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Finite State Evaluation of Logical Formulas :

Jevons’ Approach (1870) and Contemporary

Description

Paul Amblard∗

Abstract

In this paper, we describe a formal language for a class of logical expres-
sions. We then present a Finite State Machine for recognition and evaluation
of this language. The main interest of the language is its historical character-
istic. This language invented by the British scholar W. Stanley JEVONS in
1865 is probably the earliest language in which expressions were evaluated by
a Finite State Machine. The two outstanding contributions were the use of
machinery to evaluate formulas and the evaluation of formulas with variables
by several parallel evaluations with constants. The contribution of this paper
is to present this ancient evaluation process in a contemporary framework,
i.e. formal languages and finite state automata. The design of an evaluator
is given in great detail.

Introduction and Related Works

The history of calculating machines is well known. Pascal and Babbage built ma-
chines that are considered as the mechanical ancestors of today’s computers. But
computers do not only compute numbers, they can also perform symbolic evalu-
ations. At a certain level of abstraction, we may consider mechanisms based on
logical choices if . . . then . . . , or if . . . then . . . else . . . as the necessary
complements of strictly arithmetic operations.

The first mechanical machine making these choices to ” perform the logical
inference ” was designed by William Stanley JEVONS in 1865 and published in
1870 ([14]). He had been a student of De Morgan. He was at that time becoming a
professor of Logic (and of Political Economy) at the Owens College of Manchester.
Figure 1 shows Jevons’ activity time w.r.t other well-known British logicians.

His work has often been presented in the same terms as in the original paper:
logical evaluation [1, 5, 6, 16]. Burris’ paper [5] gives interesting details about
Jevons’ logic and about his machine. But none of these papers establishes relations
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Figure 1: British logicians period. Jevons’ time devoted to his machine is circled.

between Jevons’ work and automata formalization. The only relations between
Jevons’ work and automata appear in Shepherdson’s paper [19]. Unfortunately,
after saying And the key of the success of the whole endeavour was the discovery of
a ’context free’ algorithm which allowed the input proposition to be processed from
left to right one symbol at a time, the author did not explore in detail this ’context
free algorithm’. He could certainly have discovered that it is in fact simpler than
context free: no stack is used in this mechanical machine. However the paper is
of great interest to us: Shepherdson describes the relations between the machine
and the theory of Jevons, and he gives the drawings of the machine. A hardware
implementation of this automaton by a V.L.S.I circuit had been studied in [2]. The
present paper extends the presentation of [3].

In this paper we propose a description of Jevons’ work in the framework of
formal languages and automata. We shall see that Jevons can be considered as
the inventor of Finite State transducers and evaluators. He also invented an an-
cestor in parallelism: input data are distributed (with modifications) to different
”processors” running the same evaluation process, some kind of Single Instruction
Multiple Data.

The paper is organized as follows: the first part describes a set of logical ex-
pressions. They constitute Jevons’ formal language. The process of recognition is
also described. The evaluation of this language is described in the second part. It
is based on the Finite State paradigm. This part presents our technique and the
technique used by Jevons himself to evaluate the formulas. It will then be possible
in the third part to show that Jevons’ evaluation, completed by syntactic analysis
of formulas, meets our expectations. We shall give some details about the method
used to obtain evaluation, based on composition of automata.

◦ In the paper some quotations from Jevons’ presentation [14] will appear in this

form. The number is the reference of the paragraph in the original text.
◦
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1 Jevons’ Language

1.1 Pseudo-natural Language

Jevons dealt with logical formulas organized as

iron is metal and metal is not wood

The goal being obviously to deduce that

iron is not wood

If we maintain Jevons’ terminology, in the sentence iron is metal iron is a ”sub-
ject”, is is the ”copula” and metal is an ”attribute”. The copula is obviously an
implication.

He also allowed disjunctions of conjunctions both in the subject part and in the
attribute part. This conjunction is denoted by and. Disjunction is denoted by or.

Jevons’ language contained conjunctions of sentences. This conjunction is de-
noted by and.

