
Acta Cybernetica 18 (2007) 193–212.

Using Genetic Algorithms in Computer Vision:

Registering Images to 3D Surface Model∗

Zsolt Jankó†, Dmitry Chetverikov† and Anikó Ekárt‡

Abstract

This paper shows a successful application of genetic algorithms in com-
puter vision. We aim at building photorealistic 3D models of real-world ob-
jects by adding textural information to the geometry. In this paper we focus
on the 2D–3D registration problem: given a 3D geometric model of an object,
and optical images of the same object, we need to find the precise alignment
of the 2D images to the 3D model.

We generalise the photo-consistency approach of Clarkson et al. who
assume calibrated cameras, thus only the pose of the object in the world
needs to be estimated. Our method extends this approach to the case of
uncalibrated cameras, when both intrinsic and extrinsic camera parameters
are unknown. We formulate the problem as an optimisation and use a genetic
algorithm to find a solution.

We use semi-synthetic data to study the effects of different parameter
settings on the registration. Additionally, experimental results on real data
are presented to demonstrate the efficiency of the method.

Keywords: photo-consistency, uncalibrated images, photorealistic models

1 Introduction

Building photorealistic 3D models of real-world objects is a fundamental problem
in computer vision and computer graphics. During the last years a number of am-
bitious projects [4, 17, 25] have been started around the world to digitise cultural
heritage objects. Exhibiting 3D models of these objects in a virtual museum pro-
vides easy access to them. Furthermore, 3D models of real objects can also be
used for surgical simulations in medical imaging, for e-commerce, architecture or
entertainment (movies, computer games).

∗This work was supported by EU Network of Excellence MUSCLE (FP6-507752)
†Computer and Automation Research Institute, Budapest, Kende u. 13-17, H-1111 Hungary

and Eötvös Loránd University, Budapest; E-mail: {janko,csetverikov}@sztaki.hu
‡Aston University, School of Engineering and Applied Science, Computer Science, Aston Tri-

angle, B4 7ET Birmingham, United Kingdom; E-mail: A.Ekart@aston.ac.uk

194 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

Photorealistic 3D models must have precise geometry as well as detailed texture
on the surface. Active and passive methods for creating such models are discussed
in [35]. The methods are based on different principles. They use different techniques
to reconstruct the object surface, acquire its texture and map the texture onto the
surface. The geometry can be measured by various methods of computer vision.
When precise measurements are needed, laser scanners are often used. However,
most laser scanners do not provide texture and colour information. Even when they
do, the data provided are not accurate enough. (See [35] for a detailed discussion.)

Whatever the sources of geometric and textural information are, the problem of
data fusion, or registration, is to be addressed. In this paper we consider the case
when the two sources are independent. We approach the problem of combining
precise geometry with high quality images by using genetic algorithms.

A number of approaches to the above registration problem have been proposed.
In [19] and [20] we introduced a novel method based on photo-consistency. The nov-
elty of our method consists in using uncalibrated cameras—in contrast to Clarkson
et al. [8] who need a calibrated setup—and applying a genetic algorithm. Below we
describe the problem of photo-consistency based registration and give a summary
of our approach.

The mathematical formulation of the registration problem is the following. Two
input images, I1 and I2, and a 3D model are given. They represent the same object.
(See an example in Figure 1.) The only assumptions about the environment are
that the lighting conditions are fixed and the cameras have identical sensitivity1.
All other camera parameters may differ and are unknown. The 3D model consists
of a 3D point set P and a set of normal vectors assigned to the points. P is
obtained by a hand-held 3D scanner and then triangulated by the robust algorithm
of Kós [22]. This algorithm provides the normal vectors as well.

Images 3D model

Figure 1: Shell dataset.

To project the object surface to the image plane, the finite projective camera
model [14] is used: u ≃ PX, where u is an image point, P the 3 × 4 projection

matrix and X a surface point. (≃ means that the projection is defined up to an
unknown scale.)

The task of registration is to determine the precise projection matrices, P1 and
P2, for both images. The projection matrix P has 12 elements but only 11 degrees of

1The latter can be easily achieved if the images are taken by the same camera.

Registering Images to 3D Surface Model 195

freedom, since it is up to a scale factor. We denote the collection of the 11 unknown
parameters by p, which represents the projection matrix P as an 11-dimensional
parameter vector.

Values of p1 and p2 are sought such that the images are consistent in the sense
that the corresponding points—different projections of the same 3D point—have
the same colour value. Note that the precise mathematical definition is valid only
when the surface is Lambertian, that is, the incoming light is reflected equally to
every direction on the surface. This is usually true for diffuse surfaces. Formally,
we say that images I1 and I2 are consistent by P1 and P2 (or p1 and p2) if for each
X ∈ P: u1 = P1X, u2 = P2X and I1(u1) = I2(u2). (Here Ii(ui) is the colour value
in point ui of image Ii.) This type of consistency is called photo-consistency [8, 23].

The photo-consistency holds for accurate estimates for p1 and p2. Inversely,
misregistered projection matrices mean much less photo-consistent images. The
cost function introduced in [20] is the following:

Cφ(p1, p2) =
1

|P|

∑

X∈P

‖I1(P1X)− I2(P2X)‖
2
. (1)

Here φ stands for photo-inconsistency while |P| is the number of points in P.
Difference of the colour values ‖I1 − I2‖ can be defined by a number of different
colour models. (Details are discussed in section 5.1.) Finding the minimum of the
cost function (1) over p1 and p2 yields estimates for the projection matrices.

