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A regular viewpoint on processes and algebra∗

Kamal Lodaya†

Abstract

While different algebraic structures have been proposed for the treatment
of concurrency, finding solutions for equations over these structures needs to
be worked on further. This article is a survey of process algebra from a very
narrow viewpoint, that of finite automata and regular languages. What have
automata theorists learnt from process algebra about finite state concurrency?
The title is stolen from [31]. There is a recent survey article [7] on finite
state processes which deals extensively with rational expressions. The aim
of the present article is different. How do standard notions such as Petri
nets, Mazurkiewicz trace languages and Zielonka automata fare in the world
of process algebra? This article has no original results, and the attempt is to
raise questions rather than answer them.1

1 Formal languages

Formal language theory begins with the monoid of words (Σ∗, ·, 1) over a finite
alphabet Σ. A language is a set of words, and the algebraic structure of a set can
be added to form an idempotent semiring (℘(Σ∗), ·, 1, +, 0). The identification of
the semiring as a relevant algebraic structure is due to Conway [14] and Eilenberg
[18].

Definition 1. A semiring is a set S with an associative, commutative binary
operation + on S with identity 0; an associative binary operation · on S with
identity 1 and absorbing element 0; and · distributing over +. The semiring is said
to be idempotent if + is idempotent.

If we restrict ourselves to a regular language, recognized by a finite automaton,
this amounts to saying that some equations hold in addition to those derived from
the axioms of an idempotent semiring. Myhill and Nerode showed that recognizable
languages, those saturated by finite-index congruences over the word monoid, are
exactly the regular languages.

∗This article is based on the talk “Looking back at process algebra” given at the AFL ’05
conference in Dobogókő. I take this opportunity to thank the organizers of the conference, Zoltán
Ésik and Zoltán Fülöp, for their invitation and hospitality. I also thank Zoltán Ésik for his
encouragement over the years.

†The Institute of Mathematical Sciences, CIT Campus, Chennai 600 113, India.
1For some related questions in the world of process calculi, see [2].
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Kleene showed that the regular languages can be modelled by rational expres-
sions, formed by adding to the signature an additional unary star operation forming
the (Kleene) starred (idempotent) semiring (℘(Σ∗), ·, 1, +, 0, ∗). We will henceforth
assume idempotence of + in our algebraic structures. As is usual, we will omit ·
when writing expressions.

Chomsky’s type 3 grammars are another formalism to describe regular languages,
where one works with a system of tail-recursive equations over the semiring S[V ]
with a set of variables V . The equations can be put in Greibach form and solved
using Arden’s rule [3] which says that, with the proviso a �= 1 + a, the equation
x = ax + b has the solution μx.(ax + b) = a∗b, where μ : V × S[V ] → S is a
partial function giving a unique solution μx.e to the equation x = e when it exists.
Formally we are in a (Chomsky) μ-semiring [20] (℘(Σ∗)[V ], ·, 1, +, 0, μ).

This solution procedure is the basis of the axiomatization of equality of rational
expressions by Aanderaa [1] and Salomaa [46], using the “no empty word property”
(NEWP), a syntactically checkable condition equivalent to a �= 1 + a over the
semiring of regular languages. Here is Salomaa’s axiomatization:

Axiom system S for starred semirings
(Assoc) (a + b) + c = a + (b + c); (ab)c = a(bc)
(Ident) a + 0 = a; a1 = 1a = a
(Comm) a + b = b + a
(Idem) a + a = a
(Absorp) a0 = 0a = 0
(Distr) (a + b)c = ac + bc; a(b + c) = ab + ac

(Guard) a∗ = (1 + a)∗

(Fixpt) a∗ = 1 + aa∗; a∗ = 1 + a∗a

(GuardInd)
x = ax + b

x = a∗b
;

x = xa + b

x = ba∗ (provided a has NEWP)

Kozen gives an equational treatment using axioms and inference rules [28] and
identifies Kleene algebras (which we will not describe here) as the basic structure.
The main property used, inspired by Conway [14], is that matrices over a Kleene
algebra form a Kleene algebra. These matrices can be used to encode automata
and constructions over them. Completeness is proved by reducing to isomorphism
over the minimal deterministic finite automaton.

1.1 Concurrency

Definition 2 (Petri [45]). A Petri net is a bipartite directed graph N = (P, T, F )
where P and T are disjoint finite sets of places and transitions, and F ⊆ (P × T )∪
(T × P ) a flow relation. For a place or transition y, its pre-set {x | xFy} is
conventionally denoted •y and its post-set {z | yFz} is denoted y •. F satisfies the
condition that for each transition t, •t and t • are nonempty, and for each place p,
either •p or p • is nonempty.
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A marking is a multiset of places. A transition t is enabled at marking M if
•t ⊆ M . A transition t enabled at M “fires” taking M to (M − •t) + t •. Given an
initial marking M0, the net system (N , M0) is said to be 1-safe if every reachable
marking is a set (hence multisets are not required).

