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On monotone languages and their characterization

by regular expressions

György Gyurica∗

To the memory of Balázs Imreh

Abstract

In one of their papers, F. Gécseg and B. Imreh gave a characterization

for monotone string languages by regular expressions. It has turned out

that the monotone string languages are exactly those languages that can be

represented by finite unions of seminormal chain languages. In this paper a

similar characterization is given for monotone DR-languages.

1 Introduction

Monotone string and tree languages were introduced by Gécseg and Imreh in [4]
where these languages were characterized by means of syntactic monoids. They also
used chain languages to represent monotone string languages by regular expressions,
and showed that any monotone string language can be represented as the union
of finitely many seminormal chain languages and that, conversely, any seminormal
chain language can be recognized by a monotone recognizer.

In this paper we continue the investigation of monotone string and DR-
languages. Our primary goal was to characterize the monotone DR-languages by
regular ΣX-expressions, but we have also introduced the concept of iterational
height for regular expressions which was useful to state conditions under which
iteration preserves monotonicity. The same result was adapted to DR-languages,
too.

Thereafter, a simple characterization of monotone DR-languages was given. The
number of the auxiliary variables used in this representation and some decompo-
sition problems were also investigated. Later, we stated some conditions that are
required to preserve monotonicity when using the operations of x-product and x-
iteration. Finally, we introduced the concept of generalized R-chain languages, for
which it will turn out that they represent exactly the monotone DR-languages. For
notions and notation not defined in this paper we refer the reader to [4] and [7].
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E-mail: gyurica@inf.u-szeged.hu

117



118 György Gyurica

2 Monotone string languages

Let X be an alphabet. The set of all words over X is denoted by X∗. Let us
denote the length of a word u ∈ X∗ by |u| which is the number of occurrences of
letters from X in u. The empty word is denoted by e. The set of words with length
greater than 0 is denoted by X+(= X∗ \ {e}).

An X-recognizer is a system A = (A, X, δ, a0, A
′), where A is a finite set of states,

X is the input alphabet, δ : A×X → A is the next-state function, a0 ∈ A is the initial
state, and A′ ⊆ A is the set of final states. The next-state function can be extended
to a function δ∗ : A × X∗ → A, where δ∗(a, e) = a and δ∗(a, xu) = δ∗(δ(a, x), u)
(a ∈ A, x ∈ X, u ∈ X∗). If there is no danger of confusion, instead of δ∗(a, u) we
can use the notation δ(a, u) or simply au.

The language L(A) recognized by A is given by

L(A) = {u ∈ X∗ | a0u ∈ A′}.

A language L ⊆ X∗ is called regular or recognizable if it can be recognized by
an X-recognizer.

An X-recognizer A = (A, X, δ, a0, A
′) is monotone if there is a partial ordering

≤ on A such that for all a ∈ A and x ∈ X , a ≤ δ(a, x) holds. It is obvious that
for all a ∈ A and u ∈ X∗, a ≤ au holds, too. A language L ⊆ X∗ is monotone if
L = L(A) for a monotone X-recognizer A. Later we will use the fact that every
partial ordering on a finite set can be extended to a linear ordering. For more
details we refer the reader to [4].

A language L ⊆ X∗ is fundamental, if L = Y ∗ for a Y ⊆ X . A language L ⊆ X∗

is a chain language if L can be given in the form L = L0x1L1x2 . . . xk−1Lk−1xkLk,
where x1, . . . , xk ∈ X and every Li (0 ≤ i ≤ k) is a product of fundamental lan-
guages. A chain language L = L0x1L1x2 . . . . . . xk−1Lk−1xkLk is called seminormal
if xi 6∈ Li−1 for every 1 ≤ i ≤ k. L is normal if xi 6∈ Li−1 and xi 6∈ Li (1 ≤ i ≤ k).
A seminormal chain language L = L0x1L1x2 . . . xk−1Lk−1xkLk is called simple if
each Li (0 ≤ i ≤ k) is fundamental.

Now we recall the main result from the corresponding section in [4].

Theorem 1. A language is monotone iff it can be given as a union of finitely many
seminormal chain languages. �

Let X be an alphabet. The set RE of all regular expressions and the language
L(η) represented by η ∈ RE are defined in parallel as follows:

• ∅ ∈ RE, L(∅) = ∅,

• ∀x ∈ X : x ∈ RE, L(x) = {x},

• if η1, η2 ∈ RE, then (η1) + (η2) ∈ RE, L((η1) + (η2)) = L(η1) ∪ L(η2),

• if η1, η2 ∈ RE, then (η1)(η2) ∈ RE, L((η1)(η2)) = L(η1)L(η2),

• if η ∈ RE, then (η)∗ ∈ RE, L((η)∗) = L(η)∗.



On monotone languages and their characterization by regular expressions 119

Some parentheses can be omitted from regular expressions, if a precedence re-
lation is assumed between the operations of iteration, concatenation, and union in
the given order.

A regular expression ζ is called a subexpression of η if ζ occurs in the inductive
definition of η. The set of all subexpressions of η will be denoted by Sub(η). The
operation omission on regular expressions is defined as follows: Let us consider
η1, η2 ∈ RE and the regular expressions (η1)+(η2), (η1)(η2) and (η1)

∗. By omitting
η1 from them we get η2 from the first two ones, and the expression η1 from the
third one. We also allow the omission of η1 from (η1)

∗ to result in (∅)∗. If we omit
η2 from (η1) + (η2) and (η1)(η2) we get η1 and η1 respectively. This way, omission
is not well-defined, nor does it have to be. Let ζ be a subexpression of a regular
expression η. We call ζ redundant in η if ζ can be omitted from η so that L(η)
remains the same after the omission. A regular expression is reduced if it has no
redundant subexpressions.

The reduction of a regular expression is not necessarily unique as the following
example shows.

Example 2. Let us consider the regular expression η = x(yx)∗ + z + (xy)∗x.
Obviously the first and the third member of the union represent the same language,
that is, both of them are redundant in η. If we omit one of them separately, we
get two different reduced regular expressions: x(yx)∗ + z and z + (xy)∗x which
represent the same language.

Now we define the concept of iterational height which is used to identify the
length of the longest word that will be used in the iteration of a particular lan-
guage. Let η be a reduced regular expression in form (ζ)∗. The nonnegative integer
max{|u| : u ∈ L(ζ)} will be called the iterational height of η (or ih(η) for short),
if L(ζ) is finite. If L(ζ) is infinite, then let ih(η) be the infinity ∞ that we will
treat as the largest integer. Let now η be a reduced regular expression in any form.
We define ih(η) as max{ih((ζ)∗) | (ζ)∗ ∈ Sub(η)}, if Sub(η) contains an expression
in form (ζ)∗, and 0 otherwise. The iterational height of a regular language L (or
ih(L) for short) is defined as min{ih(η) | L = L(η), η ∈ RE}.