In spite of the simplicity of the cost function Cφ(p1, p2), finding the minimum is
a difficult task. Due to the 22-dimensional parameter space and the unpredictable
shape of Cφ(p1, p2), the standard local nonlinear minimisation techniques failed
to provide reliable results. We have tested a number of widely used optimisation
methods: Newton-like methods, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
variable metric method and the Levenberg-Marquardt algorithm. Experiments
have shown that local search techniques terminate every time in local minima quite
far from the expected global optimum.

The global nonlinear optimisation technique of Csendes [9] has also been tested.
However, the stochastic optimisation method did not yield acceptable results either.
The randomness of a stochastic method is excessive, and it does not save nearly
good solutions. In contrast, elitist genetic algorithms preserve the most promising
results and try to improve them. (Running a GA without elitism yields unstable
and imprecise results, similarly to the stochastic optimisation.)

The methods mentioned above and other modern techniques, such as simulated
annealing and tabu search process one single solution. In addition to performing a
local search, simulated annealing and tabu search have specific built-in mechanisms
to escape local optima. In contrast, genetic algorithms work on a population of po-
tential solutions, which compete for survival. The competition is what makes GAs
essentially different from single solution processing methods [26]. Consequently we
decided to apply a genetic algorithm, as a time-honoured global search strategy.

Parts of this work have already been presented in papers [19, 20] and [21].
In this study we present the complete method, including a detailed discussion of

196 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

implementation problems, as well as the analysis of the method by systematic tests
using different genetic settings and different colour models.

The structure of this paper is as follows. In section 2 we give an overview of
genetic algorithms and related work on the 2D–3D registration problem. Section 3
presents our registration method based on a genetic algorithm, while section 4
discusses implementation details. In section 5 the method is analysed by tests on
semi-synthetic data using different parameter settings. Experimental results on
real data are also shown. Finally, section 6 concludes the paper by summarising its
contribution.

2 Overview

2.1 Genetic Algorithms

To make this study more accessible, we need to devote a section to a brief overview
of genetic algorithms, without aiming at completeness. For details the reader is
referred to [12] or [2, 3].

Genetic algorithm is a global search technique that imitates natural biological
evolution: the algorithm, starting from an initial population of potential solutions
and preserving the best individuals, produces new population after new popula-
tion, obtaining better and better approximations to a solution. At each generation,
individuals are selected and bred together, resulting in a new set of approxima-
tions. The higher the level of fitness of an individual, the greater its chance of
being selected. This fitness-driven selection leads to the evolution of populations
of individuals that are better than the populations of their ancestors.

In nature individuals are determined by their genes in their chromosomes.
In computing genes and chromosomes can be represented by strings: lacing the
strings of the genes sequentially gives the string of the chromosome. The most
commonly used alphabet of the strings is binary {0,1}, but other alphabets are
also used, e.g., integer or real-valued numbers, depending on which is the most
suitable for the given problem. Note that further on we shall use the word allele

instead of gene, which is a possible variant of the same gene occupying a position
(locus) in a chromosome.

To improve the population, better individuals should have larger chance to be
selected than worse individuals. The goodness of an individual is given by a fitness

function. Various selection strategies can be used, those using the fitness values
(e.g., roulette wheel selection), or the simple uniform selection, that does not use
the level of fitness.

Selected individuals are “mated” and new individuals are produced from them,
for instance, by interchanging their corresponding alleles. The method of mating is
determined by the selected crossover strategy. New individuals can also be created
by mutation. The mutation strategy determines how an individual can be mutated.
For instance, in Gaussian mutation the value of a selected allele is changed by a
random value taken from a Gaussian distribution.

Registering Images to 3D Surface Model 197

The simple GA cannot guarantee the improvement of the population. However,
carrying the best individual(s) over to the next generation assures that it will not
be worse either. This behaviour of GA is referred to as elitism.

It is important to emphasise that GA is non-deterministic: different runs yield
different results depending on the seed of the random number generator. However,
when the problem does not have one single solution, or when different solutions
close to the best one are acceptable, GA is useful and often works better than
traditional methods.

2.2 Related Work

Several 2D–3D registration methods exist in computer vision and its medical appli-
cations. Most of these methods are based on corresponding feature pairs: features
are extracted both from the 3D surface and in the images, and correspondences are
searched for. The simplest features are points [10]. Haider and Kaneko [13] look
for edges both in 2D and in 3D, and define a 3D edge as a set of 3D surface points
which is a 2D edge in the projected space. Stamos et al. [31] localise 2D and 3D
lines and search for correspondences. This method has limited applicability, but
can be useful when the objects are buildings with many line features. Ikeuchi et
al. [17] also use lines and edges to calibrate cameras. The disadvantages of feature-
based methods are that features are often difficult to localise precisely in 3D and,
in addition, defining a similarity function between 2D and 3D features is not easy.

Another approach is to use the contour or the shape of the object to match to
its projection. Hernández [16] defines a silhouette coherence criterion, but he does
not use the 3D model of the object. 3D reconstruction from silhouettes and camera
calibration are accomplished simultaneously. Such methods are more precise than
feature-based methods, but in case of symmetric objects they are completely useless.

