
Acta Cybernetica 17 (2006) 685–700.

Parallel Communicating Watson-Crick Automata

Systems

Elena Czeizler∗ and Eugen Czeizler∗

Abstract

Watson-Crick automata are finite state automata working on double-
stranded tapes, introduced to investigate the potential of DNA molecules
for computing. In this paper we introduce the concept of parallel communi-
cating Watson-Crick automata systems. It consists of several Watson-Crick
finite automata parsing independently the same input and exchanging infor-
mation on request, by communicating states to each other. We investigate
the computational power of these systems and prove that they are more pow-
erful than classical Watson-Crick finite automata, but still accepting at most
context-sensitive languages. Moreover, if the complementarity relation is in-
jective, then we obtain that this inclusion is strict. For the general case, we
also give some closure properties, as well as a characterization of recursively
enumerable languages based on these systems.

1 Introduction

Watson-Crick finite automata, introduced in [5], are a counterpart of finite au-
tomata working on double stranded sequences. As suggested by the name, these
automata are mainly inspired from molecular computing and are intended as a
formalization of DNA manipulation. The two strands of the input are separately
scanned from left to right by read only heads controlled by a common state. The
characters on the corresponding positions from the two strands are linked by a com-
plementarity relation, inspired from the Watson-Crick complementarity of DNA nu-
cleotides. Several variants of these automata were investigated in [11, 12, 13, 15],
see also [14] for a comprehensive presentation.

Distributed computations play a major role in modern computer science; mul-
tiprocessor computers, distributed data bases, computer networks, etc., introduced
notions such as distribution, parallelism, and communication. The theory of gram-
mar and automata systems was developed as a mathematical model for distributed
and parallel computations.

∗Department of Mathematics, University of Turku and Turku Centre for Computer Science,
Turku 20520, Finland, E-mail: elena.czeizler@utu.fi, euczei@utu.fi

685

686 Elena Czeizler and Eugen Czeizler

An automata system is a set of automata working together on the same input,
according to a well specified protocol, in order to accept one language. There are
two basic classes of automata systems: sequential and parallel.

The sequential class is represented by cooperating distributed automata systems.
Here, all components work on a common input tape and at each step only one
automaton is active. An example of such systems is the cooperating distributed
push-down automata system, introduced and studied in [3].

A parallel communicating automata system is a construct consisting of several
automata working synchronously, each on its own input tape, and communicating
on request. Special query states are provided, each of them pointing to exactly
one component of the system. When a component i of the system reaches a query
state Kj , the current state of the component j will be communicated to i and the
computation continues. There are two important classifications of parallel commu-
nicating systems concerning the communication graph and the returning feature.
An automata system is called centralized if only one component, the master, may in-
troduce query states, and non-centralized otherwise. An automata system is called
returning if after communicating, a component resumes the computation from its
initial state, and non-returning if it remains in its current state. There are several
papers in the literature investigating this class of systems. For example, parallel
communicating push-down automata systems communicating by stacks were in-
troduced in [2] and parallel communicating automata systems communicating by
states were introduced in [10], see also [9] for a survey.

Cooperating distributed Watson-Crick automata systems were investigated in
[1], where it was proved that distribution does not bring any change in the ac-
ceptance power of Watson-Crick finite automata, except for the case of one state
automata, i.e. stateless Watson-Crick automata.

In this paper we introduce the notion of parallel communicating Watson-Crick
automata system as a set of Watson-Crick finite automata working independently
on their own input tape and communicating states on request. We consider only
non-centralized and non-returning systems. Although every component has its own
double-stranded tape, the input is the same on all of them. At the beginning, all
components are in their initial states and start parsing synchronously the input
from left to right. The communication between components is done using query
states as described before for general parallel communicating automata systems.
An input is accepted by the system if all components are in final states when they
completely parsed the tape. Moreover, if one of the components stops before the
others, the system halts and rejects the input. Hence, in order to accept, the
components either finish at the same time or wait for each other at the end of the
computation.

Combining the notions of Watson-Crick automata and parallel communicating
systems comes naturally due to the new developments in DNA manipulation tech-
niques. While classical Watson-Crick finite automata use just one of the essential
features of DNA, i.e. the Watson-Crick complementarity, the systems introduced
here open new possibilities in exploiting also the massive parallelism of DNA com-
putations.

Parallel Communicating Watson-Crick Automata Systems 687

The structure of the paper is as follows. In Section 2 we fix our terminology
and introduce some basic notions and results. Section 3 is devoted to the com-
putational power of these systems. We start by giving an example of a parallel
communicating Watson-Crick automata system proving that the accepting power
is enhanced. We also prove that the languages accepted by these systems are at
most context-sensitive. Moreover, if the complementarity relation is injective, as in
the case of DNA nucleotides, then one letter-languages accepted by these systems
are regular. In Section 4 we investigate some closure properties. We also give a
characterization of recursively enumerable languages based on these systems. In
Section 5 we present some open problems.