The “firing sequences” of nets (words over the alphabet T ) have been investi-
gated thoroughly from the formal language viewpoint. For instance, since we have
not introduced any notion of a final marking, the language accepted by a net sys-
tem is prefix-closed. In the firing sequence view, nets are seen as no more than a
representation of automata which have concurrent behaviour. The marking graph
of a 1-safe net system, with vertices the reachable markings and edges representing
the firing relation, is in fact a finite automaton. Concurrency is modelled as the
shuffle or interleaving of two languages, for which rational expressions are sufficient
since rationality is preserved by the shuffle.

But rational expressions are certainly not succinct for concurrent behaviour.
The shuffle expression a||b||c has equivalent rational expression abc + acb + bac +
bca + cab + cba (this is an instance of Milner’s expansion axiom from CCS [34]),
which shows that a shuffle can be exponentially succinct. A net for this language
is exponentially succinct compared to the corresponding automaton.

The operating systems community continually had to deal with concurrent be-
haviour and were alive to this problem. They developed cobegin-coend [17], path
expressions [13], and the languages COSY and CSP (fully described in the later
books [27, 26]). The signature of rational expressions was expanded by binary
shuffle operations {||C | C ⊆ Σ}, with intersection over the letters in C. The inter-
section comes in handy to represent synchronization between concurrent processes.

Definition 3 (Grabowski [23]). The series-rational expressions over an al-
phabet Σ consist of the atomic actions a ∈ Σ and the constants 1 and 0, closed
under the binary operations ·, +, || and the unary operation ∗.

The shuffle operator e1||e2 is now redefined to additionally act as intersection
whenever an action is shared between e1 and e2. In the term algebra generated
from Σ, these expressions still describe languages over starred semirings, since a
Milner-like expansion axiom can be used to eliminate the shuffle operations.

There is a translation from series-rational expressions to 1-safe net systems
which preserves succinctness. The later work of Garg and Ragunath [21], when
restricted to 1-safe nets, provides a method of going from net systems to these
expressions (with the notable addition of renaming functions) when a distribution
of places of a net is provided.

Grabowski [23] provided an interpretation of series-rational expressions over
labelled posets (or “pomsets” as Pratt called them). A net can be seen as accepting
a poset language, and Grabowski provided a two-way translation between 1-safe nets
and series-rational expressions with renaming (including crucially renaming to the
empty poset), representing regular poset languages. But posets are difficult to put
into an algebraic framework. A popular representation of these posets which is
closer to usual formal language theory is as Mazurkiewicz traces, to which we now
turn.
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2 Trace languages

Let I be an irreflexive symmetric relation over Σ, called independence, and let its
reflexive transitive closure be ∼I , called trace congruence. For instance, if aIb then
wabx ∼I wbax (a and b commute). Sometimes it is convenient to consider the
complementary symmetric dependence relation instead of independence.

Definition 4 (Mazurkiewicz [32]). A trace over the concurrency alphabet (Σ, I)
is a word over the partially commutative monoid (Σ∗/ ∼I , ·, 1). Trace concatenation
· works on the congruence classes. A trace language is a set of traces.

Trace languages form the trace semiring (℘(Σ∗/ ∼I), ·, 1, +, 0) where the com-
mutativity equations ab = ba are added for every pair a, b in the independence
relation. Hence only one representative of a trace needs to be described, the others
being inferred, and we regain succinctness. We need not restrict ourselves to the
term algebra, and the shuffle operations are not needed.

A 1-safe Petri net has a natural independence relation on its transitions: they
are independent if their neighbourhoods are disjoint. This is a necessary condition
for concurrent behaviour but not sufficient. The firing traces of a finite 1-safe
net system are defined by quotienting the firing sequences with this independence
relation. The set of firing traces form a recognizable trace language; that is, it
is saturated by a finite-index congruence over the partially commutative monoid
defined by (Σ, I). Again, because of the lack of final markings, the language will
be prefix-closed.

Extend the independence relation to words: for nonzero w and x, let wIx
iff every letter in w is independent with every letter in x. w and x are said to be
connected if they are not independent. This syntactically checkable condition can be
inductively lifted to rational expressions. Assuming that a and b are independent,
we can derive ab = ba = ab+ ba by using idempotence. a∗b∗ = 1 + aa∗b∗ + a∗bb∗ =
1 + (a + b)a∗b∗ = (a + b)∗. The axiom system S is used in the first step and again
in the last step, which is an application of the (GuardInd) rule.