Example 3. Let us take the regular expression ζ = xx + xxx. By the defini-
tion of ih((ζ)∗) we have ih((ζ)∗) = 3. Let us now consider the regular expression
η = x+(ζ)∗. It is easy to see that ih(η) = 3, because η has a subexpression in form
(ζ)∗, for which ih((ζ)∗) = 3. Let us now take the language L(η), for which we get
that ih(L(η)) = 1, because L(η) can also be represented by the regular expression
(x)∗, for which ih((x)∗) = 1.

Lemma 4. Let η be a reduced regular expression of the form (ζ)∗. If L(η) is
monotone, then ih(L(η)) ≤ 1.

Proof. Let η be a reduced regular expression of the form (ζ)∗, and let the monotone
X-recognizer A recognize L(η) with the partial ordering ≤ on A. We can suppose
without the loss of generality that A is reduced and connected from its initial state,
hence there is exactly one final state a ∈ A′ such that au = a for every u ∈ L(ζ).
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Using the monotonicity of A we get that ax = a holds for any letter x from the
words of L(ζ). We see that there is no such state a′ ∈ A \ {a} for which a′ ≤ a and
a′x = a′ hold for any x ∈ X , and we also see that there is no final state a′′ 6= a
such that a ≤ a′′. Hence η can be written in form ζ′ζ′′, where ζ′ does not contain
the operation ∗, and represents the set of all words taking A from a0 to a, and
where ζ′′ is in form (y1 + . . . + yr)

∗, where y1, . . . , yr are the letters from the words
of L(ζ). Since L(η) = L(ζ′ζ′′) and ih(L(ζ′ζ′′)) = 1, we get that ih(L(η)) ≤ 1.

3 Monotone DR-languages

A ranked alphabet is a finite nonempty set of operational symbols, which will be
denoted by Σ. The subset of all m-ary operational symbols of Σ will be denoted
by Σm. We shall suppose in the rest of this paper that Σ0 = ∅. Let p(S) stand for
the power set of the set S.

Let X be a set of variables. The set TΣ(X) of ΣX-trees is defined as follows:

(i) X ⊆ TΣ(X),

(ii) σ(p1, . . . , pm) ∈ TΣ(X), if m ≥ 0, σ ∈ Σm and p1, . . . , pm ∈ TΣ(X),

(iii) every ΣX-tree can be obtained by applying the rules (i) and (ii) a finite
number of times.

In the rest of this paper X will stand for the countable set {x1, x2, . . .}, and for
every n ≥ 0, Xn will denote the subset {x1, . . . , xn} of X .

A pair A = (A, Σ) will represent a deterministic root-to-frontier Σ-algebra (or
a DR Σ-algebra for short), where A is a nonempty set, and Σ is a ranked alphabet.
Every σ ∈ Σm is represented as a mapping σA : A → Am. A is called finite, if Σ is
a ranked alphabet and A is finite.

A deterministic root-to-frontier ΣXn-recognizer (or a DR ΣXn-recognizer for
short) is a system A = (A, a0,a), where A = (A, Σ) is a finite DR Σ-algebra,
a0 ∈ A is the initial state, and a = (A(1), . . . , A(n)) ∈ p(A)n is the final state
vector. If Σ or Xn is not specified, we speak of DR-recognizers.

Let A = (A, a0,a) be a DR ΣXn-recognizer, and let the mapping α : TΣ(Xn) →
p(A) be defined as follows. For every p ∈ TΣ(Xn)

(i) if p = xi ∈ Xn, then α(p) = A(i),

(ii) if p = σ(p1, . . . , pm), then α(p) = {a ∈ A |σA(a) ∈ α(p1) × . . . × α(pm)}.

The tree language T (A) recognized by A can be given by

T (A) = {p ∈ TΣ(Xn) | a0 ∈ α(p)}.

Tree languages that can be recognized by DR-recognizers are also called DR-
languages.

Let A be a DR ΣXn-recognizer and a ∈ A one of its states. We define the
tree language T (A, a) as the set { p ∈ TΣ(Xn) | a ∈ α(p)}. A state a is called
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0-state if T (A, a) = ∅. A is called normalized if for all σ ∈ Σm and a ∈ A it
holds that each component of σA(a) is a 0-state or no component of σA(a) is a
0-state. Moreover, A is called reduced if for any states a, b ∈ A it holds that a 6= b
implies T (A, a) 6= T (A, b). It is a well-known fact that every DR-language can be
recognized by a normalized and reduced DR-recognizer (cf. [5], [6] and [7]).

Let πi be the i-th projection. A DR Σ-algebra A = (A, Σ) is called monotone
if there is a partial ordering ≤ on A such that a ≤ πi(σ

A(a)) holds for all a ∈ A,
σ ∈ Σm and 1 ≤ i ≤ m. We say that A is a monotone DR ΣXn-recognizer if the
underlying DR Σ-algebra A is monotone. Moreover, T ⊆ TΣ(Xn) is a monotone
DR-language, if T = T (A) for a monotone DR ΣXn-recognizer A (see, [2] and [4]).

As every partial ordering on a finite set can be extended to a linear ordering,
the following lemma hold.

Lemma 5. For any monotone DR-recognizer A we may assume that the partial
ordering on A is total.

The following lemma is also obvious.

Lemma 6. Every finite DR-language is monotone.

4 Basic observations

Before we continue the investigation of monotone DR-languages, we need to intro-
duce some concepts and notions (mainly taken from [4], [6] and [7]).

Let Σ be a ranked alphabet, and let Σ̂ be an ordinary alphabet defined as
follows. For all σ, τ ∈ Σ let

(i) Σ̂σ = {σ1, . . . , σm}, if σ ∈ Σm (m ≥ 1), and

(ii) Σ̂σ ∩ Σ̂τ = ∅, if σ 6= τ .

We define Σ̂ as Σ̂ =
⋃

(Σ̂σ | σ ∈ Σ). We say that the alphabet Σ̂ corresponds to
the ranked alphabet Σ.

Let n ≥ 1 be fixed arbitrarily. The set gxi
(t) of xi-paths of a tree t ∈ TΣ(Xn) is

defined for each i ∈ {1, . . . , n} in the following way:

(i) gxi
(xi) = {e}, and gxi

(xj) = ∅, if i 6= j, i, j ∈ {1, . . . , n},

(ii) If t = σ(t1, . . . , tm) (σ ∈ Σm), then gxi
(t) = σ1gxi

(t1) ∪ . . . ∪ σmgxi
(tm).

For a tree language T ⊆ TΣ(Xn), let gxi
(T ) =

⋃

t∈T gxi
(t), which is also denoted

by Txi
(1 ≤ i ≤ n).