2 Preliminaries

In this section we give basic definitions and some already known results we need
later on. We start by considering the classical Watson-Crick finite automata intro-
duced in [5] and then define the parallel communicating version. We assume that
the reader is familiar with the fundamental concepts from formal languages and
automata theory. For more details we refer to [7], [14], and [16].

For a finite set Q, let card(Q) and 2Q denote the cardinality and the power set
of Q, respectively. Let V be a finite alphabet. We denote by V ∗ the set of all finite
words over V , by λ the empty word, and by V + the set of all nonempty finite words
over V , V + = V ∗\{λ}. For w ∈ V ∗ we denote by |w| the length of w.

Given two alphabets V and U , we define a morphism as a function h : V → U∗,
extended to h : V ∗ → U∗ by h(λ) = λ and h(w1w2) = h(w1)h(w2), for w1, w2 ∈ V ∗.
If h(a) �= λ for each a ∈ V , then we say that h is a λ-free morphism. We define
a projection associated to the alphabet V as the morphism prV : (V ∪ U)∗ → V ∗

such that prV (a) = a for all a ∈ V and prV (a) = λ otherwise. For two morphisms
h1, h2 : V ∗ → U∗, we define the equality set of h1, h2 as:

EQ(h1, h2) = {w ∈ V ∗ | h1(w) = h2(w)}.

Let now ρ ⊆ V × V be a symmetric relation, called the Watson-Crick comple-
mentarity relation on V . As suggested by the name, this relation is biologically
inspired by the Watson-Crick complementarity of nucleotides in the double stranded
DNA molecule. We say that ρ is injective if any a ∈ V has a unique complemen-
tary symbol b ∈ V with (a, b) ∈ ρ. In accordance with the representation of DNA

molecules, viewed as two strings written one over the other, we write
(

V ∗

V ∗

)
instead

of V ∗ × V ∗ and an element (w1, w2) ∈ V ∗ × V ∗ as
(

w1

w2

)
.

We denote
[
V

V

]
ρ

= {
[a
b

]
| a, b ∈ V, (a, b) ∈ ρ} and WKρ(V) =

[
V

V

]∗
ρ

. The set

WKρ(V) is called the Watson-Crick domain associated to V and ρ. An element

688 Elena Czeizler and Eugen Czeizler

[
a1

b1

] [
a2

b2

]
. . .

[
an

bn

]
∈ WKρ(V) can be also written in a more compact form as[

w1

w2

]
, where w1 = a1a2 . . . an and w2 = b1b2 . . . bn.

The essential difference between
(

w1

w2

)
and

[
w1

w2

]
is that

(
w1

w2

)
is just an

alternative notation for the pair (w1, w2), whereas
[
w1

w2

]
implies that the strings

w1 and w2 have the same length and the corresponding letters are connected by
the complementarity relation.

A Watson-Crick finite automaton is a 6-tuple M = (V, ρ, Q, q0, F, δ), where:

• V is the (input) alphabet,

• ρ ⊆ V × V is the complementarity relation,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final states,

• δ : Q ×
(

V ∗

V ∗

)
→ 2Q is a mapping, called the transition function, such that

δ(q,
(

w1

w2

)
) �= ∅ only for finitely many triples (q, w1, w2) ∈ Q × V ∗ × V ∗.

We can replace the transition function with rewriting rules, by using

s

(
w1

w2

)
→
(

w1

w2

)
s′ instead of s′ ∈ δ(s,

(
w1

w2

)
).

We define transitions in a Watson-Crick finite automaton as follows. For(
v1

v2

)
,

(
u1

u2

)
,

(
w1

w2

)
∈
(

V ∗

V ∗

)
such that

[
v1u1w1

v2u2w2

]
∈ WKρ(V) and s, s′ ∈ Q

we write (
v1

v2

)
s

(
u1

u2

)(
w1

w2

)
⇒
(

v1

v2

)(
u1

u2

)
s′
(

w1

w2

)

if and only if s′ ∈ δ(s,
(

u1

u2

)
). If we denote by ⇒∗ the reflexive and transitive

closure of ⇒, then the language accepted by a Watson-Crick automaton is:

L(M) = {w1 ∈ V ∗ | q0

[
w1

w2

]
⇒∗

[
w1

w2

]
s, with s ∈ F, w2 ∈ V ∗,

and
[
w1

w2

]
∈ WKρ(V)}.

Parallel Communicating Watson-Crick Automata Systems 689

Hence, a word w1 is accepted by M if starting from the initial state, after parsing

the whole input
[
w1

w2

]
we are in a final state.

Let us continue now by defining parallel communicating Watson-Crick automata
systems.

A parallel communicating Watson-Crick automata system of degree n, denoted
by PCWK(n), is an (n + 3)-tuple

A = (V, ρ, A1, A2, . . . , An, K),

where

• V is the input alphabet;

• ρ is the complementarity relation;

• Ai = (V, ρ, Qi, qi, Fi, δi), 1 ≤ i ≤ n, are Watson-Crick finite automata, where
the sets Qi are not necessarily disjoint;

• K = {K1, K2, . . . , Kn} ⊆ ∪n
i=1Qi is the set of query states.