He could then write formulas like

iron and heavy is metal and heavy or metal is not wood and wood is not metal or
not iron

1.2 Formal Language Implemented by Jevons

In his formal language, Jevons used four variables A, B, C and D, and their respec-
tive complements a, b, c and d instead of natural language names (iron, metal,..)
so the previous sentences become

A is B and B is d

Obviously, the conclusion remains :

A is d

Jevons also made explicit the distinction between a variable appearing in an at-
tribute part or in a subject part. Conjunctions of variables were denoted by simple
concatenation, where

AsDsbs

simply denotes ”A and D and not B” when this appears in a subject.
Similarly AaDaba appears in an attribute.
The disjunction was the inclusive or. Let us remember that Boole used at this

time the exclusive or and that he and Jevons exchanged arguments about this
choice. The generalization of inclusive or is also a contribution from Jevons. The
disjunction had also the distinction between subject and attribute giving +s and
+a.

The conjunction between sentences was an and and was written as a ”Full-
Stop”. This and is syntactically different from the and between variables.
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The language of correct expressions is described by Jevons but he did not give
any formal description of it. Formal grammars were only invented 80 years later.
Similarly automata were not already known with the contemporary meaning. The
word already existed in Homer’s Iliad (ch. 5, v. 749 and ch. 2, v. 408) but the reality
is not the same. It refers to things (The gates of heavens) or people (Menelas)
moving by themselves.

The photo of the keyboard on Jevons’ machine is available from the website of
the Museum of the History of Science in Oxford. Due to its aspect, many descrip-
tions present it as the ”Logical Piano” (www.mhs.ox.ac.uk/images/index.htm
then search for Jevons).

◦

36

The key board of the instrument is shown in fig. [..], where are seen two sets of

term or letter keys, marked A, a, B, b, C, c, D, d, separated by a key marked

Copula–Is. The letter keys on the left belong to the subject of a proposition,

those on the right to the predicate, and on either side just beyond the letter keys

is a Conjunction key, appropriated to the disjunctive conjunction or, according as

it occurs in the subject or predicate. The last key on the right hand is marked

Full Stop, and is to be pressed at the end of each proposition, where the full

stop is properly placed. On the extreme left, lastly, is a key marked Finis, which

is used to terminate one problem and prepare the machine for a new one.

◦

Example and transcription of Jevons’ language in this paper

“AsDs ors asCs is caBa Full-Stop Bs is Da ora Aaca Full-Stop” represent the for-
mula nowadays written in standard logic as (A∧D ∨ a∧C ⇒ c∧B) ∧ (B ⇒ D ∨ A∧c)
(We could also write ¬ A instead of a). In this paper we shall use the following
form : AsDs +s asCs ⇒ caBa • Bs ⇒ Da +a Aaca •.

We take the conventions

As, as, Bs, bs, Cs, cs, Ds, ds are the variables in a subject part,
Aa, aa, Ba, ba, Ca, ca, Da, da are the variables in an attribute part,
+s and +a are the disjunctions, in subject and attribute part,
⇒ is the implies named ”is” by Jevons,
• is the and between sentences named ”Full-stop” by Jevons.

Jevons added a key Finis which was simply a ”reset” key. We do not use it because
it simply forces the machine into the initial state.

Jevons’ language can then be described by the grammar of figure 2. The vo-
cabulary is VT .

VT = {As, as, Bs, bs, Cs, cs, Ds, ds, +s, ⇒, Aa, aa, Ba, ba, Ca, ca, Da, da, +a, • }

The grammar is described by noting that a problem is a sentence or a sentence
followed by a problem, a sentence is a subject followed by an attribute, and so
on. In the grammar, we use Vars (resp. Vara) for any variable in a subject (resp.
attribute).
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Problem → Sentence / Sentence Problem
Sentence → Subject ⇒ Attribute •
Subject → Products / Products +s Subject

Attribute → Producta / Producta +a Attribute
Products → Vars / Vars Products

Producta → Vara / Vara Producta

Figure 2: Grammar of Jevons’ language

Another form of grammar is as follows :
Intermediate vocabulary is VN = { J, K, L, M, N }. The axiom is J. The rules

are :

J → Vars K
K → Vars K / +s J / ⇒ L
L → Vara M
M → Vara M / +a L / • N
N → Vars K / ε

Let us note, as a comment, that a variable can be repeated any number of
times in a product without changing the meaning. We could then think about an
asynchronous automaton as in ([13]) but this property is not true for other symbols.
We should have to admit ”strange” expressions such as 1s ⇒ ⇒ 0a •.