Intensity-based techniques can also be applied to align the images to the 3D
model. In order to find correspondences, colour information of image pixels can
be used as well as constraints on the gradient. The method of Umeda et al. [32]
is based on range intensity images. They use a special range sensor that measures
the property of the reflected light. The amount of the reflected light is related to
the reflectance ratio of the measured point, thus the obtained image describes the
reflectance of the object. This image is referred to as range intensity image. Colour
images taken by a camera are registered to the range images by using constraints
on the gradients of the colour images and of the range intensity images.

Viola et al. [33] search for the alignment of a 3D model and an optical image by
maximising their mutual information. They use a geometric transformation that
maps model points to image points, and also use an imaging function describing
lighting conditions, surface properties, and imaging device characteristics. The
registration problem can then be formulated as maximising the mutual information
between the optical image intensities and the surface normal vectors of the model.

Leventon et al. [24] and Clarkson et al. [8] have shown that a registration al-
gorithm based on maximising the mutual information can be improved by using
multiple rather than single images. The algorithm in [8] applies photo-consistency

198 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

to find precise registration of 2D optical images of a human face to a 3D surface
model. It uses calibrated images, thus the problem is reduced to estimating the pose
of the cameras. Our method generalises this approach to the case of uncalibrated
cameras, when both intrinsic and extrinsic parameters are unknown.

Genetic Algorithms in Registration Methods

None of the methods mentioned above use genetic algorithms, since the optimisation
problems they consider are easier and are solved faster by conventional non-linear
iterative strategies. In our case the size of the parameter space and the complexity
of the cost function motivated the use of genetic algorithm-based optimisation.

While the application of genetic algorithms in 2D–3D registration methods has
not been significant so far, several methods use evolutionary techniques to register
3D data or range images. In [29] Renner and Ekárt provide a summary of genetic
algorithms in computer aided design. Jacq and Roux [18] use GAs for registration
of 3D medical images. GAs are also used to register 3D surfaces [5] as well as
range images [7]. In contrast to the 2D–3D registration, numerous methods exist
to precisely register 3D data by iterative algorithms like the Iterative Closest Point
and its variants [6]. Here, the task of GA-based methods is usually to automatically
provide rough pre-registration of the surfaces needed by the iterative methods as
an initial state close to the solution.

3 Genetic Algorithm-Based Optimisation

In section 1 we have formulated the registration problem and introduced the cost
function. In this section the optimisation method is described.

Incorporating domain knowledge always makes GAs more effective. To narrow
the search domain and accelerate the method, it is worth starting the search from
a good initial state. We decided to pre-register the images and the 3D model
manually, since this operation is simple and fast compared to the 3D scanning,
which is also done manually. Our assumption was that the photo-consistency based
registration would make the result more accurate. The tests justify this assumption.

Figure 2 summarises the proposed two-step method. The manual pre-registrati-
on provides the rough estimates P 0

1
and P 0

2
of the projection matrices P1 and P2, re-

spectively. Then P 0

1
and P 0

2
are refined by minimising the photo-consistency based

cost function (1) by a genetic algorithm. Note that each image is pre-registered to
the 3D model separately, while the final precise registration involves simultaneous

registration of both images to the model.

Designing the genetic algorithm for a given problem needs careful consideration.
For general practical advice, the reader is referred to [26]. We use fixed-length vec-
tors of bounded real numbers as representation. The individuals of the population
are chosen from the neighbourhood of the parameter vector obtained by the manual
pre-registration. The individual that encodes the pre-registered parameter vector
is inserted in the initial population to avoid losing it. The values of the genes of the

Registering Images to 3D Surface Model 199

Reg 1 Reg 2

manual

image 1 image 2

,

3D model

3D model

based registration

pre−registration

photo−consistency

image 1 image 2

P1 P2

P2
0P1

0

Figure 2: Block-diagram of proposed method.

remaining individuals are from the intervals defined by the pre-registered values
plus a margin of ±ǫ. In our experiments ǫ was set to values between 1% and 3%,
depending on the meaning and the importance of the corresponding parameter. For
instance, small changes in parameter principal point can yield great deformations
in projection, hence the interval of this parameter is set to ±0.5%, in contrast to
the focal length, where the interval is ±2%. Details of camera parameters will be
discussed in section 4.2.

During the initialisation the individuals are pre-selected: the useless individuals
for which the cost function yields an extreme value are omitted. This prevents
the genetic algorithm from jumping around the search space; since the aim of the
method is to refine the initial state, small changes in the values are sufficient. Never-
theless, we tested the method without this restriction, as well, but the convergence
was slower and the results were worse.

To avoid premature convergence we decided to run the algorithm three times:
the algorithm starts three times from the beginning, preserving only the best indi-
vidual from the previous step and re-initialising the whole population. An iteration
is finished if Ng generations have been created, or if the best of the population has
changed 10 times. (The setting of Ng is discussed later, in section 5.1.)

Our genetic algorithm is shown in Algorithm 1.

4 Implementation Details

We have chosen the GAlib package [34] written by Matthew Wall at the MIT,
to implement our genetic algorithm-based method. For tests we mainly used the
following parameter settings of GA as default: Steady state algorithm, Tournament

200 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

Algorithm 1 Genetic algorithm.