The automata A1, A2, . . . , An are called the components of the system A. Note
that any Watson-Crick finite automaton can be viewed as a parallel communicating
Watson-Crick automata system of degree 1.

A configuration of a parallel communicating Watson-Crick automata system is

a 2n-tuple (s1,

(
u1

v1

)
, s2,

(
u2

v2

)
, . . . , sn,

(
un

vn

)
) where si is the current state of the

component i and
(

ui

vi

)
is the part of the input word which has not been read yet

by the component i, for all 1 ≤ i ≤ n. We define a binary relation
 on the set of
all configurations by setting

(s1,

(
u1

v1

)
, s2,

(
u2

v2

)
, . . . , sn,

(
un

vn

)
)
 (r1,

(
u′

1

v′1

)
, r2,

(
u′

2

v′2

)
, . . . , rn,

(
u′

n

v′n

)
)

if and only if one of the following two conditions holds:

• K ∩ {s1, s2, . . . , sn} = ∅,
(

ui

vi

)
=
(

xi

yi

)(
u′

i

v′i

)
, and ri ∈ δi(si,

(
xi

yi

)
), 1 ≤

i ≤ n;

• for all 1 ≤ i ≤ n such that si = Kji and sji /∈ K we have ri = sji , whereas

for all the other 1 ≤ l ≤ n we have rl = sl. In this case
(

u′
i

v′i

)
=
(

ui

vi

)
, for

all 1 ≤ i ≤ n.

If we denote by
∗ the reflexive and transitive closure of
, then the language
recognized by a parallel communicating Watson-Crick automata system A is

690 Elena Czeizler and Eugen Czeizler

defined as:

L(A) = {w1 ∈ V ∗ | (q1,

[
w1

w2

]
, q2,

[
w1

w2

]
, . . . , qn,

[
w1

w2

]
)
∗

(s1,

[
λ

λ

]
, s2,

[
λ

λ

]
, . . . , sn,

[
λ

λ

]
), si ∈ Fi, 1 ≤ i ≤ n}.

Intuitively, the language accepted by such a system consists of all words w1 such

that in every component we reach a final state after reading all input
[
w1

w2

]
.

In the next section we study the connection between the family of languages
accepted by parallel communicating Watson-Crick automata systems and the class
of context-sensitive languages. For doing this we use a special type of automata
characterizing this class of languages.

Linearly bounded automata are a special class of Turing machines which have
two extra symbols in their input alphabet, say # and $, called the left and right
end-markers, respectively. The automaton can neither overwrite these markers nor
move left or right from them. Hence, this type of automata uses only a limited
amount of tape. Similarly, k-head linearly bounded automata are a special class of
k-tape Turing machines which use only limited amount of each tape. On each step
the k heads move independently, according to the state of the automaton and the
symbol read on each individual tape.

The following two results are well known in the literature, see for example [6]
and [7].

Theorem 1. L ⊆ V ∗ is a context-sensitive language if and only if it is accepted
by a linearly bounded automaton.

We say that an automaton A is of space complexity S(n) if, for every accepted
input of length n there is some accepting computation in which at most S(n) tape-
cells are parsed by any read-write head.

Theorem 2. If a language L is accepted by a k-tape Turing machine of space
complexity S(n), then L is accepted by some one-tape Turing machine of the same
space complexity.

The following lemma comes as a direct consequence of the previous two results
and will be used in our future considerations.

Lemma 3. A language L is context-sensitive if and only if it is accepted by a
k-head linearly bounded automaton.

3 Computational power

Let us start by giving an example of a language accepted by a parallel communi-
cating Watson-Crick automata system of degree 3.

Parallel Communicating Watson-Crick Automata Systems 691

δ1(q1,
(x

λ

)
) = q1 δ2(q2,

(x

x

)
) = q2 δ3(q3,

(x

x

)
) = q3

δ1(q1,

(
#
λ

)
) = r1 δ2(q2,

(
#
#

)
) = p1 δ3(q3,

(
#
#

)
) = s1

δ1(r1,
(x

λ

)
) = r1 δ2(p1,

(x

λ

)
) = p1 δ3(s1,

(x

x

)
) = s1

δ1(r1,

(
#
λ

)
) = r2 δ2(p1,

(
#
λ

)
) = p2 δ3(s1,

(
#
#

)
) = s2

δ1(r2,
(x

λ

)
) = r2 δ2(p2,

(x

λ

)
) = p2 δ3(s2,

(x

λ

)
) = s2

δ1(r2,

(
#
λ

)
) = r3 δ2(p2,

(
#
λ

)
) = p3 δ3(s2,

(
#
λ

)
) = s3

δ1(r3,
(x

λ

)
) = r3 δ2(p3,

(x

λ

)
) = p3 δ3(s3,

(x

x

)
) = s3

δ1(r3,

(
#
λ

)
) = r4 δ2(p3,

(
#
λ

)
) = p4 δ3(s3,

(
#
#

)
) = f3

δ1(r4,
(x

λ

)
) = r4 δ2(p4,

(x

x

)
) = p4 δ3(f3,

(y

z

)
) = f3

δ1(r4,

(
#
λ

)
) = r5 δ2(p4,

(
#
#

)
) = f2

δ1(r5,
(x

x

)
) = r5 δ2(f2,

(y

z

)
) = f2

δ1(r5,

(
λ

#

)
) = f1

δ1(f1,

(
λ

y

)
) = f1

with x ∈ {a, b}, y, z ∈ {a, b, #, λ}
Table 1: The transition functions of Example 4