Let Σ be a ranked alphabet, and let Σ̂ be the alphabet corresponding to it. Let
A = (A, Σ) be a DR Σ-algebra. For every u ∈ Σ̂∗ the mapping uA : A → A is
defined as follows:

(i) If u = e, then auA = a, and
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(ii) if u = σjv, then auA = πj(σ(a))vA, (a ∈ A, σ ∈ Σm, 1 ≤ j ≤ m, v ∈ Σ̂∗).

The mapping defined above can be extended to subsets of Σ̂∗ in a natural way.
In the rest of this paper we will omit the superscript A in uA if the DR Σ-algebra
A inducing uA is obvious.

A tree language T ⊆ TΣ(Xn) is closed if a tree t ∈ TΣ(Xn) is in T if and only
if gx(t) ⊆ Tx for all x ∈ Xn. It is a well known result, that a regular tree language
is DR-recognizable if and only if it is closed (cf. [1] and [9]).

Now we need to specify some details regarding particular operations on tree
languages. The σ-product of ΣXn-tree languages T1, . . . , Tm is the tree language
σ(T1, . . . , Tm) = {σ(t1, . . . , tm) | ti ∈ Ti, 1 ≤ i ≤ m}, where m ≥ 1 and σ ∈ Σm.
We assume that the reader is already familiar with the operations of union, x-
product and x-iteration. In the rest of this paper, we will use the operation of
x-product in right-to-left manner, that is, for any tree languages S, T ⊆ TΣ(Xn)
the x-product T ·xS is interpreted as a tree language in which the trees are obtained
by taking a tree s from S and replacing every leaf symbol x in s by a tree from
T . Different occurrences of x may be replaced by different trees from T . We will
also assume that T ·y R ·x S always means T ·y (R ·x S) for any tree languages
S, R, T ⊆ TΣ(Xn) and variables x, y ∈ Xn.

Let Σ be a ranked alphabet, and let Xn be a set of variables. The set RE(ΣXn)
of all regular ΣXn-expressions and the tree language T (η) represented by η ∈
RE(ΣXn) are defined in parallel as follows:

• ∅ ∈ RE(ΣXn), T (∅) = ∅,

• ∀x ∈ Xn : x ∈ RE(ΣXn), T (x) = {x},

If σ ∈ Σm, η1, η2, . . . , ηm ∈ RE(ΣXn), x ∈ Xn, then

• (η1) + (η2) ∈ RE(ΣXn), T ((η1) + (η2)) = T (η1) ∪ T (η2),

• (η2) ·x (η1) ∈ RE(ΣXn), T ((η2) ·x (η1)) = T (η2) ·x T (η1),

• (η1)
∗,x ∈ RE(ΣXn), T ((η1)

∗,x) = T (η1)
∗,x,

• σ(η1, . . . , ηm) ∈ RE(ΣXn), T (σ(η1, . . . , ηm)) = σ(T (η1), . . . , T (ηm)).

Some parentheses can be omitted from regular ΣXn-expressions, if a precedence
relation is assumed between the operations of σ-product, x-iteration, x-product,
and union in the given order.

A regular ΣXn-expression ζ is subexpression of η if ζ occurs in the inductive
definition of η. The set of all subexpressions of η will be denoted by Sub(η). The
operation omission on regular ΣXn-expressions is defined as follows: Let us consider
σ ∈ Σm, x ∈ X , η1, η2, . . . , ηm ∈ RE(ΣXn) and the regular ΣXn-expressions
(η1) + (η2), (η2) ·x (η1), (η1)

∗,x and σ(η1, . . . , ηm). By omitting η1 from them we
get η2, η2, η1 and σ(ζ, η2, . . . , ηm) respectively, where ζ is a variable occurring in
T (η1), if such exists, otherwise ζ = ∅. We allow the omission of η1 from (η1)

∗,x

to result in x as well. If we omit η2 from (η1) + (η2) and (η2) ·x (η1) we get η1
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and η1 respectively. Omission on regular ΣXn-expressions is not well-defined, but
we do not need it to be so. Let η be a regular ΣXn-expression, and let ζ be a
subexpression of η. We call ζ redundant in η, if ζ can be omitted from η so that
T (η) remains unchanged after omission. A regular ΣXn-expression is reduced if it
has no redundant subexpressions. As in the string case, a regular ΣXn-expression
may have several different reduced forms.

Now we adapt the concept of iterational height for tree languages which will
be used to identify the length of the longest x-path that will be used in an x-
iteration of a particular tree language. Let x ∈ X be a variable, and let η be a
regular ΣXn-expression in form (ζ)∗,x. The iterational height of x in η (ihx(η) for
short) is defined as max{|u| : u ∈ gx(T (ζ))}, if gx(T (ζ)) is finite. If gx(T (ζ)) is
infinite, then let ihx(η) be the infinity ∞ that we will treat as the largest integer.
Let now η be a reduced regular ΣXn-expression in any form. We define ihx(η) as
max{ihx((ζ)∗,x) | (ζ)∗,x ∈ Sub(η)}, if Sub(η) contains an expression in form (ζ)∗,x,
and 0 otherwise. The iterational height of x in a regular tree language T (ihx(T )
for short) is defined as min{ihx(η) : T = T (η)}.

Example 7. Let Σ = Σ2 = {σ} and X = {x, y} hold and let us consider the
regular ΣX-expression ζ = σ(y, σ(y, x)) + σ(y, σ(y, σ(y, x))). It is easy to see that
ihx((ζ)∗,x) = 3. Taking η = σ(y, x) + (ζ)∗,x we have ihx(η) = 3 because η has
a subexpression in form (ζ)∗,x for which ihx((ζ)∗,x) = 3. Considering the tree
language T (η) we get ihx(T (η)) = 1, because T (η) can be represented also by
(σ(y, x))∗,x, for which ihx((σ(y, x))∗,x) = 1.

Lemma 8. Let η be a reduced regular ΣXn-expression of the form (ζ)∗,x. If T (η)
is a monotone DR-language, then ihx(T (η)) ≤ 1.

Proof. Let η be a reduced regular ΣXn-expression of the form (ζ)∗,x, and let A

be a monotone DR-recognizer which recognizes T (η) with the partial ordering ≤.
Without the loss of generality we can suppose that A is reduced and normalized,
thus there is exactly one state a ∈ A for which a ∈ α(x) and au = a hold for every
word u ∈ gx(T (ζ)). Since A is monotone, we see that aσ = a for any letter σ that is
present in any of the words of gx(T (ζ)). Moreover, there is no state a′ ∈ A\{a} for
which a ≤ a′ and a′ ∈ α(x), and there is no state a′′ ∈ α(x) \ {a} for which a′′ ≤ a
and a′′σ = a′′ hold for every letter σ that is present in any of the words of gx(T (ζ)).
Hence η can be written in form (ζ′′)∗,x ·x ζ′, where ζ′ represents the tree language
that A recognizes by taking A(i) = {a}, and leaving A(j) unchanged if j 6= i, and
where ζ′′ is the representation of the trees that we can get by decomposition of
every tree t ∈ T (ζ) at every point of the paths in gx(t). It is easy to see that
T (η) = T ((ζ′′)∗,x ·x ζ′) and ihx(T ((ζ′′)∗,x ·x ζ′)) = 1, that is ihx(T (η)) ≤ 1.