Another comment is about redundancy between the indication subject-attribute
and the correct alternation of the separators • and ⇒.

The finite state recognizer of the language is represented by Automaton SA in
figure 3.

2 Evaluation of Formulas

The main contribution of Jevons concerns evaluation of the aforesaid logical formu-
las. His method was obviously not explicitely based on Finite State Transducers,
but, as we shall see, all the ideas were already present. His method was based on
two levels: the first one consists of the evaluation of a formula containing variables
by implementing several evaluations of formulas containing only constants (true 1,
false 0). The second level is indeed a Finite State Evaluation process. The combi-
nation of the two levels could be described as a Single Instruction Multiple Data
machine.
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V ars
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V ars
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•

Figure 3: SA : Syntax Analyser. Recognition of Jevons’ formulas. J is initial state,
N is final state. The ”dead” state is hidden. All transitions not described lead to
this hidden state.

2.1 From Variables to Constants

Jevons considered evaluation of formulas with 4 logical variables A, B, C, D. To
perform this evaluation, he considered 16 situations, corresponding to the 16 lines
of a (nowadays) classic truth table. Truth tables were already known in 1870, in
some forms, mainly presented by Leibniz. Jevons used truth tables under the name
of logical abecedarium.

◦

20

Problems involving four distinct terms would similarly require a series of sixteen

conceivable combinations, and if five or six terms enter, there will be thirty-two

or sixty-four of such combinations. These series of combinations appear to hold a

position in logical science at least as important as that of the multiplication table

in arithmetic or the coefficients of the binomial theorem in the higher parts of

mathematics. I propose to call any such complete series of combinations a Logical

Abecedarium...

◦

To evaluate a formula with N variables, Jevons simply evaluates 2N formulas
with constants. Each individual evaluator is labelled by a name representing a line
in the truth table. Line ABCD represents the line where both A, B, C, D are true,
line AbCd represents the line where A and C are true and B and D are false, and
so on.

Jevons designed his machine with such a mechanism that evaluation of

AsDs +s asCs ⇒ caBa • Bs ⇒ Da +a Aaca •

is implemented by evaluating
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1s1s +s 0s1s ⇒ 0a1a • 1s ⇒ 1a +a 1a0a • on line ABCD
1s0s +s 0s1s ⇒ 0a1a • 1s ⇒ 0a +a 1a0a • on line ABCd
1s1s +s 0s0s ⇒ 1a1a • 1s ⇒ 1a +a 1a1a • on line ABcD

and so on.
The fact that these 16 evaluations could be done in parallel was more obvious at
that time. Jevons was not disturbed by the sequential activities scheme introduced
by modern computers under the Von Neumann paradigm.

◦
The Logical Abacus was devised [..] and was constructed by placing the combi-

nations of the abecedarium upon separate moveable slips of wood, which can

then be easily classified, selected and arranged according to the conditions of the

problem.

◦

The mechanism moving the different slips of wood was slightly different for each
line of the Abecedarium. So we see that the standard problem SAT, known to be
NP-complete, was first solved by a system responding in constant time (in fact in
time 0, the answer is given immediately at the end of the formula) but exponential
in number of processors.

In Jevons’ machine, however, the energy for activating the 16 evaluators was
simply given by the user pressing the key of a keyboard. This energy limited the
parallelism degree of the system.