Example 4. Let A = ({a, b, #}, ρ, A1, A2, A3, ∅), where ρ is the identity relation,
i.e., ρ = {(a, a), (b, b), (#, #)}, A1 = ({a, b, #}, ρ, {q1, r1, r2, r3, r4, r5, f1}, q1, {f1},
δ1), A2 = ({a, b, #}, ρ, {q2, p1, p2, p3, p4, f2}, q2, {f2}, δ2), and A3 = ({a, b, #}, ρ,
{q3, s1, s2, s3, f3}, q3, {f3}, δ3). The transition functions of the three components
are defined in Table 1.

The system works as follows. The first component verifies that the input is of

the form
[
w1#w2#w3#w4#w5#w6

w1#w2#w3#w4#w5#w6

]
with wi ∈ {a, b}+ for all 1 ≤ i ≤ 6, and

moreover w1 = w6. Simultaneously the second and the third component impose
the constraints w2 = w5 and w3 = w4, respectively. Thus, the language accepted
by A is L = {w1#w2#w3#w3#w2#w1 | w1, w2, w3 ∈ {a, b}∗}.

On the other hand, it was proved in [18] that the language L cannot be accepted
by a 2-head finite automaton. Since Watson-Crick automata are equivalent with
2-head finite automata, see [14], we have the following result.

Theorem 5. Parallel communicating Watson-Crick automata systems are more
powerful than Watson-Crick finite automata.

692 Elena Czeizler and Eugen Czeizler

δ1(q1,
(xy

z

)
) = q1 for any x, y, z ∈ V δ2(q2,

(xy

λ

)
) = q2 for any x, y ∈ V

δ1(q1,

(
#
x

)
) = qx for any x ∈ V δ2(q2,

(
#
λ

)
) = K1

δ1(qx,

(
λ

λ

)
) = K2 δ2(qx,

(
λ

x

)
) = q3 for any x ∈ V

δ1(q3,

(
λ

x

)
) = qx for any x ∈ V δ2(q3,

(
λ

λ

)
) = K1

δ1(q3,

(
λ

#

)
) = qf1 δ2(qf1 ,

(
λ

x

)
) = qf2 for any x ∈ V

δ1(qf1 ,

(
λ

λ

)
) = qf1 δ2(qf2 ,

(
λ

x

)
) = qf2 for any x ∈ V ∪ {#}

Table 2: The transition functions of Example 6

Next, let us illustrate the communication between components by considering a
parallel communicating Watson-Crick automata system accepting the non context-
free language L = {ww# | w ∈ V +}, where # /∈ V and |V | ≥ 2.

Example 6. Let A = (V ∪ {#}, ρ, A1, A2, K) be a parallel communicating
Watson-Crick automata system where ρ = {(a, a) | a ∈ V } ∪ {(#, #)},
K = {K1, K2}, A1 = (V ∪ {#}, ρ, Q1, q1, {qf1}, δ1), and A2 = (V ∪ {#}, ρ,
Q2, q2, {qf2}, δ2). The sets of states are Q1 = {q1, q3, qf1 , K2} ∪ {qx | x ∈ V }
and Q2 = {q2, q3, qf1 , qf2 , K1} ∪ {qx | x ∈ V }, while the transition functions are
defined in Table 2.

The first component finds the middle of the input word, by placing the two
reading heads one at the end and the other in the middle of the input word. In
parallel, to preserve the synchronization, the second component moves one reading
head to the end of the input while the other one remains unmoved. At the same
time we also check that the input has odd length. Then, by using communication
between components we check letter by letter that the input is indeed of the form[
ww#
ww#

]
.

A natural question regarding these systems is the relation between the languages
they accept and the family of context-sensitive languages.

We first need a generalization of a result already known for Watson-Crick finite
automata, see [14].

Lemma 7. Every parallel communicating Watson-Crick automata system is equi-
valent with a system where in every component we have only rules of the form

s

(
w1

w2

)
→
(

w1

w2

)
s′, with |w1w2| ≤ 1.

Proof. Let A = (V, ρ, A1, . . . , An, K) be a parallel communicating Watson-Crick
automata system with n components, where Ai = (V, ρ, Qi, qi, Fi, δi) for all 1 ≤
i ≤ n. Let us first index by unique labels all transitions from all components and

Parallel Communicating Watson-Crick Automata Systems 693

define the constant m = max{|w1| + |w2| | s

(
w1

w2

)
→
(

w1

w2

)
s′ is a production in

one of the components of the system}.
We construct a parallel communicating Watson-Crick automata system A′ =

(V, ρ, A′
1, . . . , A

′
n, K), where A′

i = (V, ρ, Q′
i, qi, Fi, δ

′
i) are obtained from Ai as fol-

lows.