1: BEST ←− manual pre-registration.
2: for i = 1, . . . , 3 do

3: Generate initial population around BEST.
4: BEST ←− best of the population.
5: repeat

6: Calculate cost function values.
7: Apply genetic operators, create new population.
8: BEST ←− best of the population.
9: until (Ng generations created) or (BEST changed 10 times)

10: end for

selector, Swap mutation, Uniform crossover, 250 individuals in the population,
mutation probability 0.1 and crossover probability 0.7.

4.1 Robustness

In registration and correspondence, robustness is a critical issue. Minimising the
cost function (1) is a least-squares method, therefore it is not robust, due to the
inconsistencies produced by outliers, typically, by occluded points. In [8], the visi-
bility is checked by ray tracing, but here we use surface normals for this purpose.
Our implementation is less accurate but much faster, which is more important in
this case. The essence of our algorithm is to discard the point when the scalar
product of the normal vector and the unit vector pointing towards the camera falls
below a threshold. The product is the cosine of the angle between the two vec-
tors. Typically, the threshold is set at 0.5, which discards some mutually visible
points, but still leaves enough points for reliable registration. In computer vision
this method is usually referred to as backface culling.

Backface culling works well when the surface is convex but fails when it is con-
cave. The 3D models we use at registration are reduced to contain only 1000–1500
points, which is usually enough to obtain good result. It means that in most cases
the input 3D models are rough and smooth, and they are nearly convex. However,
it is clear that the trivial method for checking visibility cannot guarantee that all
invisible points will be filtered out. The remaining false points are considered as
outliers, as well as the false inconsistencies caused by texture periodicity or the
object boundary.

To suppress the remaining outliers, the cost function (1) was modified in a robust
manner. Two variants of modification were considered: the Trimmed Squares (TS)
and the α-trimmed mean [28]. Both techniques have a single parameter, α. In TS,
α is the rate of the largest squares which are discarded. In the α-trimmed mean,
both smallest and largest values are rejected: when α is close to 0.5, the median is
used. In our experiments, we used α = 0.2.

In attempts to improve the method, we have tested a few other cost functions.
However, the variance of the colour values [8] or the Modified Normalised Cross

Registering Images to 3D Surface Model 201

Correlation [30] yielded worse results than the robust least-squares described above.
The sizes of our test images are 512× 512 or 1024× 1024. It seemed reasonable

to reduce the size and apply image pyramids for the registration, but the results
did not improve significantly.

4.2 Constraints on the Camera Model

As already mentioned, our original method applied optimisation in the full 22-
dimensional parameter space. The size of the space and the non-smoothness of
the cost function are two critical problems that make the search difficult and time-
consuming despite the restrictions due to the manual pre-registration. To improve
the efficiency of the optimisation process, we impose some reasonable constraints
on the camera model, as suggested in [14].

Note that using the finite projective camera model without camera distortion
is already a constraint which works well in practice. The projection matrix can
be decomposed as P = K [R | −R t], where K is the 3 × 3 camera calibration
matrix and the 3×3 rotation matrix R describes the orientation, the 3-dimensional
translation vector t the location of the camera. The camera calibration matrix can
be expressed in form

K =





αu s −u0

αv −v0

1



 . (2)

Here αu and αv represent the focal length of the camera in terms of pixel dimensions
in the u and v directions of the image plane, respectively, s is the skew parameter
and (u0, v0) is the so-called principal point. For most cameras the skew parameter
is zero. It is also usual to assume that the pixels are squared, that is the ratio of
αu and αv is equal to 1. Thus the camera calibration matrix can be simplified to
the so-called pinhole camera model :

K =





f −u0

f −v0

1



 , (3)

with focal length f .
These simplifications reduce the number of the degrees of freedom from 22 to

18. Although the decrease is not large, in this case every reasonable reduction
is important. Therefore we also applied a commonly used assumption, that the
principal point is close to the image centre. This assumption does not reduce the
number of the parameters, but the search space becomes more restricted.

In the previous sections we did not specify the ǫ values for the intervals of the
genes. Considering the simplifications detailed above, the values we use are the
following:

• focal length: ±2%

• principal point: ±0.5%

202 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

• camera translation: ±3%

• camera rotation: ±1◦.

5 Experiments

5.1 Quantitative Assessment on Semi-Synthetic Data

To quantitatively assess the results, the algorithm was run on semi-synthetic data
with ground truth. We obtain these data by covering the triangular mesh of the
original Shell, Frog and Bear datasets (see Figures 3, 4 and 5) with different tex-
tures. The textures were obtained from the photos of the original objects. Two
views of these objects produced by a visualisation program provide the input images
for which the projection matrices are completely known.

The projection error is measured as follows: the 3D point set P is projected onto
the image planes by both the ground truth and the estimated projection matrices,
and then the average distance between the corresponding image points is calculated.
Formally, if PG

i are the ground truth, Pi the estimated projection matrices, then

E(P1, P2) =
1

2

∑

i=1,2

1

|P|

∑

X∈P

∥

∥PG
i X− PiX

∥

∥ . (4)

By this metric the average error of the manual pre-registration is 18–20 pixels
for the Shell and 12–15 pixels for the Bear and the Frog. Tables 1–8 show the
results of the method executed with different settings. In each case 10 runs were
performed and the mean and the confidence interval were calculated.

Next we show the influence of different colour models and different genetic
settings on the registration.