2.2 Evaluation of Formulas with Constants

From a timed sequence of inputs (actions on mechanic keys) the Jevons’ machine
delivered, after each input, a result giving a temporary evaluation of the formula.
This result contains 16 evaluations, on the 16 lines. The result of one basic evalu-
ation is simply true or false. By giving these 16 results, the machine gives in a
certain way the valuation which makes the formula true. At some pre-established
instants, this evaluation is in adequation with the expected result. We may choose
to consider results only after an and (represented by a • , separating sentences).
We shall consider two techniques of evaluations: ours is based on an extension of
the syntactic acceptor, then we shall give Jevons’ proposal.

2.2.1 Our evaluation, based on syntactic recognition

We can give a value to any problem by the function Val. It gives a boolean result,
based on the boolean values of the basic ”Bo” atoms and the laws of boolean
algebra. ”Bo” stands for a boolean, 1 or 0. The description of Val is related to the
grammar given in figure 2.
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Nfa

Mp0 Mp1 Mtr

LS1 Ltr

KS1 Kp1 Kp0

JS1 Jinit

Ntr

Kp1 Kp01s

0s

0s

1s +s

0s, 1s

⇒
1s

any input

0s

+s

⇒

0a, 1a

0a

1a

0s, 1s

+a

0a, 1a

•

+a

0a, 1a

•

1a
0a

+a

•

0s, 1s

+s

⇒

Figure 4: SE : Syntax-based Evaluation. States Kp1 and Kp0 are represented twice
to make the figure easier to read. Ntr has the same successors as the initial state
Jinit. In Ntr the expression evaluates to true, in Nfa, it evaluates to false

Val (Pr) = Val (Sent) ; Val (Pr) = Val (Sent) and Val (Pr)
Val (Sent) = not Val (Sub) or Val (Attr)
Val (Sub) = Val (Pros) ; Val (Sub) = Val (Pros) or Val (Sub)
Val (Attr) = Val (Proa) ; Val (Attr) = Val (Proa) or Val (Attr)
Val (Pros) = Val (Bos) ; Val (Pros) = Val (Bos) and Val (Pros)
Val (Proa) = Val (Boa) ; Val (Proa) = Val (Boa) and Val (Proa)

We have extended the recognition automaton by considering the values of the
interesting booleans evaluated in the machine. They are

– the current conjunction (or Product) of variables,

– the current disjunction (or Sum) of conjunctions, (and we must remember
the subject Sum and the attribute Sum)

– these two sums give the value of the current sentence, by x ⇒ y = ¬x ∨ y

– the current value of the conjunction (product) of sentences.

A further section (3.2) will describe the process to obtain this automaton. Let
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us summarize the correspondence between the states of the syntactic recognizer
(figure 3) and the states of our evaluator (figure 4) :

• In state J, either the subject is already certainly true after a first true product
in a sum (state JS1), or the subject is not already certainly true (state Jinit).

• In state K, if the subject was already true, it remains (state KS1). If the
subject is not yet true, either the current product is true (state Kp1) or the
current product is false (state Kp0).

• In state L, either the subject was true (state LS1) or the sentence is already
certainly true (state Ltr). This occurs either when the subject is false or
when the subject is true and the attribute is already certainly true.

• In state M, if the sentence is already certainly true, it remains (state Mtr).
In the other case, (the subject was certainly true and the attribute is not
already certainly true), either the current product of the attribute is false
(state Mp0) or this product is true (state Mp1).

• In state N, just after a •, the sentence is evaluated and the product of all the
sentences is generated. When it has been false once (state Nfa), it remains
false. If all the previous sentences have been true (state Ntr), evaluation
goes on.

2.2.2 Jevons’ evaluation

The goal of the present paper is not to present the method proposed by Jevons
and its relations to ”inductive” logic. This is done in ([6], [16] and [19]). It can
also be understood from the original text. The basics is principally that we are
interested in a prefix of expression. This prefix is a previous sentence, terminated
by a •, followed by a premise. Then any line in the truth table can be classified
in one of four categories with respect to the given prefix. (Line excluded by the
premise, Line included and consistent with the premise, Line inconsistent with the
premise, Line inconsistent with the previous sentence). These four situations can
be modeled by four states.