5 A simple characterization

Let A = (A, a0,a) be a monotone DR ΣXn-recognizer, where A = (A, ΣA),
A = {a0, . . . , ak} and a = (A(1), . . . , A(n)). Without the loss of generality we
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can suppose that a0 ≤ a1 ≤ . . . ≤ ak holds. Let Ξk = {ξ0, . . . , ξk} be a set of
auxiliary variables for which Xn ∩ Ξk = ∅ holds. Furthermore, let φ : A → Ξk be a
bijective mapping defined by φ(ai) = ξi (0 ≤ i ≤ k). Now we construct the regular
Σ(Xn ∪ Ξk)-expression η as follows:

η = ηk ·ξk
ηk−1 ·ξk−1

. . . ·ξ1
η0,

where for each i = 0, . . . , k

ηi = (pi
1 + · · · + pi

li
+ yi

1 + · · · + yi
ri

) ·ξi
(ti1 + · · · + tiji

)∗,ξi ,

and where

1) yi
1, . . . , y

i
ri

are all the elements of the set {xz ∈ Xn| ai ∈ A(z)},

2) pi
s = σ(ξi1 , . . . , ξim

) for such σ ∈ Σm and ξiv
∈ Ξk (1 ≤ v ≤ m) that σ(ai) =

(φ−1(ξi1 ), . . . , φ
−1(ξim

)) and ai /∈
⋃

1≤v≤m{πv(σ(ai))} hold (1 ≤ s ≤ li),

3) tis = σ(ξi1 , . . . , ξim
) for such σ ∈ Σm and ξiv

∈ Ξk (1 ≤ v ≤ m) that σ(ai) =
(φ−1(ξi1 ), . . . , φ

−1(ξim
)) and ai ∈

⋃

1≤v≤m{πv(σ(ai))} hold (1 ≤ s ≤ ji),

4) | {pi
1, . . . , p

i
li
} | + | {ti1, . . . , t

i
ji
} | = | Σ |.

The regular Σ(Xn ∪ Ξk)-expression η constructed above is called the trivial
regular expression belonging to A, and is denoted by ηA. We use the word trivial
because ηA describes T (A) by its computation in A, where for every 0 ≤ i ≤ k,
ηi is responsible for the computation starting in state ai. That part of ηi which is
iterated by the operation ∗,ξi is called the iterating part of ηi, and the part of ηi

which is inserted by ·ξi
product into the variables ξi of the iterating part is called

the terminating part of ηi. We will call the expressions of the form ηk ·ξk
. . . η1 ·ξ1

η0

by chains.
Let the a0 ≤ a1 ≤ . . . ≤ ak linear ordering hold on the state set of the monotone

DR ΣXn-recognizer A. Let us define the DR ΣXn-recognizer Ai as follows: Ai =
(Ai, ai,ai), where Ai = (A ∩ {ai, . . . , ak}, ΣA), and
ai = (A(1) ∩ {ai, . . . , ak}, . . . , A(n) ∩ {ai, . . . , ak}). It is obvious that Ai recognizes
T (A, ai).

Lemma 9. For a monotone DR ΣXn-recognizer A the equality T (A) = T (ηA)
holds.

Proof. Let A be a monotone DR ΣXn-recognizer, and let ηA be the trivial regular
expression belonging to A. Let us also suppose that A = (A, a0,a), A = (A, Σ),
A = {a0, . . . , ak}, and the linear ordering a0 ≤ . . . ≤ ak holds on A. The proof is
continued by induction on the number of states in A.

If k = 0, then T (A) = TΣ(Xn ∩ {xi| a0 ∈ A(i)}) holds because A is singleton.
Obviously ηA = η0 holds, too. By the definition of ηA, every σ ∈ Σ is present
in the iterating part of η0, and every x ∈ {xi| a0 ∈ A(i)} ⊆ Xn is present in
the terminating part of η0. Hence, T (ηA) = TΣ(Xn ∩ {xi| a0 ∈ A(i)}), that is,
T (A) = T (ηA).
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Let us now suppose as our induction hypothesis that T (Ai) = ηk ·ξk
. . . ·ξi+1

ηi

holds for every 1 ≤ i ≤ k. Now we construct the Σ(Xn ∪ Ξk)-recognizer A′ as
follows: A′ = (A, a0,a

′), where a′ = (A(1)∩{a0}, . . . , A(n)∩{a0}, {a0}, . . . , {ak}) ∈
p(A)n+k+1. To interpret the meaning of T (A′) let us treat Xn ∪ Ξk as the
set Xn+k+1, where xn+i+1 = ξi, and let the mapping α be defined as α(ξi) =
α(xn+i+1) = A(n+i+1) (i = 0, . . . , k).

It can be easily seen that T (A) = T (Ak) ·ξk
. . . ·ξ2

T (A1) ·ξ1
T (A′), and T (A′) =

T (η0). Hence

T (A) = T (Ak) ·ξk
T (Ak−1) ·ξk−1

. . . ·ξ2
T (A1) ·ξ1

T (A′) =
= T (ηk) ·ξk

T (ηk ·ξk
ηk−1) ·ξk−1

. . . ·ξ2
T (ηk ·ξk

. . . ·ξ2
η1) ·ξ1

T (η0) =
= T (ηk) ·ξk

T (ηk−1) ·ξk−1
. . . ·ξ2

T (η1) ·ξ1
T (η0) =

= T (ηk ·ξk
ηk−1 ·ξk−1

. . . ·ξ2
η1 ·ξ1

η0) =
= T (η).

6 Remarks on the decomposition of η

In this section we give some remarks on the decomposition of the regular Σ(Xn∪Ξk)-
expression η = ηk ·ξk

. . . η1 ·ξ1
η0. If there is at most one symbol in the terminating

part of ηi, then the decomposition in the ηi part makes no sense, hence we assume
in this section that there are at least two symbols in the terminating part of ηi.

We say that η = ηk ·ξk
. . . ·ξi+1

ηi ·ξi
. . . ·ξ1

η0 can be decomposed in the ηi part
if it can be given in the form

η = ηk ·ξk
. . . ·ξi+1

ηi ·ξi
. . . ·ξ1

η0 =

ηk ·ξk
. . . ·ξi+1

(pi
1 + · · · + pi

li
+ yi

1 + · · · + yi
ri

) ·ξi
(ti1 + · · · + tiji

)∗,ξi ·ξi
. . . ·ξ1

η0 =

ηk ·ξk
. . . ·ξi+1

(yi
1) ·ξi

(ti1 + · · · + tiji
)∗,ξi ·ξi

. . . ·ξ1
η0 +

...