Let s

(
w1 . . . wp

w′
1 . . . w′

p′

)
→
(

w1 . . . wp

w′
1 . . . w′

p′

)
s′, with w1, . . . , wp, w

′
1, . . . , w

′
p′ ∈ V be a

transition rule from Ai, indexed with the unique label j. Then, in A′
i we introduce

m new states rj
1, r

j
2, . . . , r

j
m and the following transitions:

s
(w1

λ

)
→
(w1

λ

)
rj
1, . . . , rj

p−1

(wp

λ

)
→
(wp

λ

)
rj
p,

rj
p

(
λ

w′
1

)
→
(

λ

w′
1

)
rj
p+1, . . . , rj

p+p′−1

(
λ

w′
p′

)
→
(

λ

w′
p′

)
rj
p+p′ ,

rj
p+p′

(
λ

λ

)
→
(

λ

λ

)
rj
p+p′+1, . . . , rj

m

(
λ

λ

)
→
(

λ

λ

)
s′.

Thus, any transition from Ai is replaced in A′
i by m + 1 transitions of the form

requested by the lemma. Also, since this construction preserves the synchronization
between components, the system A′ recognizes the same language as A but with
linear time delay.

Theorem 8. The family of languages accepted by parallel communicating Watson-
Crick automata systems is included in the family of context-sensitive languages.

Proof. We can assume without loss of generality, that all components of the par-
allel communicating Watson-Crick automata system have only rules of the form
described in Lemma 7. Then, for any such system A of degree n we can construct a
2n-tape linearly bounded automaton M which recognizes the same language. Each
2p + i tape, with 0 ≤ p ≤ n − 1 and 1 ≤ i ≤ 2, simulates the i-th tape of the
(p + 1)-th component of A. All the states in M, except the final one, encode infor-
mation about the states of all n components of system A. At each computational
step, we read a character on each tape and either move the reading head one step
to the right or remain on the same position, according to the evolution of system A.
For query steps, we just modify the information encoded in the state, i.e., we enter
a new state in M, whereas the input and positions of the reading heads remain
unchanged. The final state of M is reached only from states encoding the infor-
mation that all components of system A are in final states and all the 2n reading
heads are positioned on the right end marker.

From this construction we obtain that automaton M accepts the same language
as system A. Hence, from Lemma 3, we obtain that L(A) is a context-sensitive
language.

694 Elena Czeizler and Eugen Czeizler

So far we considered only the general case where the complementarity relation
ρ has no restrictions, except for symmetry. However, in [17] the case of an injective
complementarity relation inspired by the real Watson-Crick complementarity of
DNA nucleotides was discussed. For the rest of this section we restrict ourselves
to this particular case. In order to investigate the computational power of these
systems, we relate them to k-head automata, as they were defined in [10].

A k-head automaton is a 6-tuple M = (k, Q, V, f, q0, F) where Q is the set of
states, V is the input alphabet, f : Q× (V ∪{λ})k → 2Q is the transition function,
q0 is the initial state, and F ⊆ Q is the set of final states. Any computation starts
in the initial state and with all the reading heads on the leftmost character of the
input. Then, for any transition q ∈ f(s, a1, a2, . . . , ak) and all 1 ≤ i ≤ k, the i-th
head reads ai from the input tape and the automaton passes from state s into state
q. A word w is accepted if after finitely many moves the automaton enters a final
state, the input being completely read by all heads. In all the other cases the input
word is rejected.

Theorem 9. Any language recognized by a parallel communicating Watson-Crick
automata system of degree n, with injective complementarity relation, can be also
recognized by a 2n-head automaton.

Proof. For the clarity of the proof, we consider only systems of degree 2, whereas
the reasoning remains the same for the general case.

Let A = (V, ρ, A1, A2, K) be a parallel communicating Watson-Crick automata
system of degree 2, accepting the language L ⊆ V ∗, where A1 = (V, ρ, Q1, q1, F1, δ1),
A2 = (V, ρ, Q2, q2, F2, δ2), and K = {K1, K2}. Since the relation ρ is injective, we
can take it to be the identity relation; thus all components have on both tapes the
same word w ∈ V ∗. Also, by Lemma 7 we can suppose that in every component

we have only rules of the form s

(
w1

w2

)
→
(

w1

w2

)
s′, with |w1w2| ≤ 1.

Let us construct now a 4-head automaton M = (4, Q, V, f, q0, F) where Q =
Q1 × Q2, q0 = (q1, q2), F = F1 × F2, and the transition function f is as follows:

• f((p, q), w1, w2, w3, w4) = (p1, q1) whenever p, q /∈ K, δ1(p,

(
w1

w2

)
) = p1, and

δ2(q,
(

w3

w4

)
) = q1;

• f((K2, q), λ, λ, λ, λ) = (q, q);

• f((p, K1), λ, λ, λ, λ) = (p, p).