Colour Models

An important question in the case of methods which compare colours is how to
calculate colour differences, which colour model provides the best result. We have
tested four different models: RGB, XYZ, CIE LAB and CIE LUV. Each model
consists of three components, and colour differences were calculated as the simple
sum of squared differences in the three components. Table 1 shows the results for
the Shell, the Bear and the Frog datasets.

In the literature CIE LUV and CIE LAB are usually used to compare colours,
since the perception of colour difference in RGB and XYZ is highly non-uniform.
Indeed, our tests have shown that uniform models perform slightly better, but
the difference in projection error is not significant. In our experimental data the
illumination changes are small.

Tests were run both on diffuse and specular data. As it is expected, the error
of specular data is significantly greater than that of the diffuse data. This is obvi-
ous, since photo-consistency supposes Lambertian reflection. However, one can see

Registering Images to 3D Surface Model 203

that specular errors do not grow extremely and remain below a reasonable limit,
due to the robustness of the method and the application of geometric constraints
discussed above. If the initial model is relatively good, and consequently geometric
constraints are correct, then registration of a specular dataset is fairly good, see
the Frog in table 1.

Table 1: Projection error using different colour models.

Shell Bear Frog

Col. model Diffuse Specular Diffuse Specular Diffuse Specular

RGB 7.3 ± 0.4 8.8 ± 0.7 7.8 ± 0.5 9.6 ± 0.2 4.6 ± 0.3 5.9 ± 0.4
XYZ 6.7 ± 0.5 11.4±2.2 7.8 ± 0.6 9.3 ± 0.2 4.9 ± 0.3 5.7 ± 0.6

CIE LAB 6.9 ± 0.2 8.9 ± 1.3 6.5 ± 0.5 10.0±0.6 5.2 ± 0.4 6.0 ± 0.3
CIE LUV 6.9 ± 0.5 8.9 ± 1.0 6.7 ± 0.5 9.8 ± 0.5 4.4 ± 0.2 5.7 ± 0.4

Genetic Settings

A number of tests have been carried out to check the effects of different genetic
settings on the registration. First, we tried two different algorithms: the simple GA
of Goldberg [12] and the steady state GA. In the simple GA, we use non-overlapping
populations: in each generation an entirely new population is created by crossover
and mutation. We also use elitism: the best individual is carried over to the next
generation. Elitism is set during all the tests in order to avoid losing good results.

The steady state algorithm is similar to the one described by De Jong [11].
Here, we use overlapping populations with an overlap of 25%. Each generation
a temporary population of individuals is created and added to the previous pop-
ulation. Then the worst individuals are removed to reduce the population to its
original size.

The results shown in table 2 are not surprising: the steady state algorithm
performs better than the simple GA. The difference in speed can be explained by
the termination criterion of the algorithm. As we mentioned above, each iteration
terminates if Ng generations were created or if the best individual of the population
changed 10 times. The steady state algorithm preserves a number of the best
individuals of the population, hence it can create better new individuals than the
simple GA, which preserves only the very best individual. Our tests have shown
that in the case of the steady state algorithm the best individual changed every 4–5
generations, while in the case of the simple GA this number was 10–15. Therefore,
the steady state algorithm terminates much sooner, after fewer iterations.

In the next test three different selectors were tried: roulette wheel selector,
tournament selector and uniform selector (table 3). Roulette wheel selector picks
an individual based on its fitness score relative to the rest of the population. The
higher the score, the more likely an individual will be selected. Tournament se-

lector uses the roulette wheel method to choose two individuals, then picks the

204 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

Table 2: Results of different genetic algorithms.

Projection error Time (min)

Algorithm Shell Bear Frog Shell Bear Frog

Simple 7.4 ± 1.0 6.7 ± 0.4 8.9 ± 1.0 11.1 ± 0.2 7.8 ± 0.3 9.9 ± 0.2
Steady State 6.3 ± 0.8 5.1 ± 0.3 6.6 ± 0.5 6.4 ± 0.3 4.5 ± 0.3 4.7 ± 0.4

one with the higher score. Uniform selector selects each individual with uniform
probability. According to our tests, the non-uniform selectors are slightly better
than the uniform selector; however, the difference is not significant.

Table 3: Results for different selectors.

Projection error Time (min)

Selector Shell Bear Frog Shell Bear Frog

Roul.wheel 6.0 ± 0.7 5.1 ± 0.4 6.6 ± 0.8 6.4 ± 0.3 4.6 ± 0.3 4.8 ± 0.3
Tournament 6.0 ± 0.5 4.6 ± 0.1 6.1 ± 0.8 6.3 ± 0.3 4.5 ± 0.3 4.3 ± 0.3

Uniform 6.7 ± 0.7 4.9 ± 0.4 7.1 ± 0.6 6.6 ± 0.3 4.6 ± 0.3 5.0 ± 0.3

Next we have tested a number of different types of mutation and crossover.
Here we give only a short description of the operators; for details the reader is
referred to [15].

In Gaussian mutation the value of the selected allele is changed by a random
value taken from a Gaussian distribution (and then adjusted to the range). Flip

mutation gives a random value to a randomly chosen allele, considering bounds.
Swap mutation picks two alleles at random and exchanges their values.

In uniform crossover the value of each allele of the offspring is randomly chosen
from the same alleles of the parents. Even-odd crossover considers two operators:
for even crossover, the even alleles of the offspring are taken from one parent and the
odd alleles from the other parent. For odd crossover, the opposite is done. In one-

point crossover the two parents’ codes are cut at a randomly chosen position and
the end-parts of the parents are exchanged to produce two offspring. In two-point

crossover two crossover points are selected at random and the middle part of the
parents’ code is exchanged.