+ ηk ·ξk
. . . ·ξi+1

(yi
ri

) ·ξi
(ti1 + · · · + tiji

)∗,ξi ·ξi
. . . ·ξ1

η0 +

+ ηk ·ξk
. . . ·ξi+1

(pi
1) ·ξi

(ti1 + · · · + tiji
)∗,ξi ·ξi

. . . ·ξ1
η0 +

...

+ ηk ·ξk
. . . ·ξi+1

(pi
li
) ·ξi

(ti1 + · · · + tiji
)∗,ξi ·ξi

. . . ·ξ1
η0,

where

(i) yi
s ∈ Xn (1 ≤ s ≤ ri, 0 ≤ ri ≤ n),

(ii) pi
s = σ(ξi1 , . . . , ξim

), for some σ ∈ Σm, ξiv
∈ Ξk, 1 ≤ v ≤ m, 1 ≤ s ≤ li,

(iii) tis = σ(ξi1 , . . . , ξim
), for some σ ∈ Σm, ξiv

∈ Ξk, 1 ≤ v ≤ m, 1 ≤ s ≤ ji.
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Now we state a necessary condition for the existence of such decompositions.

Lemma 10. The expression η = ηk ·ξk
. . . η1 ·ξ1

η0 can be decomposed in the ηi part,
if every operational symbol in the iterating part of ηi contains the auxiliary variable
ξi at most once among its leaves.

Proof. Let us suppose that the condition of the lemma holds. Let us denote in this
proof the regular Σ(Xn∪Ξk)-expressions ηk ·ξk

. . . ·ξi+2
ηi+1 and (ti1 + · · ·+ tiji

)∗,ξi ·ξi

. . . ·ξ1
η0 by ζ′′ and ζ′, respectively. It is easy to see that for every tree t ∈ T (ζ′)

the set gξi
(t) is a singleton or the empty set. By the definition of the x-product of

tree languages, using the condition of the lemma, we get

T (η) = T (ζ′′ ·ξi+1
(pi

1 + · · · + pi
li

+ yi
1 + · · · + yi

ri
) ·ξi

ζ′) =

= T (ζ′′) ·ξi+1
T (pi

1 + · · · + pi
li

+ yi
1 + · · · + yi

ri
) ·ξi

T (ζ′) =

= T (ζ′′) ·ξi+1
( T (pi

1) ·ξi
T (ζ′) ∪ . . . ∪ T (pi

li
) ·ξi

T (ζ′) ∪ T (yi
1) ·ξi

T (ζ′) ∪ . . .

. . . ∪ T (yi
ri

) ·ξi
T (ζ′) ) =

= T (ζ′′ ·ξi+1
pi
1 ·ξi

ζ′ + . . .+ ζ′′ ·ξi+1
pi

li
·ξi

ζ′ + ζ′′ ·ξi+1
yi
1 ·ξi

ζ′ + . . .+ ζ′′ ·ξi+1
yi

ri
·ξi

ζ′).

Hence the decomposition in ηi led to an equivalent regular Σ(Xn ∪Ξk)-expression.

It is clear that if the auxiliary variable ξi does not occur in the subexpression
ηi−1 ·ξi−1

. . . η1 ·ξ1
η0, then the factor ηi can be omitted from the expression of η.

Let us note that the decomposed parts will also be called chains, that is, the above
mentioned chain η is decomposed into finite union of chains.

The variables yi
1, . . . , y

i
ri

can be left in any of the decomposed chains, because by
inserting these variables into the iterating part during the ξi-product we terminate
that path, that is, no auxiliary variable can be reached after from these variables.

Now we state the converse of the Lemma 10.

Lemma 11. If the expression η = ηk ·ξk
. . . η1 ·ξ1

η0 can be decomposed in the ηi

part, then every operational symbol in the iterating part of ηi contains the auxiliary
variable ξi at most once among its leaves.

Proof. Let us suppose that there is an operational symbol σ ∈ Σm in the iterating
part of the decomposed ηi, where ξi occurs at least twice among the leaves of σ. Let
ζ′′ and ζ′ stand for the regular Σ(Xn∪Ξk)-expressions ηk·ξk

. . .·ξi+2
ηi+1 and ηi−1·ξi−1

. . . ·ξ1
η0, respectively. For the sake of simplicity we will write σ̃(ξi, ξi) instead

of σ(ξ′1, . . . , ξ
′
v1

, ξi, ξ
′′
1 , . . . , ξ′′v2

, ξi, ξ
′′′
1 , . . . , ξ′′′v3

), where v1, v2, v3 ∈ {0, 1, . . . , m − 2},
v1 + v2 + v3 = m − 2, and ξ′z′ , ξ′′z′′ , ξ′′′z′′′ ∈ Ξk, (z′ ∈ {1, . . . , v1}, z′′ ∈ {1, . . . , v2},
z′′′ ∈ {1, . . . , v3}). It is obvious that T (ζ′′ ·ξi+1

(pi
1 + · · · + pi

li
+ yi

1 + · · · + yi
ri

) ·ξi

σ̃(ξi, ξi) ·ξi
ζ′) ⊂ T (η). Moreover, T (ζ′′ ·ξi+1

σ̃(s1, s2) ·ξi
ζ′) ⊂ T (η) holds too for

every different pair of symbols s1, s2 ∈ {pi
1, . . . , p

i
li
, yi

1, . . . , y
i
ri
}. On the other hand

T (ζ′′ ·ξi+1
σ̃(s1, s2) ·ξi

ζ′) 6⊆
⋃

1≤v≤li
T (ζ′′ ·ξi+1

σ̃(pi
v, p

i
v) ·ξi

ζ′) ∪
⋃

1≤v≤ri
T (ζ′′ ·ξi+1

σ̃(yi
v, y

i
v) ·ξi

ζ′), which is a contradiction because there are such trees in T (η) which
are not present in the decomposed chains of η.
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The above results can be summarized in

Theorem 12. The expression η = ηk ·ξk
. . . η1 ·ξ1

η0 can be decomposed in the ηi

part if and only if every operational symbol in the iterating part of ηi contains the
auxiliary variable ξi at most once among its leaves.

7 Remarks on the number of the auxiliary vari-

ables in ηA

In this section we deal with the number of the auxiliary variables in ηA. We will
also give some methods by which this number can be possibly reduced. It is obvious
that if the number of states is k, then the representation can be done with k + 1
auxiliary variables.

It is said that we terminate a variable x ∈ Xn in a tree t ∈ TΣ(Xn) by a tree
p ∈ TΣ(Xn), if the variable x is not present among the leaves of the trees p ·x t. Let
ζ be a regular ΣXn-expression. It is said that a variable x ∈ Xn is terminated in
ζ, if there is no variable x among the leaves of the trees of T (ζ).