We may consider how Jevons himself would have described the four states of
one automaton (part 39) and the transitions due to action of the key ”Full stop”
(part 41).

◦

39

It is now necessary to explain that each rod has four possible positions fully

indicated in the figs. [–]. The first of these positions is the neutral or initial

position []. The second position is that into which a rod is thrown by a subject

key ; the third position lies in the opposite direction, and is that into which a

rod is thrown by a predicate key. The fourth position lies one half inch beyond

the third. The four positions evidently correspond to the four classes into which

combinations were classified in the previous part of the paper []

◦
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P1

P2P3

P4

0s, +a

0a, +s •, +s

⇒, +a

•
1a,s, •,⇒

Boa,s, +a,⇒Boa,s, +s

any symbol

Figure 5: JE : Jevons’ Evaluation : Reconstructed Jevons’ automaton for evalua-
tion. In state P1, the formula is true, in state P4, it is false. Bo is one of the
booleans, 0 or 1.

His four positions are our four states P1, P2, P3 and P4 appearing in figure 5.

◦

41

The full-stop key being now pressed has a double effect. It acts [on the pins and

rods of the machine] These pins we may distinguish as the α and β pins, the α

pin being the uppermost. While a rod is in the first position the lever [] has no

effect ; but if the rod be lowered 1
2

inch into the second position, the lever will

cause the rod to return to the first position by means of the α pin ; but if the

rod be raised into the third position, the β pin will come into gear, and the rod

will be pushed 1
2

inch further into the fourth position.

◦

Part 41 clearly describes a part of the transition function succ for the same
input •, and the four states.

succ(P1, •) = P1 ; succ(P2, •) = P1 ; succ(P3, •) = P4 ;

From these different explanations, we could infer the 4 state machine given by
figure 5. In P1, the sentence is true. In P4, the sentence is false.

It is possible to follow the evaluation according to Jevons’ technique on two
tables: in these tables the initial state is P1. After a given input (first line), the
new state is given under this input (second line).

For a formula giving a true result :

0s => 0a +a 0a1a • 0s0s +s 1s0s => 1a0a •
2 2 2 2 2 2 1 2 2 1 1 2 2 2 2 1
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and similarly for a false result :

0s => 1a +a 0a0a • 0s1s +s 1s1s => 0a0a •
2 2 2 2 2 2 1 2 2 1 1 1 1 3 3 4

3 Jevons’ Evaluation Coupled with Syntactic

Recognition

Jevons did not verify the syntax of the formula entered on the keyboard. He was
probably the only user of the machine in his courses of Logic. There were probably
no syntax errors in his inputs! We have tried to compose evaluation and recognition
by computing product automata. We used two evaluators: Jevons’ one, of course,
and an evaluator obtained by composing more basic evaluators.

3.1 Equivalence between two Evaluations

There are different definitions of the product automaton. We take the one of
([12], pp 134-137). The product computes the AND of the two composed automata.
When we deal with recognition, it corresponds to intersection of languages. Here
the interpretation is different, but AND is possible because the evaluator delivers a
boolean (the value of the formula) and the recognizer can also be described with
such a boolean output. If we name SA the syntactic analyser of figure 3 and JE
the Jevons’ evaluator of figure 5 the product SA × JE gives SE, the automaton of
figure 4. (The correspondence between states is given by the Cartesian product of
states in figure 6).

This composition is an interesting result. We can consider it as a validation of
our syntactical evaluation method.

To enter more deeply into Jevons’ technique, the reader may draw surrounding
shapes on figure 4.

– One shape labelled P3 around states JS1, KS1, Mp0;

– One shape labelled P1 around Jinit, Kp1, LS1, Mp1, Ntr;

– One shape labelled P2 around Kp0, Ltr and Mtr.

The next section will give details about the design of SE.