At any step the automaton M simulates the corresponding moves of the two

components of A. If the components are not in a query state and they read
(

w1

w2

)

and
(

w3

w4

)
respectively from the input tape, with |w1w2| ≤ 1 and |w3w4| ≤ 1,

then in M each head reads w1, w2, w3, and w4, respectively, and it enters into the

Parallel Communicating Watson-Crick Automata Systems 695

corresponding state. Otherwise, i.e., we are in a state (K2, s) or (s, K1), we just
simulate the query by entering state (s, s) and leaving the input unchanged. Since
a word is accepted by M only if it is in a final state when all the reading heads
have finished parsing the input, then w ∈ L(A) implies w ∈ L(M) and hence
L(A) ⊆ L(M).

Let now w be a word accepted by M. From the construction of the transition
function f , each computational step in M can be translated into a computational
step in A when we consider the input

[w
w

]
. Moreover after the final computational

step, all 4 heads of M have completely read the input and the automaton is in a final
state. This implies that at the same step both components of system A are in final
states, while their reading heads from the lower and from the upper strands have
completely parsed the input. So, we have w ∈ L(A) and hence L(M) ⊆ L(A).

Observation. The equivalence between Watson-Crick automata and 2-head au-
tomata is proved in [14] regardless of the structure of the complementarity relation
using a similar construction as above. In their case, the second head of the 2-head
automaton “guesses” the complement of the character read from the input tape, and
simulates the corresponding move from the Watson-Crick automaton. However, in
our proof, the injectivity of the complementarity relation plays an important role.
If the complementarity relation would not be injective, then for all positions i of
the input word, several reading heads would have to guess exactly the same com-
plement but at different time steps. However, by definition this constraint cannot
be imposed. Hence, the injectivity of the complementarity relation is a necessary
condition in Theorem 9.

It is known from [10] that k-head automata are equivalent with parallel finite
automata systems with k components and communicating by states. Moreover, it
is proved in [8] that the languages accepted by multihead nondeterministic push-
down automata satisfy the semilinearity property. Hence, parallel finite automata
systems communicating by states accept only semilinear languages. Since any semi-
linear language over an one-letter alphabet is regular, we have the following result.

Corollary 10. Every one-letter language accepted by a parallel communicating
Watson-Crick automata system with injective complementarity relation is regular.

Recently, it was proved in [4] that on one-letter alphabets, parallel communi-
cating Watson-Crick automata system with non-injective complementarity relation
accept also some non-regular languages, e.g. L = {an2 | n ≥ 2}.

4 Closure properties

In this section we consider some closure properties of the family of languages ac-
cepted by parallel communicating Watson-Crick automata systems. From now on,
V is the input alphabet and # /∈ V is a special character not included in it; let
V ′ = V ∪{#}. We also extend the complementarity relation by adding (#, #) ∈ ρ.

696 Elena Czeizler and Eugen Czeizler

Theorem 11. Let L1, L2 ⊆ V ∗ be two languages accepted by some parallel commu-
nicating Watson-Crick automata systems of degrees n1 and n2, respectively, using
the same complementarity relation. Then the language (L1#)

⋂
(L2#) is also ac-

cepted by a system of degree n1 + n2.

Proof. Let L1 = L(A1) and L2 = L(A2), where

A1 = (V, ρ, A1, . . . , An1 , K), with Ai = (V, ρ, Qi, qi, Fi, δi) and

A2 = (V, ρ, A′
1, . . . , A

′
n2

, K ′), with A′
i = (V, ρ, Q′

i, q
′
i, F

′
i , δ

′
i).

We construct a new system of degree n1 + n2

A = (V ′, ρ, A1, . . . , An1 , A
′
1, . . . , A

′
n2

, K ∪ K ′), where

• A1 = (V ′, ρ, Q1 ∪{qf
1 , qv

1}∪ {vi−1
i | 2 ≤ i ≤ n1}∪ {K2, . . . , Kn1}, q1, {qf

1}, δ1),

• Ai = (V ′, ρ, Qi ∪ {qf
i , qv

i } ∪ {vj
i | 1 ≤ j ≤ n1 − 1}, qi, {qf

i }, δi), 2 ≤ i ≤ n1

• A
′
1 = (V ′, ρ, Q′

1∪{q′f1 , q′v1 }∪{v′i−1
i | 2 ≤ i ≤ n2}∪{K ′

2, . . . , K
′
n2
}, q′1, {q′f1 }, δ′1),

• A
′
i = (V ′, ρ, Q′

i ∪ {q′fi , q′vi } ∪ {v′ji | 1 ≤ j ≤ n2 − 1}, q′i, {q′fi }, δ′i), 2 ≤ i ≤ n2.