Obviously, the number of the necessary auxiliary variables can be possibly de-
creased if we decompose η at every possible place (as seen in the previous section),
and we renumber the auxiliary variables from 0 in each decomposed chain of η
separately.

It is clear that a variable ξi is terminated in the ηi part, that is the variable
ξi will not occur at any leaf from this point during the right-to-left evaluation of
η. Hence we can reuse some auxiliary variables within a chain. Let us suppose
that there is an auxiliary variable ξj in the chain which has its first occurrence in
the terminating part of ηi (during the right-to-left evaluation of the chain). In this
case every occurrence of ξj in η can be replaced with ξi, by which we have done an
equivalent transformation. In fact, we can also use the elements of Xn to decrease
the number of the auxiliary variables. The idea is the same, that is, an existing
auxiliary variable ξi can be replaced with a variable x if ξi gets terminated before
the first occurrence of x.

On the basis of the remarks above the following steps can possibly reduce the
number of the auxiliary variables:

(i) decompose ηA into union of as many chains as possible

(ii) decrease the number of the auxiliary variables in these decomposed chains
separately

(iii) renumber the auxiliary variables starting with 0 in each chain

Example 13. Let A = (A, a0,a) be a DR ΣX3-recognizer, where A = (A, Σ),
A = {a0, a1, a2, a3}, Σ = {σ1, σ2, σ3}, σi ∈ Σi (1 ≤ i ≤ 3), and a =
({a0}, {a0, a2}, {a1, a2, a3}). Σ is realized in A as follows:
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σ1(a0) = (a1), σ2(a0) = (a0, a1), σ3(a0) = (a0, a0, a1),
σ1(a1) = (a3), σ2(a1) = (a2, a2), σ3(a1) = (a1, a3, a3),
σ1(a2) = (a3), σ2(a2) = (a2, a3), σ3(a2) = (a2, a3, a3),
σ1(a3) = (a3), σ2(a3) = (a3, a3), σ3(a3) = (a3, a3, a3).

The resulting regular expression is the following:

ηA = η3 ·ξ3
η2 ·ξ2

η1 ·ξ1
η0 =

= (x3) ·ξ3
(σ1(ξ3) + σ2(ξ3, ξ3) + σ3(ξ3, ξ3, ξ3))

∗,ξ3 ·ξ3

·ξ3
(σ1(ξ3) + x2 + x3) ·ξ2

(σ2(ξ2, ξ3) + σ3(ξ2, ξ3, ξ3))
∗,ξ2 ·ξ2

·ξ2
(σ1(ξ3) + σ2(ξ2, ξ2) + x3) ·ξ1

(σ3(ξ1, ξ3, ξ3))
∗,ξ1 ·ξ1

·ξ1
(σ1(ξ1) + x1 + x2) ·ξ0

(σ2(ξ0, ξ1) + σ3(ξ0, ξ0, ξ1))
∗,ξ0

We can decompose the above chain in the η1 factor by which we get

(x3) ·ξ3
(σ1(ξ3) + σ2(ξ3, ξ3) + σ3(ξ3, ξ3, ξ3))

∗,ξ3 ·ξ3

·ξ3
(σ1(ξ3) + x2 + x3) ·ξ2

(σ2(ξ2, ξ3) + σ3(ξ2, ξ3, ξ3))
∗,ξ2 ·ξ2

·ξ2
(σ1(ξ3) + x3) ·ξ1

(σ3(ξ1, ξ3, ξ3))
∗,ξ1 ·ξ1

·ξ1
(σ1(ξ1) + x1 + x2) ·ξ0

(σ2(ξ0, ξ1) + σ3(ξ0, ξ0, ξ1))
∗,ξ0

+

(x3) ·ξ3
(σ1(ξ3) + σ2(ξ3, ξ3) + σ3(ξ3, ξ3, ξ3))

∗,ξ3 ·ξ3

·ξ3
(σ1(ξ3) + x2 + x3) ·ξ2

(σ2(ξ2, ξ3) + σ3(ξ2, ξ3, ξ3))
∗,ξ2 ·ξ2

·ξ2
(σ2(ξ2, ξ2)) ·ξ1

(σ3(ξ1, ξ3, ξ3))
∗,ξ1 ·ξ1

·ξ1
(σ1(ξ1) + x1 + x2) ·ξ0

(σ2(ξ0, ξ1) + σ3(ξ0, ξ0, ξ1))
∗,ξ0

Simplifying the above expression we can write

(x3) ·ξ3
(σ1(ξ3) + σ2(ξ3, ξ3) + σ3(ξ3, ξ3, ξ3))

∗,ξ3 ·ξ3

·ξ3
(σ1(ξ3) + x3) ·ξ1

(σ3(ξ1, ξ3, ξ3))
∗,ξ1 ·ξ1

·ξ1
(σ1(ξ1) + x1 + x2) ·ξ0

(σ2(ξ0, ξ1) + σ3(ξ0, ξ0, ξ1))
∗,ξ0

+

(x3) ·ξ3
(σ1(ξ3) + σ2(ξ3, ξ3) + σ3(ξ3, ξ3, ξ3))

∗,ξ3 ·ξ3

·ξ3
(σ1(ξ3) + x2 + x3) ·ξ2

(σ2(ξ2, ξ3) + σ3(ξ2, ξ3, ξ3))
∗,ξ2 ·ξ2

·ξ2
(σ2(ξ2, ξ2)) ·ξ1

(σ3(ξ1, ξ3, ξ3))
∗,ξ1 ·ξ1

·ξ1
(σ1(ξ1) + x1 + x2) ·ξ0

(σ2(ξ0, ξ1) + σ3(ξ0, ξ0, ξ1))
∗,ξ0
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Reusing the variables (ξ0 → ξ3) and (x3 → ξ1) in the above chains we get

(x3) ·ξ0
(σ1(ξ0) + σ2(ξ0, ξ0) + σ3(ξ0, ξ0, ξ0))

∗,ξ0 ·ξ0

·ξ0
(σ1(ξ0) + x3) ·x3

(σ3(x3, ξ0, ξ0))
∗,x3 ·x3

·x3
(σ1(x3) + x1 + x2) ·ξ0

(σ2(ξ0, x3) + σ3(ξ0, ξ0, x3))
∗,ξ0

+

(x3) ·ξ0
(σ1(ξ0) + σ2(ξ0, ξ0) + σ3(ξ0, ξ0, ξ0))

∗,ξ0 ·ξ0

·ξ0
(σ1(ξ0) + x2 + x3) ·ξ2

(σ2(ξ2, ξ0) + σ3(ξ2, ξ0, ξ0))
∗,ξ2 ·ξ2

·ξ2
(σ2(ξ2, ξ2)) ·x3

(σ3(x3, ξ0, ξ0))
∗,x3 ·x3

·x3
(σ1(x3) + x1 + x2) ·ξ0

(σ2(ξ0, x3) + σ3(ξ0, ξ0, x3))
∗,ξ0

We can see that the initial number of the auxiliary variables is reduced from 4 to
2.