Ochmański realized that it is sufficient to take the trace closure [e∗] of the usual
Kleene e∗ over connected expressions e—that is, e and every starred subterm of
e is connected [43]. If e does not satisfy this condition, Ochmański defined the
concurrent star as described by the axiom below.

Now the trace languages (not just the prefix-closed ones) form an (Ochmański)
starred trace (idempotent) semiring (℘(Σ∗/ ∼I), ·, 1, +, 0, ∗). An axiomatization for
equality of recognizable trace languages was recently provided by the author [30].
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Axioms TS for starred trace semirings
(S) All valid equalities for starred semirings
(Comm) ab = ba, provided a and b are independent
(CStar) (ab + c)∗ def= (a + b + c)∗, if a and b are independent

Assume that a, b and c are independent. By iterating the derivation ((a+b)∗c+
d)∗ = (a∗b∗c + d)∗ def= (a∗ + b∗ + c + d)∗ = (a + b + c + d)∗, where the first step
was derived above and the last step uses the S system, the Ochmański star can be
reduced to the Kleene star over connected expressions.

Question 5. Is equality of trace languages over a given concurrency alphabet,
described by rational expressions, recursively enumerable?

Question 6. Is there a complete axiomatization for rational trace languages over
a concurrency alphabet?

Here is a proof attempt which gets stuck.
Fix a total order over the letters of the alphabet and extend it lexicographically

to words. Each trace can be represented by its lexicographically minimal word. Let
Lex be the set of lexicographically minimal words. For a rational trace language
TL, Lex(TL) = Lex ∩ (

⋃
TL) is a rational word language.

Suppose expressions a and b denote the same rational trace language TL(a) =
TL(b). By another theorem of Ochmański [16], there are connected rational ex-
pressions e and f whose word languages WL(e) = Lex(TL(a)) and WL(f) =
Lex(TL(b)) are the same, and the trace closures are [WL(e)] = TL(a) and
[WL(f)] = TL(b). By completeness of Salomaa’s axiomatization, the equality
e = f is provable in S, and hence in TS. If we could show for a connected rational
expression e that if e describes Lex(TL(a)), then e = a is provable in TS, we could
prove a = b in TS and obtain its completeness. We do not have such an argument.

2.1 Distributed automata

A suitable automaton model which matches recognizability was defined by Zielonka
[48]. Let Loc be a finite set of “locations”, and loc : Σ → ℘(Loc) map each action to
the locations required for executing it. Thus the alphabet Σ is distributed across
the locations; if an action requires more than one location, we think of it as a
synchronization between the distributed locations. A word language is said to be
Loc-consistent if it is closed under commutation, where the actions a and b commute
(wabx ∼Loc wbax) if they are not shared by more than one location in Loc. Trace
languages and Loc-consistent word languages are essentially the same thing.

Definition 7 (Zielonka [48]). Let Q be a set of states distributed by the function
dist : Q → Loc. For L ⊆ Loc, let ΠLQ be the functions f : L → Q such that
dist(f(i)) = i. A Zielonka automaton over the distributed alphabet (Σ, Loc)
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is given by (Q, dist, q0,→, F ), where q0 ∈ ΠLocQ is a distributed initial state and
F ⊆ ΠLocQ a set of distributed final states, and →=

⋃

a∈Σ

{→a⊆ Πloc(a)Q×Πloc(a)Q}
is a transition relation.

Zielonka automata are automata distributed over locations. The states are local,
the transitions act on exactly those locations which an action is declared to require,
and the final states are global. A run of a Zielonka automaton is defined over global
states, every action transforming the states of the locations it affects, the other
states remaining fixed. Zielonka [48] showed that the regular trace languages, those
accepted by his automata, match the recognizable trace languages. Our notation
for the automata follows Mukund and Sohoni [39], who provided an alternate proof
of Zielonka’s theorem by defining a gossip framework which explicitly represents
state information shared across locations.

Thus trace theory [16] neatly generalizes formal language theory with regu-
lar trace languages playing a pivotal role. Mohalik and Ramanujam [38] provide
a framework for Loc-consistent regular languages and a variant of series-rational
expressions using special labelling functions, which provide a local presentation of
distributed automata.

Question 8. Is there an equational treatment of distributed automata in a Kleene
algebra-like framework?

