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Abstract

This article outlines a new model of general ontology that draws signif-
icantly on the results of contemporary philosophy and cognitive science. It
combines ideas from Gärdenfors’s Conceptual Spaces Model and Edmund
Husserl’s philosophical insights concerning ontology and dependency. We put
forth a possible architecture for general ontologies based on a “horizontal”
(dependency-based) and a “vertical” (abstraction-based) arrangement of the
concepts in the ontology.
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1 Introduction

According to Thomas Gruber’s oft-cited slogan, an ontology is “an explicit, formal
specification of a conceptualization” which is mutually accepted by the communi-
cating agents [4]. While this characterization can be met relatively easily in the
case of narrow-scope domain ontologies, large-scale general ontologies pose special
problems. In particular, in the case of general ontologies:

• What is meant by “mutual acceptance”?

• What is meant by “conceptualization”?

• How should “an explicit, formal specification” of a general ontology be con-
strued?
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The structure of the paper is as follows. In Section 2 we describe Peter
Gärdenfors’s Conceptual Spaces Model, which we hope provides a putative answer
to the first two questions above. The rest of the paper is devoted to answering the
third question. In Section 3 we enlist a set of meta-properties and a distinguished
relation (called dependency) which is inspired by Edmund Husserl’s seminal work,
on the basis of which a general ontology can be organized. We also give a concrete
example as an illustration. In Section 4 we briefly discuss some questions per-
taining to the particular choice of ontology description language (more specifically,
AVM’s or DL’s). Finally, Section 5 provides a short summary of the paper.

2 The Conceptual Spaces model

In the case of general ontologies, mutual acceptance is guaranteed by the high
degree of similarity between the cognitive structures of different members of the
human kind. Therefore we may turn to the cognitive sciences for a theory of
such structures. A recent and quickly developing branch of cognitive science has
abandoned those mechanisms that only assume purely symbolic representations;
instead, it operates on broader assumptions that fully acknowledge the importance
of the spatial element in human reasoning. This approach is eminently exemplified
in the Conceptual Spaces model, developed by Peter Gärdenfors in, for instance,
[3], whose philosophical forerunner is Robert Stalnaker’s [10]. Stalnaker’s goal was
to work out an alternative foundation of modal logic. According to Stalnaker, any
entity, whether actual or possible, can be represented as a vector in an abstract
space whose dimensions are the independent properties that can be predicated of
the entity. For example, a particular red ball b with a radius of 3 cm may be
localized in a two dimensional space one of whose dimensions consists of all the
possible colors and the other one consists of all the possible radii. In this space b

is identified as being at the tip of a position vector whose projection on the color
dimension falls in red and its projection on the size dimension falls on the value of
3 cm. It is easy to see that in this space each and every position vector determines
a possible object — a concrete ball with a particular color and size. This simple
example also shows the connection of the model with the traditional symbol-based
approach. For instance, the complex property (concept) “to be a red ball with
a radius of less than 4 cm” will be represented as a set of points P in this two
dimensional space, and the proposition that b has this property simply translates
into checking whether the position vector of b ends in region P or not. Similarly,
to the concept “to be a red ball with some radius” there belongs a region P ′ ⊇ P ,
and the relationship between the two regions further makes it possible to establish
the inference that any red ball with a radius less than 4 cm is a red ball as well.
This approach has other forerunners in philosophy beside Stalnaker’s. The theory,
according to which any physical entity can be seen as the collection of its properties,
is known in the history of philosophy as trope theory [9]. The tropes of a particular
entity are those “pieces of property” that belong to it at a particular point in time;
for example, the specific color of a particular rose at a particular time. Since the
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same trope cannot belong to different objects, the fact that two roses are exactly of
the same color may be expressed by saying that the color tropes belonging to the
roses are perfectly similar (without being identical). In the present approach we
take tropes to be primitive entities, the bundles of which make up complex objects
(e.g., physical objects). (In this we are following the DOLCE Ontology [8].)