We finish the discussion of the section with

Lemma 14. If Σ = Σ1, then for any monotone DR ΣXn-recognizer A one auxiliary
variable is enough to represent ηA.

Proof. Let Σ = Σ1, and let ηA be the Σ(Xn ∪ Ξk)-regular expression belonging to
A. As we have only unary operational symbols, ξi occurs at most once among the
leaves of an operational symbol from the iterating part of each ηi. So η can be
decomposed into finite union of chains, moreover, the decomposition can be done
at each ηi factor. The condition Σ = Σ1 implies also that during the evaluation at
every step there is exactly one auxiliary variable which is not terminated. Since the
variable ξ0 gets terminated in the terminating part of η0, we can reuse ξ0 instead
of introducing a new auxiliary variable. Continuing the idea we can rewrite all
decomposed chains so that they will use only ξ0 as an auxiliary variable.

8 Characterization of monotone DR-languages

It is a well-known fact that the class of DR-languages is closed under σ-products,
but not under union, x-product, and x-iteration. It means that the x-product,
x-iteration and union of monotone DR-languages are not always deterministic (cf.
[3] and [8]). Conversely, using the three operations mentioned above on not closed
languages can result in a closed (or even monotone) DR-languages, as it can be
seen from the examples below.

Example 15. Let us consider the regular tree languages S = {σ(x, x), σ(y, y)} and
T = {σ(x, y), σ(y, x)}. It is clear that they are not closed, but the tree language
S ∪ T = {σ(x, x), σ(y, y), σ(x, y), σ(y, x)} is closed, that is, DR-recognizable.
Moreover, S ∪ T is monotone.
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Example 16. Let us now consider the regular tree languages S = {z, σ(x, x),
σ(y, y)} and T = {σ(x, y), σ(y, x)}. They are not closed, but the tree language
T ·z S = {σ(x, x), σ(y, y), σ(x, y), σ(y, x)} is DR-recognizable, and what is more,
T ·z S is monotone.

Example 17. Let S be the following regular tree language: S = {σ(x, σ(x, y)),
σ(x, σ(y, x)), σ(x, x), σ(y, y), σ(x, y), σ(y, x)}. S is not closed, but the tree
language (S)∗,x is closed, moreover, (S)∗,x is monotone.

Let S ⊆ TΣ(Xn) be a tree language and let p ∈ TΣ(Xn) be a tree. The root
root(p), leaves leaves(p) and the set of subtrees Sub(p) of the tree p are defined as
follows:

(i) If p ∈ Xn, then root(p) = p, leaves(p) = {p} and Sub(p) = {p}.

(ii) If p = σ(t1, . . . , tm), σ ∈ Σm, ti ∈ TΣ(Xn), 1 ≤ i ≤ m, then root(p) = σ,
leaves(p) =

⋃

1≤i≤m leaves(ti), and Sub(p) = {p} ∪
⋃

1≤i≤m(Sub(ti)).

The above functions are extended from trees to tree languages as follows:
root(S) = {root(p) | p ∈ S}, leaves(S) =

⋃

p∈S leaves(p), and Sub(S) =
⋃

p∈S Sub(p).
Let ΣS denote the set of operational symbols appearing in S, and is defined as

ΣS = root(Sub(S)) \ Xn. Let ΣS,x denote the set { σ ∈ Σ | ∃u ∈ gx(S), ∃v ∈

Σ̂∗, ∃z ∈ Xn : uv ∈ gz(S), v = (σ, i) . . . (ω, j), ω ∈ Σ, i, j ∈ N}.
Now we give a condition by which the x-product of two monotone DR-languages

is also monotone.

Theorem 18. Let S, T ⊆ TΣ(Xn) be monotone DR-languages, xi ∈ Xn. If ΣS,xi
∩

root(T ) = ∅, then T ·xi
S is monotone.

Proof. Assume that the conditions of the theorem hold. Let A = (A, a0,a)
and B = (B, b0,b) be monotone DR ΣXn-recognizers, where A = (A, ΣA),
A = {a0, . . . , ak}, a = (A(1), . . . , A(n)), B = (B, ΣB), B = {b0, . . . , bl},
b = (B(1), . . . , B(n)) and A ∩ B = ∅ such that T (A) = S and T (B) = T . Let
us also suppose that a0 ≤ . . . ≤ ak and b0 ≤ . . . ≤ bl hold on the state sets A and
B, respectively.

We construct a monotone C = (C, c0, c) that recognizes T ·xi
S as follows. Let

C = (C, ΣC), C = A ∪ B, c0 = a0 and c = (C(1), . . . , C(n)) hold, where c is defined
as follows:

C(j) =















A(j) ∪ B(j) ∪ A(i), if xj ∈ T, j 6= i
A(j) ∪ B(j), if xj 6∈ T, j 6= i

B(j) ∪ A(i), if xj ∈ T, j = i
B(j), if xj 6∈ T, j = i

It remains to represent the elements of Σ in C. For σ ∈ Σ and c ∈ C let

σC(c) =







σB(c), if c ∈ B
σB(b0), if c ∈ A(i), σ ∈ root(T )
σA(c), else
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The construction of C relies on the condition ΣS,xi
∩ root(T ) = ∅. It allows

us to determine at every step during the processing of a tree in C whether the
next input symbol is evaluated in A or in B. Once we reach a state a ∈ A(i), the
symbols from root(T ) will lead us to a state b ∈ B, from which we can continue
the processing in B. If the input symbol applied in the state a is from Σ \ root(T ),
then we process it according to A. Therefore, it can be shown by a straightforward
computation that C recognizes T ·xi

S, and C is monotone under the linear ordering
a0 ≤ . . . ≤ ak ≤ b0 ≤ . . . ≤ bl, which means that T ·xi

S is monotone.

Corollary 19. Let S, T ⊆ TΣ(Xn) be monotone DR-languages, xi ∈ Xn. If ΣS ∩
root(T ) = ∅, then T ·xi

S is monotone.

Proof. The conditions of Theorem 18 hold because ΣS,xi
⊆ ΣS .

The conversion of Theorem 18 does not hold as the counter example below
shows.

Example 20. Let T and S stand for the DR-languages {σ(z, z)} and {σ(x, z),
σ(σ(z, z), z)}, respectively. It is obvious that S and T are monotone and T ·x S =
{σ(σ(z, z), z)} is also monotone. However, ΣS,x ∩ root(T ) = {σ} 6= ∅.

