the good characteristics of the individual models, leading to a better overall
performance.

The decision function we used to integrate the three learnt hypotheses was the
following: if any two of three learners’ output coincide we accept it as a joint pre-
diction, and use the forecast of the best performing model neural network otherwise
(if three different answers are given by the three models).

4.5 Attribute selection

In a learning problem the features used, their values constitute a vector space,
and the goal is to separate individual points in this space that have different class
labels. Our parameter space had 120 dimensions, each attribute having only integer
values, the majority of them lying in the {0, 1} set. The attributes rarely describe
the target function equally well.

In inductive learning, we approximate the value of a target variable based on
a set of features, making a hypothesis for the x0, x1, ..., xs → y mapping based
on a number of pre-defined examples with known attributes and target values. In
theory, we can assume that irrelevant attributes are not selected via the learning
process, and will have no impact on our hypothesis. In practice this is not always
the case: bad features can detrimentally affect system performance and of course
increase the time needed to set the hypothesis (learning time).
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5 Experiments

Evaluation set. To test the model we used an annotated corpus of 200,000 words,
divided into 96 XML files. We set up 10 test cases, randomly choosing 82 files for
training, 5 files for the development phase testing and 9 files for evaluation purposes.
The results presented were calculated using these 10 test cases as a 10-fold cross
validation.

Results. The accuracy scores of the three learning methods are quite close
to each other, with the artificial neural network slightly outperforming the other
two. We should note though that with some proper search (via grid search, a
genetic algorithm, or simulated annealing for example) in the parameter space of
the learners would possibly weaken this superiority of neural networks. We used the
C4.5 decision tree learner with a confidence factor of 0.33 for pruning, the ANN with
one hidden layer of one and half the number of hidden units than input neurons,
using sigmoid activation functions, 50 epochs of training with a 0.3 learning rate.
For SVM classification we had a cosine polynomial kernel of 3rd degree, with 3000
data points used as basis in the optimization. The three models attained an average
performance of 90.79%, 91.24%, and 90.66% with a standard deviation of 2.52%,
2.09% and 2.43% respectively on the 10 test cases. Although the support vector
classifier achieved a slightly worse performance than the other two methods, it
had outstanding precision measure on the three less frequent classes and this was
especially helpful for a voting model.

Voting. Since ANN was clearly superior to the other two learners (it had very
competitive performance on most of the 10 test cases, and had the best F value on
the development phase test sets as well with 91.66% against 91.4% and 90.85%) we
used the following decision function as a voting rule between the learners: if any
two of three learners’ output coincide we accept it as a joint prediction, and use the
forecast of the best performing model neural network otherwise (if three different
answers are given by the three models).

Such a decision function can have one of three possible effects on the system
output: it may change a bad answer of the ANN into a good one (make a correction),
or it may change a correct forecast of the network into a bad one predicted by the
other two learners; and finally it can have no effect on the outcome when a bad
answer is changed to another bad one. Voting brings a gain in accuracy if the
corrections occur more often than messing up the prediction - in our case the ratio
of good/bad revisions was 64.06% good to 35.94% bad. The following table shows
the different types of corrections on each test cases:

This voting scheme performed better than the initial learners, with an F measure
of 91.95% on average. This is a slight improvement (0.71%) compared to ANN,
but this small increase in accuracy meant a 8,11% decrease of error rate relatively
to the neural network, which is significant.

The results presented in Table 3 averages the individual results of the 10 test
cases weighted by the number of NEs in the evaluation sets. We did this because
we separated train/test/evaluation sets based on the XML file units of the corpus.
This way the number of NEs differed slightly form one test case to another, but
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Table 2: Voting performance (on all 10 test cases).

Testcase 0 1 2 3 4 5 6 7 8 9 SUM

Revisions 100 86 99 103 65 71 91 68 76 101 860
Good 74 45 53 47 44 39 54 30 54 59 499
Bad 18 36 31 37 16 27 31 28 18 38 280
Irrelevant 8 5 15 19 5 5 6 10 4 4 81

they preserve the topical integrity of the corpus, with whole newspaper articles
falling into one set without any splitting. With this weighting our measures are
evenly balanced.

Table 3: Results of various learning models and the voting model (averages on 10
testcases).

ANN C4.5 SVM Voting
Precision / Recall / F measure (%)

Location 83.4/69.4/75.8 83.2/70.9/76.6 92.9/33.2/48.7 90.8/68.0/77.7

Organization 93.1/95.9/94.5 92.5/95.8/94.2 90.6/97.9/ 94.1 92.1/97.8/94.9

Person names 84.1/82.8/83.4 79.7/79.7/79.7 86.7/74.9/ 81.1 87.1/80.9/83.9

Miscellaneous 82.2/60.7/69.8 80.9/60.9/69.5 95.0/54.1/ 69.4 91.4/56.9/70.1

Overall 91.8/90.7/91.2 91.1/90.5/90.8 90.7/90.6/ 90.7 92.2/91.7/92.0

Improvement to

the best baseline 9.1/25.3/17.3 8.3/25.0/16.7 7.8/25.2/ 16.5 9.7/26.6/18.2

Attribute selection. We used the statistical chi-squared test to rank the 120
attributes we had and we examined the system performance in the function of the
number of features used. We chose one of the testcases to analyze the effect of
discarding some of the attributes that was the most similar to the overall results
obtained in our experiments. By doing this we hoped to obtain information relevant
to all 10 problem sets. The effects of feature space size on system performance using
C4.5 decision tree learner for classification can be seen in Figure 1. The dotted line
represents the accuracy on the development phase test set and the continuous line
denotes the F measure value on the evaluation set. As can be seen, the minimal
representative feature set size is somewhere around 30 features, while 60 is the
optimal space dimension for the decision tree classifier. This is an interesting and
useful result.