Gärdenfors builds his theory on the philosophical base described above. But he
also wants to put empirical content into Stalnaker’s ideas. According to Gärdenfors,
the inherent organizing principle within the particular dimensions is similarity,
that is, the more similar two properties, say, shades of color, are, the closer they
are located in the color dimension. He also proposed a method resembling factor
analysis for identifying the set of relevant dimensions (see [3] for details). However,
in the project we mentioned at the beginning, we chose to identify the relevant
dimensions manually, since our task was to organize various lexical material (several
word-meanings) in a coherent way, so we could borrow the methods of componential
semantics (see e.g. [7]).

Gärdenfors, following Stalnaker, identifies concepts with regions in the concep-
tual space. On the basis of similarity as the main organizing principle of cognitive
dimensions he is able to derive some very general features of human cognition con-
cerning, e.g., learnability, but since that issue is beyond the scope of the present
article, we refer the interested reader to the works cited above.

It is an important fact concerning dimensions that their values are linearly
ordered. Strictly speaking, this is not a necessary condition (certain dimensions
might have a different structure), but more often than not they are indeed linear,
so we adhered to this assumption in our work.

While our theoretical commitments are similar to those of the DOLCE ontology,
there are important differences. For example, whereas DOLCE is primarily a theory
of top level categories, we are equally interested in lower level concept descriptions.
Because of this, we had to find answers to questions that the writers of DOLCE
did not have to face.

3 The structure of a general ontology

A general ontology is a description of the various connections between general
concepts, that is, a system of concepts. A system of concepts is, therefore, a
relational structure over the set of the concepts involved. These relations can be
sorted in two broad types: the horizontal and the vertical. Let us start with the
former.

3.1 Horizontal organization

Under horizontal organization we mean the necessary (essential) connections, or
dependency relations, to be more accurate, between the various types of entities
that concepts of the ontology denote. For example, such is the fact that for any
instance of color there corresponds a particular instance of surface on which it ap-
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pears. An instance of color depends on an instance of surface in the sense that it
could not manifest itself without the latter. This also means that this relation is
necessary: each instance of color necessarily involves the existence of a correspond-
ing instance of surface. This example also illustrates the fact that dependency
relations need not be asymmetric, since one could also argue that an instance of
surface also necessarily implies the existence of an instance of color. An example
in which symmetry obviously does not hold is the following: each event of wedding
essentially depends on the existence of a bride, while the dependency naturally
does not hold the other way round (a bride can exist without ever participating in
a wedding). Relations like this exemplify the highest level of connections between
concepts, which are conceptually necessary, and thus do not tolerate exceptions.
These, therefore, form the most general layer of ontology. This approach to ontol-
ogy is traditionally attributed to Edmund Husserl [5], and there have been recent
attempts at laying the dependency relation on stricter, mathematical foundations,
notably by Kit Fine [2]. In the sequel, however, we are going to follow a simpler
method, which is more suitable for our goals, than Fine’s formalism.

3.1.1 A formal characterization of the dependency relation

It would be beyond the scope of this article to attempt an exhaustive characteri-
zation of the dependency relation. In what follows, therefore, we will only put a
necessary condition on this type of relation, which is meant to filter out at least
some of the relations that are not dependency relations. Let A,B be two arbitrary
types of the ontology (e.g., the concepts of surface and of color). If R is a depen-
dency relation between A and B, then R has to observe the following condition:

�∀x(x instanceOf A → ∃!y(y instanceOf B ∧ R(x, y))). (1)

In words: it is necessary that for any instance x of A, there exists exactly one
instance y of B, such that x is in relation R with y. (This basically means that R is
necessarily a function from A to B.) In natural languages dependency relations are
often expressed by the genitive case (e.g., color of, shape of etc.), but —as shown
by the example of the wedding —this is more of a tendency than a rule.

The conceptual and intensional character of the meta-predicate “dependency”
is guaranteed by the presence of the ‘�’ (the necessity operator). Thereby, given
that there are various degrees of necessity, we arrive at dependency relations of
different strength. In the case of the connection between color and surface above,
we saw an example of the so-called metaphysical necessity. This type of necessity is
extremely strong, almost of logical strength. Let us now consider a weaker type of
necessity and the dependency relation based on it: if, for instance, � is construed
as “it is necessary according to the laws of biology that”, and A is identified as the
type of man and B as the type of woman, then

�∀x(x instanceOf man → ∃!y(y instanceOf woman∧mother-of(x, y)))

will be true, whereas

�∀x(x instanceOf man → ∃!y(y instanceOf woman∧ sibling-of(x, y)))
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will be false. In other words, the mother-of relation may be a dependency relation
between the types of man and woman (since it is biologically necessary that every
man has a mother), while the sibling-of may not be one, since it is not biologically
necessary for a man to have a sister. The moral of the example is that using ‘�’-es
of various strength, we arrive at different degrees of dependency, which renders it
possible to have a smooth transition from the most general conceptual structures
to the more specific ones, which apply within the domains of different professions.