In partial-match crossover a random position is picked. Let us suppose the values
in this position in the two parents are x and y. Then x and y are interchanged
throughout both parents’ code. The operation is repeated several times. In order

crossover about half of the elements of the offspring are picked from one parent,
keeping the order, and the rest from the other parent, also keeping the order. Blend

crossover chooses a new value for the offspring allele in the neighbourhood of parent
values. Suppose x < y, then the value for the offspring is uniformly chosen from
the interval [x− α(y − x), x + α(y − x)]. Arithmetic crossover creates an offspring
“between” the two parents. If x and y are the parental allele values, the offspring

Registering Images to 3D Surface Model 205

will become z = x + (1− α)y where α ∈ [0, 1].

Table 4 shows that different mutations yield very similar error. Flip mutation
is slightly better, swap mutation is slightly faster than the others. In the case of
the crossovers (table 5), blend and arithmetic crossovers perform better than the
others.

Table 4: Results for different types of mutation.

Projection error Time (min)

Mutation Shell Bear Frog Shell Bear Frog

Gaussian 6.4 ± 0.5 4.7 ± 0.3 5.9 ± 0.6 9.8 ± 0.3 6.2 ± 0.4 6.1 ± 0.3
Flip 6.0 ± 0.7 4.7 ± 0.2 5.7 ± 0.5 9.5 ± 0.4 6.2 ± 0.5 6.6 ± 0.6
Swap 6.0 ± 0.6 5.0 ± 0.3 6.4 ± 0.8 6.4 ± 0.3 4.3 ± 0.3 4.3 ± 0.3

Table 5: Results for different types of crossover.

Projection error Time (min)

Crossover Shell Bear Frog Shell Bear Frog

Uniform 6.1 ± 0.7 5.4 ± 0.8 6.6 ± 0.9 6.4 ± 0.4 4.5 ± 0.5 4.4 ± 0.6
Even-Odd 6.4 ± 1.0 5.6 ± 0.7 7.3 ± 1.3 6.2 ± 0.4 4.5 ± 0.5 4.7 ± 0.4
One-Point 6.7 ± 0.8 5.5 ± 0.9 7.0 ± 1.3 6.6 ± 0.4 4.8 ± 0.4 4.9 ± 0.6
Two-Point 6.7 ± 1.2 5.4 ± 0.4 6.6 ± 0.5 6.5 ± 0.5 4.8 ± 0.4 4.5 ± 0.5

Partial-match 8.7 ± 0.8 7.1 ± 1.2 10.0 ± 2.7 3.0 ± 0.1 3.4 ± 0.4 4.0 ± 0.1
Order 8.2 ± 1.0 6.8 ± 0.8 10.5 ± 1.7 3.3 ± 0.4 3.1 ± 0.3 3.1 ± 0.3
Blend 6.1 ± 0.9 4.9 ± 0.4 6.0 ± 0.6 6.4 ± 0.4 4.6 ± 0.6 4.3 ± 0.4

Arithmetic 5.0 ± 0.5 5.5 ± 0.8 4.9 ± 0.4 6.3 ± 0.4 4.6 ± 0.4 4.0 ± 0.4

Table 6 is self-evident. Increasing the population size improves the result and
makes the method slower. The difference in error between populations with 250 or
500 individuals is insignificant, hence setting the size of the population to a vicinity
of 250 is reasonable. On the other hand, convergence is reached somewhere between
100 and 200 generations, so the results do not significantly depend on whether Ng

is set to 100 or 200. Therefore we used 100 generations.

Table 6: Results for different population sizes.

Projection error Time (min)

Pop.size Shell Bear Frog Shell Bear Frog

100 6.8 ± 0.8 6.6 ± 0.8 8.2 ± 1.5 2.5 ± 0.3 1.8 ± 0.3 1.8 ± 0.3
250 6.0 ± 0.5 4.9 ± 0.4 6.1 ± 0.4 6.5 ± 0.5 4.4 ± 0.3 4.2 ± 0.3
500 5.8 ± 0.4 4.6 ± 0.1 6.2 ± 0.5 12.2 ± 0.5 9.2 ± 0.3 8.5 ± 0.6

206 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

The results of tables 7 and 8 are also expected. More frequent mutation increases
the randomness, hereby the error and the duration as well. Having the crossover
probability 0.9 or 0.7 yields almost the same error, however in the case of 0.7 the
method is slightly faster.

Table 7: Results for different mutation probabilities.

Projection error Time (min)

Mut.prob. Shell Bear Frog Shell Bear Frog

0.1 6.0 ± 0.5 4.7 ± 0.2 5.9 ± 0.9 6.3 ± 0.3 4.7 ± 0.3 4.2 ± 0.3
0.3 9.9 ± 2.1 7.1 ± 0.9 9.6 ± 1.4 2.8 ± 0.3 2.9 ± 0.2 3.2 ± 0.3
0.5 9.2 ± 1.9 7.5 ± 1.0 10.4 ± 1.1 2.0 ± 0.1 2.2 ± 0.3 2.7 ± 0.4

Table 8: Results for different crossover probabilities.