The components Ai and A
′
i are obtained from Ai and A′

i, respectively, by adding
some states and some new transition rules, as follows:

(i) for all 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2: δi(q,
(

w1

w2

)
) = δi(q,

(
w1

w2

)
) and

δ
′
j(q,

(
w1

w2

)
) = δ′j(q,

(
w1

w2

)
),

(ii) for all 1 ≤ i ≤ n1: δi(s,
(

#
#

)
) = qv

i , for any s ∈ Fi, δi(q
f
i ,

(
λ

λ

)
) = qf

i ,

(iii) δ1(qv
1 ,

(
λ

λ

)
) = K2, δ1(vi−1

i ,

(
λ

λ

)
) = Ki+1, for all 2 ≤ i ≤ n1 − 1, and

δ1(vn1−1
n1

,

(
λ

λ

)
) = qf

1 ,

(iv) for all 2 ≤ i ≤ n1: δi(qv
i ,

(
λ

λ

)
) = v1

i , δi(v
j
i ,

(
λ

λ

)
) = vj+1

i , for 1 ≤ j ≤ n1−2,

and δi(vn1−1
i ,

(
λ

λ

)
) = qf

i ,

(v) for all 1 ≤ i ≤ n2: δ
′
i(s,

(
#
#

)
) = q′vi , for any s ∈ F ′

i , δ
′
i(q

′f
i ,

(
λ

λ

)
) = q′fi ,

Parallel Communicating Watson-Crick Automata Systems 697

(vi) δ
′
1(q

′v
1 ,

(
λ

λ

)
) = K ′

2, δ
′
1(v

′i−1
i ,

(
λ

λ

)
) = K ′

i+1, for all 2 ≤ i ≤ n2 − 1, and

δ
′
1(v′n2−1

n2
,

(
λ

λ

)
) = q′f1 ,

(vii) for all 2 ≤ i ≤ n2: δ
′
i(q

′v
i ,

(
λ

λ

)
) = v′1i , δ

′
i(v

′j
i ,

(
λ

λ

)
) = v′j+1

i , for 1 ≤ j ≤

n2 − 2, and δ
′
i(v

′n2−1
i ,

(
λ

λ

)
) = q′fi .

The system works as follows. We first check in parallel if a word w is in both
languages. In order to have w ∈ L1#, the first n1 components have to reach final

states and read
(

#
#

)
at exactly the same time. We use transitions of type (i) until

every component Ai reaches
(

#
#

)
in a final state, at which moment it enters a

special state qv
i . All we have to do now is to verify that all first n1 components

entered the states qv
i at the same time. This is done by using a verification procedure

composed of transitions of type (iii) and (iv). Similarly, we use transitions of type
(vi) and (vii) to impose the same condition for the last n2 components. Then, each
component enters the new final states qf

i or respectively q′fi and waits for all the
others to finish parsing the input. Hence, the accepted language is (L1#)

⋂
(L2#).

Using a similar technique, we also obtain the following result.

Theorem 12. Let L1, L2 ⊆ V ∗ be two languages accepted by some parallel commu-
nicating Watson-Crick automata systems of degrees n1 and n2, respectively, using
the same complementarity relation. Then the language L1#L2# is also accepted
by a system of degree n1 + n2.

Proof. We construct a new system A of degree n1 +n2 which works as follows. The
first n1 components recognize the language L1#(V ∪ {#})∗ by verifying that the

first
(

#
#

)
is read by all of them at exactly the same moment and then they enter

a new final state in which they finish reading the input string. Similarly, the last
n2 components recognize the language V ∗#L2#.

Since a word is accepted by A if and only if all components reach final states
and read all the input, the language accepted by A is L1#L2#.

Theorem 13. Let L ⊆ V ∗ be a language accepted by some parallel communicating
Watson-Crick automata system. Then the language (L#)∗ is also accepted by a
system of equal degree.

Proof. Let L = L(A) where A = (V, ρ, A1, . . . , An, K) is a system of degree n
with each Ai = (V, ρ, Qi, qi, Fi, δi). Starting from A we construct a new system
A′ = (V ∪ {#}, ρ, A′

1, . . . , A
′
n, K) with A′

i = (V ∪ {#}, ρ, Q′
i, q

0
i , {q0

i , qf
i }, δ′i) by

698 Elena Czeizler and Eugen Czeizler

adding some new states and transitions as follows. In order to recognize also the
empty word, we introduce in each component a new initial and final state q0

i .

We also introduce transitions q0
i

(
λ

λ

)
→
(

λ

λ

)
qi, where qi is the initial state of

component i in system A. Then, the system A′ simulates A on each component

until we reach
(

#
#

)
.

Next, we use the verification procedure described in Theorem 11 to check that

all components read
(

#
#

)
at exactly the same moment in which case they each

enter a new final state qf
i . Then, by introducing transitions of the form qf

i

(
λ

λ

)
→(

λ

λ

)
qi in each component, we assure that the system can loop, also preserving the

synchronization of components.
Thus, the system recognizes the language {λ} ∪ (L#)+.

Next, we give a representation result for recursively enumerable languages using
languages accepted by parallel communicating Watson-Crick automata systems.
We start by recalling a known characterization of recursively enumerable languages,
see [14].

Lemma 14. For each recursively enumerable language L ⊆ V ∗, there exist two
λ-free morphisms h1, h2, a regular language R, and a projection prV such that
L = prV (h1(EQ(h1, h2)) ∩ R).

The next lemma was also proved in [14].

Lemma 15. If h1, h2 : V ∗ → V ∗ are two morphisms, then h1(EQ(h1, h2)) can be
recognized by a Watson-Crick finite automaton.