Using the chi-squared test to rank attributes the capitalization information for
a +/-1 interval, frequency ratio features from the Szószablya corpus, the ”con-
tains digit” attribute, POS + case code, some trigger word list features (surnames,
geographic name and company types) and word length proved to be the most sig-
nificant. Performing this kind of analysis using the other two models, ANN and
SVM according to the optimal feature set size would be more time consuming, as
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decision tree learning is much faster than the numeric learners, and exceeds the lim-
itations of this article. The results obtained with an ideal embedding feature space
dimensionality for C4.5 shows that attribute selection certainly enhances system
performance, so investigating the optimal amount of attributes for a neural network
and support vector classifier is an area we plan to study in the near future.

Figure 1: Effect of attribute selection on accuracy of C4.5 (number of attributes
selected / F measure).

Results with attribute selection. After noting the results of Figure 1 we
decided to keep only 60 features and then we redid all the experiments performed
earlier. The decision tree learner increased its overall accuracy because we got rid
of the many features that had little statistical relevance to the target class. C4.5 in
the filtered feature space achieved a 91.38% F measure, which was better than any
of the three individual models using all 120 attributes, yielding a 6.41% decrease
in the relative error rate for the C4.5 classifier and 1.6% compared to the best
individual model. ANN and SVM on the other hand produced poorer results this
way (90.95% and 90.23% F values respectively) and it indicates that these numeric
learners managed to capture some information from those less significant features
that only confused the decision tree. A voting scheme that treated C4.5 as the
superior model gave fair result (91.82% accuracy), showing that the loss of two
models overcame the improvement of the third, but the system still benefited from
voting.

We should note here however that optimal feature space size has not yet been
investigated for numeric learners, so perhaps choosing a bigger dimension would be
fruitful for the neural network or support vector classifier.
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6 Summary and Conclusions

In this paper we presented an NE classifier system for the Hungarian language
based on various statistic learning algorithms. Our main aim was to investigate the
named entity recognition problem for Hungarian, which is quite a special language
regarding its grammatical characteristics (e.g. its agglutinative nature). We tested
the performance of artificial neural network, the C4.5 decision tree and support
vector machine models on a classification problem using five different standard
target classes used in recent conferences (CoNLL 2002, 2003) focused on named
entity recognition for other languages. We constructed a parameter space of 120
dimensions, capturing orthographic, syntactic features of the text and background
knowledge useful for disambiguating entity names.

Here we sought to demonstrate that statistical models can compete with expert
rule-based systems that exist for Hungarian, and to discover whether feature se-
lection and some meta-learning model can enhance overall system performance or
not.

The target domain we chose were texts of newspaper articles, using a segment
of the syntactically annotated Szeged Corpus consisting of business news collected
from the homepage of the Hungarian News Agency (MTI, www.mti.hu). Business
news articles are used as input data for other researches at the University of Szeged;
we also plan to integrate our model into an information extraction system developed
by researchers of the University and investigate its effects.

Our results show that statistical models can successfully disambiguate proper
names and, unlike other natural language processing tasks like syntactic parsing,
NE recognition can achieve competitive results in the Hungarian language to similar
models for different languages or expert rule-based systems for Hungarian. Our best
performing system achieved an accuracy of 91.95% in F measure, one that is close
to the best results given in the literature, and competes with other NE classifiers
developed for Hungarian. However, a cross-language comparison is quite risky and
its relevance is questionable, while systems for Hungarian have been evaluated on
a different corpus.

The experiments conducted here also show that meta-learning schemes and at-
tribute selection can contribute to NE recognition, we got a significant improvement
in the F measure using a voting rule (0.71% higher F value, 8.11% decrease of er-
ror rate, relative to ANN) and by using chi-squared test to rerank and filter the
attributes that constitute the feature space for learning (a 0.59% increase in the F
value, a 6.41% decrease of error rate of C4.5, relative to that with 120 attributes).

In the experiments we excluded some deep-knowledge features that could further
increase classification accuracy, such as syntactic information about the text in
order to build a system that can be used in practice and can be integrated into
end-user applications like IE.

There are several other ways we might improve our system’s performance on
Hungarian business texts. These include using web search [4] to give further features
according to word collocation with trigger words, using unannotated data, and
using a Hidden Markov Model-based classifier which could be beneficial to the
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model presented in our paper. Since system accuracy constantly increases with
training set size, we expect that enlarging our training database with more manually
annotated examples would also be helpful.

Currently we are testing our learning model on other languages like English to
get more relevant comparisons to other systems.
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[18] Miháczi, A., Németh, L., and Rácz, M. Magyar szvegek természetes nyelvi
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