Projection error Time (min)

Cross.prob. Shell Bear Frog Shell Bear Frog

0.9 5.8 ± 0.6 4.6 ± 0.2 5.8 ± 0.4 6.4 ± 0.3 4.9 ± 0.2 5.2 ± 0.3
0.7 5.9 ± 0.6 5.1 ± 0.3 6.3 ± 0.6 5.4 ± 0.3 4.5 ± 0.3 4.6 ± 0.3
0.5 6.4 ± 1.0 5.3 ± 0.5 7.4 ± 0.6 4.6 ± 0.3 3.9 ± 0.2 4.0 ± 0.4

Based on these tests we can conclude that one reasonable setting is as follows:
Steady state algorithm with Tournament selector, Flip mutation and Arithmetic
crossover, with 250 individuals in the population, mutation probability 0.1 and
crossover probability 0.7.

5.2 Results for Real Data

To test the efficiency of the method we also applied it to real data. A number of
different datasets were used. Figures 3–7 show the Shell, the Frog, the Bear, the
Cat and the Head datasets as well as the textured 3D models obtained. The Shell
dataset is interesting because of the periodicity in shape and texture. The Frog and
the Head are challenging as their textures are less visible and less characteristic.
The Bear and the Cat have both characteristic shape and texture.

All 3D models were acquired in our laboratory using the ModelMaker [1] laser
scanner, and the images were captured by a digital camera. The 3D models contain
tens of thousands of points, but for registration the set was reduced to 1000–1500
points. We used the algorithm of Kós [22] for this just as for triangulation. The
dimensions of the images are 512× 512 or 1024× 1024.

The precision of the registration can be best judged by looking at the stripes of
the Shell, as well as the mouth, the eyes, the hand and the feet of the Bear and the
Cat. In the case of the Shell both the shape and the texture are periodic, hence

Registering Images to 3D Surface Model 207

precise registration is crucial for photorealism. One can see that the stripes of the
texture are in the appropriate position.

Images 3D model Textured model

Figure 3: Shell dataset and result of registration.

Images 3D model Textured model

Figure 4: Frog dataset and result of registration.

Images 3D model Textured model

Figure 5: Bear dataset and result of registration.

208 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

Images 3D model Textured model

Figure 6: Cat dataset and result of registration.

Images 3D model Textured model

Figure 7: Head dataset and result of registration.

6 Conclusion

In this paper we have presented a method for registering a pair of high-quality
images to a 3D surface model using a genetic algorithm. The registration is per-
formed by minimising a photo-consistency based cost function. The application of
the genetic algorithm is reasonable, since the shape of the cost function is rough and
unpredictable, with multiple minima. The results of previously studied standard
local and global optimisation methods were not acceptable.

The aim of this study was to present the complete method in details. Besides
the description of the optimisation method and the discussion of implementation
details, a number of tests have been carried out to check the effects of different
colour models and different genetic parameter settings on the registration. Differ-
ent settings can lead to significantly different results. The tests were run on three
different objects, by which we mean both different geometry and different textures.
Results show strong analogy, verifying the general validity of the effects of para-
meter settings on the method. The tests have shown that by choosing the best
settings the projection error of the registration can be decreased from 18–20 pixels,

Registering Images to 3D Surface Model 209

which is the average error of the manual pre-registration, to 5–6 pixels for diffuse
and to 8–10 pixels for specular surfaces. Figure 8 visualises the difference between
the manual pre-registration and the photo-consistency based genetic registration.
The quality of registration in the areas of the mouth, the eyes and the ears is visibly
better after the genetic algorithm has been applied. Here again the difference is
essential for photorealism.

Manual Genetic

Figure 8: Difference between manual pre-registration and genetic registration.

Choosing the best parameters for a particular problem requires a lot of ex-
perimentation or some sophisticated method. Studies on parameter control in GAs
mostly consider controlling one aspect of the algorithm at a time and they use some
form of self-adaptation. Michalewicz and Fogel [26] provide a detailed discussion on
tuning the algorithm to the problem. Furthermore, there exist metamodelling tech-
niques like the Response Surface Methodology (RSM) [27] to try out parameters
in a systematic way. RSM uses quantitative data to describe how the parameters
affect the response, to determine the interrelationships among the parameters and
to describe the combined effect of all the parameters on the response. However,
controlling multiple parameters simultaneously is a current research topic in GAs
and is beyond the scope of this paper.

210 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

References

[1] 3D Scanners. Modelmaker. URL: http://www.3dscanners.com/.

[2] Beasley, David, Bull, David R., and Martin, Ralph R. An overview of genetic
algorithms: Part 1, fundamentals. University Computing, 15(2):58–69, 1993.

[3] Beasley, David, Bull, David R., and Martin, Ralph R. An overview of genetic
algorithms: Part 2, research topics. University Computing, 15(4):170–181,
1993.

[4] Bernardini, Fausto, Martin, Ioana M., and Rushmeier, Holly. High-quality tex-
ture reconstruction from multiple scans. IEEE Transactions on Visualization

and Computer Graphics, 07(4):318–332, 2001.

[5] Brunnström, K. and Stoddart, AJ. Genetic algorithms for free-form surface
matching. In Proc. 13th International Conference on Pattern Recognition,
volume 4, pages 689–693, 1996.