It should be noted that if R is chosen to be the identity relation, then the
resulting

�∀x(x instanceOf A → ∃!y(y instanceOf B ∧ x = y)) ⇐⇒

�∀x(x instanceOf A → ∃!y(x instanceOf B)) ⇐⇒

�∀x(x instanceOf A → x instanceOf B)

formula is the familiar generic (isa) relation between A and B. Indeed, identity may
be seen as a trivial form of dependency, because any entity tautologically depends
on itself.

From the foregoing discussion, lessons relating to the formal specification can
also be drawn: we need a sufficiently strong graph description language to describe
dependency relations. In order to decrease the strength of the language used for
describing the various types, information relating to possible circular or symmet-
ric dependencies is distributed throughout the whole of the ontology, rather than
packed in just the given concept descriptions. Thereby, although particular concept
descriptions are formalized with DAG’s (directed acyclic graphs), potential circular
dependencies can be restored through comparing information stored in the different
concept descriptions of the ontology. In the examples below, we will be using AVM’s
(Attribute–Value Matrices) to describe DAG’s, but it should be noted that research
is currently being conducted to determine the appropriate language (primarily in
the area of Description Logics [1], see Section 4). Nodes representing particular
types will thus correspond to matrices and eventually values (variables, tropes or
even whole regions of dimensions), while edges will correspond to attributes. An
attribute–value pair Ai–Vj in the matrix of a given type T is interpreted as the
necessary existential implication discussed above stating that there is exactly one
value of type Vj belonging to T such that it is in relation Ai to it.

3.2 Essential and contingent properties

Dependency relations belonging to a given type include necessary constraints per-
taining to the individuals of the relevant type. For instance, no event can ever be

an instance of wedding unless an actual instantiation of the bride’s role by someone
can be identified.

Our knowledge about reality, however, can be grouped into two classes. One
class comprises the above-mentioned a priori (conceptually necessary) connections,
while the other one includes a posteriori, or contingent connections. A priori, or
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necessary connections belong to the net that — according to Wittgenstein1 —we
lay upon reality in order to be able to manage the originally formless “mass”. The
laws of this net are, therefore, the laws of language and logic. However, what
actually fills the meshes of the net depends on the characteristics of actual reality,
and is therefore contingent. A general ontology should also be able to depict the
contingencies characterizing our world.

Traditionally, the necessary properties (features) of individuals are called essen-
tial properties, and have already been discussed extensively above. Essential and
contingent traits, however, are of course linked. For example, the fact that there
is always some actual color belonging to every actual surface (in the macro-sized
world) is necessarily true, but this statement, naturally, does not specify that this
color be, for instance, red. Which color the given surface will actually possess will
depend on the contingent properties of reality. Similarly, it can be essential for
an individual belonging to a certain type that the value of one of its properties
fall into a given interval, while which value it specifically possesses, may be solely
contingent.

Using our general concepts, the meshes of the “purely a priori net” can be
divided into smaller units. In these smaller “compartments”, various types of ex-
perience may possibly be present. Experience, however, cannot contradict the
“geometry of the net”, which is defined in the a priori statements, but it can con-
tain elements, though, that characterize with a substantial probability the objects
to be found in the given mesh of the net. These empirical generalizations that are
allowed to make an exception render us capable of making default inferences, which
can, of course, be “contradicted” by actual instances. Such a generalization with
only default force is called a proprium in the present study. Below, we are going to
elaborate on this and other concepts relating to contingency.2

3.3 Contingent properties

Contingent properties can be subdivided according to how stably they characterize
a certain object in time. First let us define the class of contingent properties in
general (accidences), then we will proceed to the definition of proprium and phase,
its subclasses.