Let x ∈ Xn. A tree language T is called x-homogeneous if there exists no t ∈ T
for which there are u, v ∈ gx(t), w ∈ Σ̂∗ and z ∈ Xn such that uw ∈ gz(T ) and
vw 6∈ gz(T ).

The condition under which the class of monotone DR-languages is closed under
x-iteration can be restricted by the following lemmas.

Lemma 21. Let T ⊆ TΣ(Xn) be a DR-language, x ∈ Xn, and let T ∗,x be deter-
ministic. If T is not x-homogeneous, then T ∗,x is not monotone.

Proof. Let us suppose that the conditions of the lemma hold. It means that there
is a tree t ∈ T for which there are u, v ∈ gx(t) with u 6= v, and there are w ∈
Σ̂∗, z ∈ Xn such that uw ∈ gz(T ) and vw 6∈ gz(T ). Moreover, let us assume that
A is a reduced monotone DR ΣXn-recognizer which recognizes T ∗,x. Let ai = a0u
and aj = a0v. Since uw ∈ gz(T ) and vw 6∈ gz(T ), we get that ai 6= aj . It is obvious
that ai, aj ∈ α(x), hence T (A, ai) = T ∗,x and T (A, aj) = T ∗,x. Using the fact that
A is reduced, T (A, ai) = T (A, aj) implies that ai = aj, which is a contradiction.
Therefore, T ∗,x is not monotone.

Lemma 22. Let T ⊆ TΣ(Xn) be a DR-language, x ∈ Xn, and let T ∗,x be deter-
ministic. If ihx(T ∗,x) > 1, then T ∗,x is not monotone.

Proof. Let us suppose that T is a DR-language for which T ∗,x is deterministic and
ihx(T ∗,x) > 1. Let the regular ΣXn-expression ζ represent T . By the definition of
ihx, there is a reduced regular ΣXn-expression η for which T (η) = T ∗,x, ihx(η) > 1
and η is in form (ζ)∗,x. Using Lemma 8 we get that T (η) is not monotone, therefore
T ∗,x is not monotone, too.
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Now we give a condition by which the x-iteration of a monotone DR-language
is also monotone.

Theorem 23. Let T ⊆ TΣ(Xn) be a monotone DR-language, xi ∈ Xn, and let T ∗,xi

be deterministic. If T is xi-homogeneous, ihxi
(T ∗,xi) ≤ 1 and ΣT,xi

∩root(T ) = ∅,
then T ∗,xi is monotone.

Proof. Let us suppose that the conditions of the theorem hold. Let A be a reduced
DR ΣXn-recognizer for which T (A) = T , and where A = (A, a0,a), A = (A, ΣA),
A = {a0, . . . , ak}, a = (A(1), . . . , A(n)). Let us also assume that A is monotone
under the linear ordering a0 ≤ . . . ≤ ak.

We construct the monotone DR ΣXn-recognizer B = (B, b0,b) with B =
(B, ΣB) which recognizes T ∗,xi. Let us define the state set B as A∪ {b0}, where b0

is a new state. The final state vector b is

(B(1), . . . , B(i−1), {a0, b0}, B(i+1), . . . , B(n)),

where the components are defined by two steps in the following order:

(1) For all j ∈ {1, . . . , n} \ {i}, B(j) :=

{

A(j) ∪ {b0}, if a0 ∈ A(j)

A(j), else,

(2) For all a ∈ A(i) and j ∈ {1, . . . , i − 1, i + 1, . . . , n} if a ∈ A(j), then B(j) :=
B(j) ∪ {a0}.

The definition of ΣB is given by four steps in the following order:

(3) For all σ ∈ root(T ) and a′ ∈ A(i)

σB(a0) :=

{

(. . . , a0, . . .), if σA(a0) = (. . . , a′, . . .)
σA(a0), else,

(4) For all σ ∈ Σ \ root(T )

σB(a0) :=

{

σA(a′), if A(i) 6= ∅, (a′ ∈ A(i) is arbitrarily chosen)

σA(a0), if A(i) = ∅,

(5) For all σ ∈ root(T ) σB(b0) := σB(a0),

(6) For all σ ∈ Σ and a ∈ A \ {a0} σB(a) := σA(a).

The construction of B relies on the condition ΣT,xi
∩root(T ) = ∅. It guarantees

us that in every state a ∈ α(xi) for any input symbol σ we can determine whether to
continue an already started processing of a tree, or to start a process from the root
of a tree from T . In all the other cases B is acting as A did. The xi-homogeneous
property of T and the inequality ihxi

(T ∗,xi) ≤ 1 ensure us that one state is enough
to iterate the xi-paths of T , which is the basic idea of any iteration related automata
construction. Therefore, it can be shown by a straightforward computation that
T (B) = T ∗,xi, and B is monotone under the linear ordering b0 ≤ a0 ≤ . . . ≤ ak,
which means that T ∗,xi is monotone.
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The following lemma is obvious.

Lemma 24. For any fixed variable x ∈ Xn the x-product of tree languages is
associative, that is, for any tree languages S, R and T the equality T ·x (R ·x S) =
(T ·x R) ·x S holds.

A tree language η = ηk·ξk
. . .·ξ1

η0 is called R-chain language, if every ηi is in form
(Ti) ·ξi

(Si)
∗,ξi (i = 0, . . . , k), where Si and Ti are finite DR-languages, for which Si

is ξi-homogeneous, ihξi
(Si) ≤ 1, root(Si) ∩ ΣSi,ξi

= ∅ and root(Ti) ∩ (root(Si) ∪
ΣSi,ξi

) = ∅. Moreover, let us denote the language ηi−1 ·ξi−1
. . . ·ξ1

η0 by ζi. The
η = ηk ·ξk

. . .·ξ1
η0 R-chain language is called generalized, if root(T (ηi))∩ΣT (ζi),ξi

= ∅
holds for every i = 1, . . . , k.

Theorem 25. Let T be a DR-language. T is monotone iff it can be given as a
generalized R-chain language.

Proof. Let us suppose that T is a monotone DR-language. Let A be the mono-
tone DR-recognizer for which T (A) = T . Constructing the regular expression ηA

belonging to A we get a generalized R-chain language for which T = T (ηA).
Conversely, let us take a generalized R-chain language η = ηk ·ξk

. . . ·ξ1
η0 which

represents T . From Lemma 6, Theorem 18, and Theorem 23 we directly obtain
that every T (ηi) is monotone (i = 0, . . . , k). Using Lemma 24 and Theorem 18 we
directly get that T (η) is monotone.

9 Conclusion

As we showed above, the monotone DR-languages can be characterized by means of
generalized R-chain languages. We gave several conditions by which some particular
operations preserve monotonicity, but we did not state conditions by which the
class of DR-languages is closed under the operations of x-product, x-iteration and
union. However, it seems possible to give appropriate conditions for each operation
mentioned above.
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