Using the previous two results as well as the closure of parallel communicating
Watson-Crick automata systems under intersection, we can prove the following
characterization.

Theorem 16. For each recursively enumerable language L ⊆ V ∗, there exists a
projection prV such that L = prV (L(A)), where A is a parallel communicating
Watson-Crick automata system of degree 2.

Proof. Let L be a recursively enumerable language. From Lemma 14 and Lemma
15 we have that there exists a projection prV such that L = prV (L′ ∩R), where L′

is recognized by a Watson-Crick finite automaton and R is a regular language.
Moreover, for any given complementarity relation ρ we can easily construct a
Watson-Crick automaton M such that L(M) = R.

From Theorem 11 we obtain that there exists a parallel communicating Wat-
son-Crick automata system A of degree 2 such that L(A) = (L′#) ∩ (R#). Since
/∈ V , we can extend the projection prV by setting prV (#) = λ and obtain
L = prV (L(A)).

Parallel Communicating Watson-Crick Automata Systems 699

5 Conclusions

In this paper we introduced and investigated parallel communicating Watson-Crick
automata systems. We prove that their accepting power is increased compared to
Watson-Crick finite automata. However, every language accepted by a Watson-
Crick finite automata system is context-sensitive. Moreover, one-letter languages
accepted by such systems but with an injective complementarity relation prove to
be regular. We also investigate some closure properties for these systems and give
a representation of recursively enumerable languages.

Many questions and problems have remained open. For example it would be
interesting to investigate other closure properties, e.g. under union or comple-
mentation. Also, it remains open what is the accepting power of systems using
non-injective complementarity relations, when we restrict only to one-letter alpha-
bets.

6 Acknowledgement

The authors are grateful to Prof. Arto Salomaa for valuable discussions. Also, the
authors are thankful to the anonymous reviewers for their useful comments.

References

[1] S. Balan, Distributed Processing in Automata, Master Thesis, Department of
Computer Science and Engineering, Indian Institute of Technology, (2000).

[2] E. Csuhaj-Varjú, C. Mart́ın-Vide, V. Mitrana, G. Vaszil, Parallel Communicat-
ing Pushdown Automata Systems, Int. J. Found. Comput. Sci. 11(4), 633-650,
(2000).

[3] E. Csuhaj-Varjú, V. Mitrana, G. Vaszil, Distributed Pushdown Automata Sys-
tems: Computational Power, Proc. DLT 2003, LNCS, 2710, 218-229, (2003).

[4] E. Czeizler, E. Czeizler, On the Power of Parallel Communicating Watson-
Crick Automata Systems, Theoretical Computer Science, 358: 1, 142-147,
(2006). Also as TUCS Techreport 722, (2005).

[5] R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa, Watson-Crick finite au-
tomata, Proc 3rd DIMACS Workshop on DNA Based Computers, Philadel-
phia, 297-328, (1997).

[6] M. A. Harrison, Introduction to formal language theory, Addison-Wesley Pub-
lishing Co., Reading, Massachusetts, 1978.

[7] J. E. Hopcroft, J. D. Ullman, Introduction to automata theory, languages, and
computation., Addison-Wesley, (1979).

700 Elena Czeizler and Eugen Czeizler

[8] O. H. Ibarra, A note on semilinear sets and bounded-reversal multihead push-
down automata, Information Processing Letters, 3, 25-28, (1974).

[9] C. Mart́ın-Vide, V. Mitrana, Parallel communicating automata systems. A
Survey, Korean Journ. of Comp. and Appl. Math 7: 2, 237-257, (2000).

[10] C. Mart́ın-Vide, A. Mateescu, V. Mitrana, Parallel finite automata systems
communicating by states, Intern. Journ. of Found. of Comp. Sci. 13: 5, 733-
749, (2002).

[11] C. Mart́ın-Vide, Gh. Păun, Normal forms for Watson-Crick finite automata,
in F. Cavoto, ed., The Complete Linguist: A Collection of Papers in Honour
of Alexis Manaster Ramer: 281-296. Lincom Europa, Munich., (2000).

[12] V. Mihalache, A. Salomaa, Lindenmayer and DNA: Watson-Crick DOL sys-
tems, Current Trends in Theoretical Computer Science, World Sci., 740-751,
(2001).

[13] A Păun, M. Păun, State and transition complexity of Watson-Crick finite au-
tomata, Proc. Fundamentals of Computation Theory, FCT’99, LNCS 1684,
Springer-Verlag, 409-420, (1999).

[14] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, (1998).

[15] E. Petre, Watson-Crick ω-Automata, J. Autom. Lang. Comb. 8(1), 59-70,
(2003).

[16] G. Rozenberg, A. Salomaa (eds.) The Handbook of Formal Languages,
Springer-Verlag, (1997).

[17] J. M. Sempere, A Representation Theorem for Languages accepted by Watson-
Crick Finite Automata, Bulletin of the EATCS 83, 187-191, (2004).

[18] A. C. Yao, R. L. Rivest, k+1 heads are better than k, Journal of the Associaton
for Computing Machinery, 25:2, 337-340, (1978).