[6] Chetverikov, Dmitry, Stepanov, Dmitry, and Krsek, Pavel. Robust euclidean
alignment of 3D point sets: the trimmed iterative closest point algorithm.
Image and Vision Computing, 23(3):299–309, 2005.

[7] Chow, Chi Kin, Tsui, Hung Tat, and Lee, Tong. Surface registration using a
dynamic genetic algorithm. Pattern Recognition, 37:105–117, 2004.

[8] Clarkson, Matthew J., Rueckert, Daniel, Hill, Derek L.G., and Hawkes,
David J. Using photo-consistency to register 2D optical images of the hu-
man face to a 3D surface model. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 23:1266–1280, 2001.

[9] Csendes, T. Nonlinear parameter estimation by global optimization – Effi-
ciency and Reliability. Acta Cybernetica, 8:361–370, 1988.

[10] David, Philip, DeMenthon, Daniel, Duraiswami, Ramani, and Samet, Hanan.
SoftPOSIT: Simultaneous pose and correspondence determination. In Proc.

7th European Conference on Computer Vision, pages 698–714, 2002.

[11] De Jong, Kenneth Alan. An analysis of the behavior of a class of genetic

adaptive systems. PhD thesis, University of Michigan, 1975.

[12] Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.

[13] Haider, Ali Md. and Kaneko, Toyohisa. Automated 3D–2D projective regis-
tration of human facial images using edge features. International Journal of

Pattern Recognition and Artificial Intelligence, 15(8):1263–1276, 2001.

[14] Hartley, R. and Zisserman, A. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

Registering Images to 3D Surface Model 211

[15] Haupt, Randy L. and Haupt, Sue Ellen. Practical Genetic Algorithms. Wiley-
Interscience, 2004.

[16] Hernández, Carlos. Stereo and Silhouette Fusion for 3D Object Modeling from

Uncalibrated Images Under Circular Motion. PhD thesis, Ecole Nationale
Supérieure des Télécommunications, 2004.

[17] Ikeuchi, Katsushi, Nakazawa, Atsushi, Hasegawa, Kazuhide, and Ohishi,
Takeshi. The great Buddha project: Modeling cultural heritage for VR systems
through observation. In Proc. IEEE ISMAR03, 2003.

[18] Jacq, JJ. and Roux, C. Registration of 3D images by genetic optimization.
Pattern Recognition Letters, 16:823–841, 1995.

[19] Jankó, Zsolt and Chetverikov, Dmitry. Photo-consistency based registration
of an uncalibrated image pair to a 3D surface model using genetic algorithm.
In Proc. 2nd International Symposium on 3D Data Processing, Visualization

& Transmission, pages 616–622, 2004.

[20] Jankó, Zsolt and Chetverikov, Dmitry. Registration of an uncalibrated image
pair to a 3D surface model. In Proc. 17th International Conference on Pattern

Recognition, volume 2, pages 208–211, 2004.

[21] Jankó, Zsolt, Chetverikov, Dmitry, and Ekárt, Anikó. Using a genetic algo-
rithm to register an uncalibrated image pair to a 3D surface model. Interna-

tional Journal of Engineering Applications of Artificial Intelligence, 19:269–
276, 2006.

[22] Kós, Géza. An algorithm to triangulate surfaces in 3D using unorganised point
clouds. Computing Suppl., 14:219–232, 2001.

[23] Kutulakos, K.N. and Seitz, S.M. A Theory of Shape by Space Carving. Prentice
Hall, 1993.

[24] Leventon, M.E., Wells III, W.M., and Grimson, W.E.L. Multiple view 2D-3D
mutual information registration. In Proc. Image Understanding Workshop,
1997.

[25] M. Levoy et al. The digital Michelangelo project. ACM Computer Graphics

Proceedings, SIGGRAPH, pages 131–144, 2000.

[26] Michalewicz, Zbigniew and Fogel, David B. How to Solve It: Modern Heuris-

tics. Springer, 2002.

[27] Myers, Raymond H. and Montgomery, Douglas C. Response Surface Method-

ology. John Wiley & Sons, Inc., 1995.

[28] Pitas, I. Digital Image Processing Algorithms. Prentice Hall, 1993.

212 Zsolt Jankó, Dmitry Chetverikov and Anikó Ekárt

[29] Renner, Gábor and Ekárt, Anikó. Genetic algorithms in computer aided de-
sign. Computer Aided Design, 35:709–726, 2003.

[30] Sara, Radim. Finding the largest unambiguous component of stereo matching.
In Proc. 7th European Conference on Computer Vision, volume 2, pages 900–
914, 2002.

[31] Stamos, Ioannis and Allen, Peter K. Geometry and texture recovery of scenes
of large scale. Computer Vision and Image Understanding, 88(2):94–118, 2002.

[32] Umeda, Kazunori, Godin, Guy, and Rioux, Marc. Registration of range and
color images using gradient constraints and range intensity images. In Proc.

17th International Conference on Pattern Recognition, volume 3, pages 12–15,
2004.

[33] Viola, Paul and Wells III, William M. Alignment by maximization of mutual
information. International Journal of Computer Vision, 24(2):137–154, 1997.

[34] Matthew Wall. The GAlib genetic algorithm package.

URL: http://lancet.mit.edu/ga, 2003.

[35] Yemez, Y. and Schmitt, F. 3D reconstruction of real objects with high resolu-
tion shape and texture. Image and Vision Computing, 22:1137–1153, 2004.