3.2 Evaluation by Composition of Basic Evaluators

We have tried without success to obtain Jevons’ automaton JE by composition of
more basic understandable automata. We only obtained a composition evaluating
correct formulas in the same way as Jevons’ method (JE). We obtained CE our com-
posed evaluator (figure 12), JE and CE are not equivalent. The (wrong) expression
0s • does not give the same values in the two processes. If we compose them by the
Syntax Analyser SA, the products SA × JE and SA × CE are equivalents. In both
cases we obtain SE, the automaton of figure 4.
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evaluation
syntax J K L M N

P1 Jinit Kp1 LS1 Mp1 Ntr
P2 Kp0 Ltr Mtr
P3 JS1 KS1 Mp0
P4 Nfa Nfa Nfa Nfa Nfa

Figure 6: Correspondence of states between the automaton of composite Syn-
tax Evaluation (fig. 4 SE) and the product of the Syntax Analyser (fig. 3 SA) by
the Jevons’ Evaluation automaton (fig. 5 JE)

Where does CE come from ? CE is the result of composing 5 automata. The
organization of composition is given by figure 7. The composition has been com-
puted with Lustre environment described in the next subsection. In the same
way, the equivalences have been checked with this tool.

Automaton PROD (figure 8) is a Moore automaton, it receives all the inputs and
delivers the product’s value P.

Automaton SUM (figure 9) is a Mealy automaton, it receives symbols
(+a, +s, ⇒, •) and the value P delivered by PROD. It delivers the sum of products
value S.

Automata SUBJ (figure 10) and ATTR receive symbols (⇒, •) and the value S of
the sum of products. They deliver (respectively) the values Su and At of subject
and attribute part. They are Mealy automata. SUBJ takes the value of S into
account when ⇒ occurs. In a symetric way, ATTR deals with S when • occurs.

Automaton EXPR (figure 11) is a Mealy automaton. It receives symbols (⇒, •)
and the values of Su and At. It delivers the global value Ex of Jevons’ expression.

All these automata have two states as we could expect from boolean evaluators.

3.3 The Language Lustre and the Environment

The language Lustre has been designed in the ’80s for real-time programming [10,
11]. The present description contains only some basic points useful to understand
the composition made with the automata. The same approach is used for the
environment. The use of Lustre in education is described in [4].

3.3.1 Boolean Lustre

Boolean Lustre has only one type : boolean. The boolean operations (not, and,
or and xor) are defined in boolean Lustre. Two timed operators (pre and − >)
allow us to deal with unitary delay and initialization. The synchronous hypothesis
is that the automata update their states at the same clock ticks.
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P

=>

+s
+a

0s
1a
0a

1s

R

.
ExSS At

Su

P

R
P
X
E

M
U
SD

O

R
T
T
A

B
U
S

J

Figure 7: Composition of 5 basic automata to obtain an evaluator. It is inspired
by the organization of a sequential circuit. Each input symbol is considered as a
”wire”, true or false at any instant. One and only one of these wires is true at any
instant. These combinations represent the occurences of one symbol. P, S, Su and
At are internal variables. The circuit would be a synchronous one, the clock being
common.

Pr1 Pr0

Bos,a⇒, •, +s,a, 1s,a

0s,a

⇒, •, +s,a

Figure 8: PROD : Evaluation of products. In state Pr1, the product P is 1, in state
Pr0, the value is 0. The product is reset at 1 when a separator (⇒, •, +) occurs
and this product becomes 0 only when a 0 boolean occurs.
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Sm0 Sm1

P.(⇒ or •)/S = 1

P .(⇒ or • or +s,a)/S = 0 +s,a/S = 1

P. +s,a /S = 1

⇒, •/S = 1

Figure 9: SUM : Evaluation of sum S, from the values of the products. P stands
for (Product is 1) and P for (Product is 0). Booleans are not taken into account,
updating only occurs on separator occurences.

SU1 SU0

other/Su = 1 other/Su = 0

⇒ .S/Su = 0

⇒ .S/Su = 1

Figure 10: SUBJ : Evaluation of subjects Su from the value of the sum S. Updating
occurs when ⇒ occurs. Subject’s value then receives the value of the sum S.