3 Process calculi

We now turn to what Pnueli called the viewpoint of “reactive” systems: viewing
automata in a concurrent environment not just as language generators but as pro-
cesses. The classic vending machine example [26] shows that processes describe
branching behaviour, and hence the left-distributivity axiom a(b + c) = ab + ac for
language equivalence fails. Some of the early models include failure sets, testing
equivalences, synchronization trees and bisimulation [12, 15, 34, 44].

Definition 9 (Benson and Tiuryn [6]). A grove is a set G with an associative,
commutative binary operation + with identity 0, an associative binary operation ·
with 0 a left zero, and where · right-distributes over +, that is, (a+b) ·c = a ·c+b ·c.
A grove is idempotent if + is idempotent. A μ-grove (G[V ], ·, +, 0, μ) with a set
of variables V has a partial solution function μ : V × G[V ] → G analogous to a
μ-semiring [20].

A grove is defined by dropping the monoid identity, the right-absorption of 0 for
multiplication and the left-distributivity of multiplication over addition from the
axioms of a semiring. We will use μ-groves GΣ[V ] generated from an alphabet Σ
and a set of variables V as our basic model. (As before, we assume idempotence of
+ in our structures.) Idempotent μ-groves are closely related to the axiomatization
of bisimulation equivalence. Bloom and Ésik’s monograph [10] provides a detailed
description.
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The first process calculus, Robin Milner’s CCS, was published in 1980 [34]. Of
course, CCS was based on a lot of earlier work, and Milner himself had been devel-
oping the idea for a few years, but LNCS 92 is the first fully developed treatment.

Milner proved a striking early result in process algebra [35], showing that tail-
recursive equations (or guarded μ-expressions in his terminology) interpreted over
μ-groves are sufficient to describe branching behavior of finite automata, whereas
rational expressions over Kleene starred groves are not.

Axiom system M for μ-groves
(Assoc) (a + b) + c = a + (b + c); (a · b) · c = a · (b · c)
(Comm) a + b = b + a
(Idem) a + a = a
(Ident) a + 0 = a
(LeftAbs) 0 · a = 0
(RightDistr) (a + b) · c = (a · c) + (b · c)

(Guard) μx.e = μx.(x + e)
(Fixpt) μx.e = e[μx.e/x]

(GuardInd)
f = e[f/x]
f = μx.e

(provided x guarded in e)

The existence of unique solutions over certain groves was proved by Bergstra
and Klop [8]. They also extended the positive result to automata with silent tran-
sitions [9], which was later developed by Milner in [36]. Since a finite system of
tail-recursive equations implicitly defines a finite-index congruence on a finitely
generated free grove, the negative result led to various kinds of extended star op-
erations to restore the syntactic treatment known for rational languages. They are
described in the survey article [7] mentioned in the introduction.2

3.1 Concurrency

Representing concurrency as interleaving of atomic actions, the shuffle operators
can be added on since the expansion axioms are sound over groves. This yields
the framework of process calculi [5]—PA and ACP for shuffles without and with
synchronization respectively. Within a term model the shuffles can again be elimi-
nated.

Bravetti and Gorrieri [11] extended Milner’s axiomatization of regular behaviour
to strongly guarded μ-expressions over Σ with shuffle, that is, those which are in
Greibach form and do not allow a shuffle operation inside a recursion. The following
question is still open:

Question 10. Is there a direct way of going from finite 1-safe Petri nets to strongly
guarded μ-expressions with shuffle, without incurring an exponential blowup?

2The paper [4] provides a recent update on Milner’s results and questions.
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One approach may be to work with a “concurrent” bisimulation, as for example
in [41]. Van Glabbeek and Vaandrager [22] proposed to axiomatize such a bisimu-
lation by dropping the expansion axiom while retaining some desirable properties
of the shuffle such as commutativity and associativity. That is, they expand groves
with a shuffle operator (GΣ[V ], ·, +, 0, ||, μ). The shuffle is not reducible to the other
operators.

Axiom system SM for μ-groves with shuffle
(M) All axioms of M
(Assoc||) (a||b)||c = a||(b||c)
(Comm||) a||b = b||a
(Ident||) a||0 = a
(Distr||) (a + b)||c = (a||c) + (b||c)

(StGuardInd)
f = e[f/x]
f = μx.e

(provided x strongly guarded in e)

Question 11. Is there a complete axiomatization of concurrent bisimulation over
finite state processes?

3.2 Mobility

Process theory research seems to be moving more in the direction of value-passing
[24] and mobile processes [19, 37], which are described by π-expressions upto a
value-passing bisimulation, which comes in “early” and “late” variants to model
eager and lazy forms of evaluation. We do not provide details of the syntax here.