Accidence A property A is accidental in c, if c possesses A, but not necessarily
so; in other words, if it possible for c to exist but not possess A.

During the existence of the entity c, there may be periods when it does not possess
A. There need not, however, be such periods. c might possess A during all of its

1“Although the spots in our picture are geometrical figures, nevertheless geometry can obvi-
ously say nothing at all about their actual form and position. The network, however, is purely
geometrical; all its properties can be given a priori. Laws like the principle of sufficient reason,
etc. are about the net and not about what the net describes.” (Tractatus Logico-Philosophicus:
6.35.)

2The terms “concept” and “type” will henceforth be treated as synonyms— allowing for some
sloppiness.



Outlines of a Model of General Ontology 347

existence by chance without it being necessarily and inevitably the case that it has

to be so. This justifies introducing the concept below.

Proprium A property P is a proprium of c at t, if it characterizes c during all or
most of the moments of its existence up to t, but is not an essential property
of c.

Whether a property P characterizes c as a proprium cannot be decided based solely
on the present temporal slice of c, but only by taking all of c’s history (up till now)
into consideration. A proprium is an inductive generalization based on the history
of c (“c has so far been mostly characterized by P”). Consequently, c may be
lacking the property P at a given moment without P ceasing to be a proprium of
c. If, on the other hand, c has been lacking P during most of its history, P is not
a proprium of c.

The difference between an essential property and a proprium is the difference
between the necessary and the probable, and — accordingly — while an essential at-
tribute does not tolerate exceptions in time, a proprium does so to a certain extent.
“Proprium” therefore, is an umbrella term for trend-like properties characterizing
an entity persistently but not necessarily. Features that characterize an entity only
briefly and temporarily, during a small stretch of time, form the subject of the next
subsection.

3.3.1 Phase

The term “phase” is a back-formation of “phase space” known from physics. The
phase- or state space consists of dimensions called “degrees of freedom”, in which
all the possible states of a system are represented such that for every possible state
of the system there is exactly one point corresponding to it in the phase space. A
not at all far-fetched analogy can be drawn between this concept and Gärdenfors’s
concept of cognitive space, in that the degrees of freedom of the system correspond
to the dimensions of the cognitive space. The analogy is as follows.

The degrees of freedom of a system correspond to the properties that can in
principle be predicated of the entity. If we project the trajectory covered by the
system during its existence on the relevant degrees of freedom, the projections
which the system cannot possibly leave correspond to the the range of its essential
properties. Projections of the trajectory covered by the system during its existence
up to t, in which the system resides “most of the time during the temporal interval
from the coming into existence of c to t”, correspond to propria. Finally, states
which the system occupies at a given moment correspond in ontology to what we
have called phases in the present paper:

Phase The properties F that an entity c possesses at a given time are called c’s
phases.
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The relationship of the above meta-concepts are illustrated in the table below.

stable in time instable in time

necessary Essence —
not necessary Proprium Phase

In the foregoing discussion, the terms “proprium” and “phase” were defined as
applying to individual entities. However, drawing on this, analogous definitions can
be established for types. A proprium of a given type, for example, can be thought of
as all those properties that are (individual) propria of most of the actual instances
belonging to the relevant type. Similarly, the concept of a phase could be extended
to types, but since the value for use of this concept is rather limited, this extension
will be omitted here.

3.4 Vertical organization: three levels

Based on the distinctions drawn up above, three levels of the concept nodes in the
ontology can be distinguished vertically (going downwards):

level name components

I. Essential concepts essences
II. General concepts essences and propria
III. Individual concepts essences, propria and phases

3.4.1 Level I. (essential) concepts

These describe the characteristics of the “linguistic–logical net”, and are, therefore,
a priori. Relations defined by these are deemed necessary; in other words, we adhere
to their truth irrespective of what form reality is taking. An example for such
a constraint is that (macro-)physical entities —beside numerous other necessary
attributes — possess a surface and mass:

physical-entity















.

.

.

surface ⊠

mass ⊠

.

.

.















This can be interpreted in the following way: For any instance of the concept of
physical-entity, there corresponds some instance of the concept of surface,
some instance of the concept of mass etc. The actual value of the type assigned
to it by the dependency relation cannot be specified at this point, of course, since
that is contingent.