EX1 EX0

other any symbol

•.(Su.At)/Ex = 0

Figure 11: EXPR : Evaluation of a Jevons’ expression Ex from Subject and At-
tribute’s values. An expression remains true until occurence of a • when the
current implication is false, i.e. the current subject Su is true and the current
attribute At is false.
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V1V2 V3

V4

V5 V6 V7

1s,a, •,⇒

Bos,a, +s,a Bos,a

always

Bos,a, +s,a

1s,a, •

Bos,a

+s,a

•,⇒ 0s,a

+s,a

+s,a

• 0s,a

+s,a, •,⇒

⇒ ⇒ ⇒

•

Figure 12: CE : Composed Evaluation. Evaluator obtained by combining PROD,
SUM, SUBJ, ATTR, EXPR. In state V4, the expression is conclusively false. In states
V1 and V6, it is true.

3.3.2 Basic descriptions of automata

Boolean Lustre makes it possible to describe finite automata in many different
styles :

• The automaton can simply be described by a classical set of states, a descrip-
tion of the transition function and the description of the output function.
This automaton may be deterministic or not, complete or not.

• We must introduce a comment about our mode of description of language
recognizers. The only type being boolean, we cannot have a vocabulary
based on characters. We solve this problem by introducing a set of boolean
inputs such as {a, b, c, d}. We need to avoid the problem of 16 possible values
of these four booleans. We use assert constructs to constrain one and only
one amongst {a, b, c, d} to be true at any time.

• The general use of automata in formal languages studies distinguishes accep-
tor states and not acceptor ones. This is obviously equivalent to having a
boolean output defined in {0, 1} for each state. If we deal with more general
automata, with not-simply boolean outputs, we may use the same approach.
We then declare as many booleans as useful outputs.

• If the global automaton is not known, we can give properties of the automaton.
This method is powerful but no systematic rules can be given. We may
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experiment if the properties are adequate or not. Example of property is For
any transition due to input symbol X, a state and its successor never give the
same output. Experimentations could be simulation or formal proofs.

• When we deal with the synchronous sequential digital circuits, the description
can easily be given in boolean Lustre. Logical gates are described by the
operators. If we want to be close to the implementation we may describe
nand or nor gates. Flip-flops are described by the timed operators.

• A systematic method of description of a regular grammar exists in boolean
Lustre but there are restrictions on the form of the grammar: if A and B are
non-terminal symbols and if x is a terminal, rules must be expressed in one
of the two forms where we recognize initialization and unitary delay: A → ε
or A → B . x

• A translator exists from a language allowing to describe regular expressions.
This tool is described in [18].

3.3.3 Combinations of automata

Boolean Lustre allows to combine objects as it is the case in general Lustre.
Different combinations of objects are possible :

• A very common case is that two automata A1, A2 are defined by Lustre
nodes N1, N2 with the same inputs (inp). Both boolean Lustre nodes deliver
one boolean output. A boolean operator OP allows us to define a new node
as
N3 (inp) = N1 (inp) OP N2 (inp). It creates a composed automaton A3. The
language L3 recognized by A3 is a function of languages L1 and L2 recognized
by A1 and A2. It also corresponds to the introduction of a logical gate on
the two output signals of the two circuits.

Correspondence between gates and language operations are obvious: not gate
gives the complementary language, and gate gives the intersection of lan-
guages. ([12], p 135).
not xor gate is particular. If two automata have always the same output, the
composed automaton delivers always the output true. This corresponds to
computing the equivalence of two automata. It is used to prove equivalence
between two descriptions of automata that are assumed to be equivalent.
(Similarly a ⇒ operator is used to test inclusion of languages.)

• It is also possible to do cross-coupling of two nodes: some inputs of a node
are outputs of the other one or vice-versa. It is very common in circuits. We
must not include combinational loops.

• Any serial or parallel composition of automata may be described. An example
appears in figure 7.
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Zs

Us

Ps

imp

Za

Ua

Pa

dot

pr

sum

expr

Figure 13: Simulation in Lustre. Zs represents 0s, imp represents ⇒, pr is the
current value of the product. The input sequence begins with 0s ⇒ 1a •. The
time slices are represented on the bottom line.