Finite-control mobile systems model a state as an edge-labelled graph, where
the nodes (“agents”) have local storage to save some values and the edges (“links”)
communicate these values between the agents. Further, the values communicated
are the link names themselves. Hence the atomic actions are of the form c!v and
c?x, sending a value v on a link c or receiving it in a variable x. To describe
these systems, we allow tail-recursion in π-expressions, but disallow the replication
operator which is sufficiently powerful to model general recursion. Effectively the
syntax reduces to guarded μ-expressions with parameters and a calling mechanism
built over an alphabet of atomic expressions with constants and variables (and with
a shuffle, which is eliminable in a term algebra).

Milner’s axiomatization has been extended to the value-passing bisimulations by
Hennessy, Lin and Rathke [25] for finite-control systems described by tail-recursive
π-expressions. However the underlying algebraic structure is far from clear. It
appears to be some kind of combinatory grove, as illustrated by the communication
axiom, which is based on the β-rule of λ-calculus:

(c!v · P )||(c?x · Q) = P ||(Q[v/x]).

Question 12. Can one describe the algebraic structure of mobile systems?
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3.3 Event structures

Definition 13 (Nielsen, Plotkin and Winskel [40]). A (Σ-labelled) event
structure (E,≤, #, �) is a (Σ-labelled) poset (E,≤, �) with an irreflexive symmet-
ric conflict relation # which is “inherited”; that is, if two events e1, e2 ∈ E are
in conflict, all events e′1 ≥ e1 and e′2 ≥ e2 above them are also in conflict. A
configuration of an event structure is a downward-closed conflict-free set of events.

Event structures are a generalization of traces or labelled posets to include
branching behaviour. Events can be related by causality (≤ or ≥), conflict (#), or
by neither causality nor conflict, in which case we say they are concurrent.

Configurations are a notion of “state” in an event structure. For the purposes
of finite state behaviour, it is sufficient to restrict oneself to event structures which
are finitary, where each event has a finite number of events below it, and have
bounded enabling, that is, each configuration can be extended by a bounded number
of immediately enabled successor events. In particular, this will mean that all
configurations of interest are finite sets of events, and the conflict relation will be
generated from an immediate conflict relation. We henceforth assume our event
structures satisfy these properties.

We now lift some definitions from infinite trees.

Definition 14 (Thiagarajan [47]). The residue of a configuration in an event
structure is those events strictly above it. Two configurations are said to be right
invariant if their residues are isomorphic as event structures. An event structure is
recognizable if the right invariance relation on its configurations is of finite index.

Although configurations are finite, residues can very well be infinite. The con-
current branching behaviour of a 1-safe Petri net can be defined by “unfolding” it;
Thiagarajan proves that this yields a special kind of event structure.

Call an event structure deterministic if at any of its configurations, for any letter
of the alphabet, at most one event labelled by that letter is enabled.

Definition 15 (Thiagarajan [47]). A deterministic Σ-labelled event structure is
said to be a trace event structure if there is an (irreflexive symmetric) inde-
pendence relation over Σ such that the labels of concurrent events are independent,
and the labels of neighbouring events (related by the immediate successor relation
or immediate conflict relation) are dependent.

Theorem 16 (Thiagarajan [47]). An event structure is the unfolding of a 1-safe
Petri net if and only if it is a recognizable trace event structure.

The proof of the right-to-left direction goes via Zielonka’s theorem.
Petri nets as we have defined them are not sufficiently abstract, since their

behaviour is described in terms of the transitions T . Even a finite language like
{a, aa} is not representable. Hence one should start with a labelled 1-safe Petri net
(P, T, F, �), � : T → Σ. Unfolding such a net certainly yields a recognizable labelled
event structure, but it may no longer be deterministic.
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Question 17. Is the converse also true? Is a recognizable labelled event structure
the unfolding of a labelled 1-safe Petri net?

Thiagarajan [47] conjectured that the answer is yes. The conjecture has been
proved for conflict-free event structures [42], where the conflict relation is empty;
sequential event structures, which have no concurrency [42]; and deterministic event
structures [29]. The general case is still open.

The reliance on determinism amounts, in the algebraic setting, to left-
distributivity. So the basic algebraic structure is that of a semiring, or a trace
semiring in the case of a trace event structure. Like posets, event structures are
not well suited for algebra, and groves might be better to work with. Thiagarajan’s
conjecture leads one to ask the following:

Question 18. Given a finite-index congruence over an idempotent grove with shuf-
fle, is there a direct way of constructing a finite 1-safe Petri net which satisfies this
particular behaviour?

A categorical structure suitable for Petri nets has been proposed by Meseguer
and Montanari [33]. A similar question can be raised in that setting.
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