3.3.4 Environment and uses

The environment is available ([22]) under Solaris or Linux. Three tools are used in
our work.

• The Lustre simulator allows to visualize the behaviour of the given object.
The results are given in textual form or in timing diagrams form. This is par-
ticularly standard in digital circuits simulation. Figure 13 shows a simulation
result of an evaluation. One character (represented by a boolean, true when
occuring) is represented by one line of the oscilloscope.

• The Lustre combiner minimizer computes the finite state machine described
in input. The result of this compilation is a full definition: (list of states, list
of all transitions). The result automaton is complete, deterministic and min-
imal. Obviously if we described a complete deterministic minimal automaton
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as input, the compilation is only a state renaming ! It is particularly useful
in composing automata. Obviously we must remain aware that the combina-
torial explosion is possible.

• We use the Lesar tool in a particular case: for automata with only one boolean
output, such as recognizers, Lesar computes if this output is always true. If
it is not the case, Lesar gives a counterexample. This counterexample is very
interesting when we test automata equivalence.

4 Conclusions

Obviously the contribution made by Jevons was an important step in the mecha-
nization of Logic. The first machine devoted to artificial intelligence was his. The
fact that syntactical aspects were not covered is easy to understand. But it is very
pleasant to discover, by simple techniques, that his method could have been cou-
pled with Finite State recognition. The present paper introduced the details about
possibilities of such a composition with Lustre environment.

Part 46 of the original text opens a new problem: due to mechanical implemen-
tation, it was possible to press several keys simultaneously. Do we have to change
automata theory to take such a feature into account?

◦

46

When several of the letter keys on the subject side only or the predicate side only

are pressed in succession, the effect is to select the combinations possessing all the

letters marked on the keys. Thus if the keys A, B, C be pressed there will remain

in the abecedarium only the combinations A B C D and A B C d ; and if the key

D be now pressed, the latter combination will disappear, and A B C D will alone

remain. The effect will be exactly the same whatever the order in which the keys

are pressed, and if they be pressed simultaneously there will be no difference in

the result.

◦
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and Formal Languages, Dobogókő, Hungary, May 2005, pp 59-68.

[4] P. Amblard Using Lustre in Practical Educational Activities : Digital Circuits
Design, Formal Languages, ETAPS Workshop : Synchronous Language Appli-
cations Programming, SLAP 05 Edinburgh, April 2005.

[5] G.H. Buck, S.M. Munka, W. Stanley Jevons, Allan Marquand, and the Origin
of Digital Computing, IEEE Annals of the History of Computing, Vol 21, No 4,
October-December 1999, pp 21-27.

[6] S.N. Burris, Contributions of the Logicians, part 1 From Richard Whately to
William Stanley Jevons, on-line : www.thoralf.uwaterloo.ca/

[7] I. Casltes, Vice President’s note, Newsletter of the Academy of
the Social Sciences in Australia, Vol 17, No 3, 1998, pp 5-12;
www.assa.edu.au/publications/Dialogue/dial31998.pdf

[8] M. Gardner, Logic Machines, Scientific American, March 1952, pp 68-73.

[9] M. Gardner, Logic Machines and Diagrams, McGraw-hill 1958, and The
Harvester Press, Brighton, 1983

[10] N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer
Academic Pub., 1993

[11] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, The Synchronous Data-
flow Programming Language Lustre, Proceedings of the IEEE, September 1991,
pp 1305-1320.

[12] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata The-
ory, Languages and Computation, Addison Wesley, 2001.

[13] B. Imreh, Some Remarks on Asynchronous Automata, Conference DLT 2002,
Lect. Notes in Comp. Science No 2450, pp 290-296.

[14] William Stanley Jevons, On the Mechanical Performance of Inference, Philo-
sophical Transactions of the Royal Society, London, 1870, pp 497-518. Available
on-line : tima-cmp.imag.fr/~amblard/JEVONS/jevons public.pdf

[15] W. S. Jevons, Papers and Correspondence, (ed : R.D. Collison Black and
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