In the same way, we know a priori that a surface necessarily has a color, shape
and extent (and the list may include further elements):
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surface





















.

.

.

color ⊠

shape ⊠

extent ⊠

.

.

.





















In other words, to any instance of the concept of surface, we can assign an instance
of color, an instance of shape, an instance of extent etc. Obviously, necessarily
obligatory features of a necessarily obligatory feature are also necessarily obligatory:

physical-entity









































.

.

.

surface





















.

.

.

color ⊠

shape ⊠

extent ⊠

.

.

.





















mass ⊠

.

.

.









































All of the above are level I. concepts, since they only include purely modally nec-
essary relationships.

3.4.2 Level II. (general) concepts

An example for a general concept is the concept of “cat”. The description of a
general concept comprises two kinds of information:

1. essential information

2. contingent information

A general concept rigidly inherits all essential information from level I. concepts
above it. For example, every instance of the concept of “cat” is a physical entity,
hence, the concept of cat—or to put it more accurately —the description assigned
to the node belonging to the general concept of cat will include everything that
necessarily characterizes physical entities. At the same time, a general concept
may include further essences, as well —for example, that the body temperature
of a cat cannot be 15000◦C; this we know for sure without there being any need
for performing experiments to that effect. It is easy to see at this point, though,
that what we are dealing with is a weaker —biological — kind of necessity, since
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it is not in itself logically contradictory to assume that a cat remains a cat even
at 15000◦C, whereas it is contradictory to hold this based on our knowledge of
biology. That we still wish to regard this as essential information is justified by the
fact that common-sense (and presumably, scientific) thinking both deem a creature
functioning at 15000◦C impossible. We will thus consider it an essential feature of
cat that its body-temperature should fall between 35.0◦C and 42.0◦C, because
should it leave this range, it will cease to exist.3

Contingent information characterizes most of the instances, but conceivably
not all of them. A piece of information like that is the fact that the body-

temperature of cat takes its value from the value range 39.0 ± 0.2◦C, given
that the body temperature of the majority of cats falls into this range at almost
every moment, which makes it a proprium. A proprium is not necessary in any
respect, being merely a result of a generalization based on the actual instances of
the concept, which means that a proprium can never contradict a constraint that
is regarded essential.

Propria of general concepts are not necessarily generalizations based on a single
person’s own experience, but rather codify the accumulated experience of (the pro-
fessionals of) a community. Through the mediation of culture, however, community-
level experience relating to the various types of being are built into the concep-
tual representations of each person as contingent —but very probable — world-
knowledge.

Since propria assigned to general concepts are not a priori necessities, they are
subject to default inheritance between nodes. For example, although the body-

temperature of cat ranges between 39.0±0.2◦C, that of the angora-cat ranges
between 39.5 ± 0.1◦C.4

3This information is inherited by cat from mammal in a more elaborate version of this example.
4The data, of course, only serve illustrative purposes.
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cat




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
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surface





















.

.

.

color · · ·

shape · · ·

extent · · ·

.

.

.





















mass ≤ 20.0 kg

body-temperature 35.0 ≤ T ≤ 42.0◦C

.

.

.
















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




















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(

proprium

)















.

.

.

mass 3.5 ≤ m ≤ 4.5 kg

body-temperature 39.0 ± 0.2◦C

.

.
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




























































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















3.4.3 Level III. (individual) concepts

An individual concept describes a specific individual, for instance, a specific cat,
say, Felix. The essential features of the individual concept Felix will be the most
specific essential features of the concepts above it, which it cannot overwrite.

Propria attributed to Felix are double-layered : part of them is inherited with
default inheritance from the general concept immediately above it5, and the rest
of them are propria that are individual propria, characterizing only Felix. For
example, if Felix spends most of his time on the mat in front of the door, then this
will be an individual proprium characterizing his individual concept — but not the
general concept of cat.

Finally, Felix might be in specific phases, as well, and the values for these
phases can contradict both his individual propria and his general propria. Phases,
however, can even become individual propria of Felix with time (and if it happens
for a substantial amount of cats, a proprium assigned to the general concept of cat
may also undergo change). According to the description below, for example, at
14:00, Felix was lying in his litter with a fever —based on his body-temperature.

5Thus Felix may overwrite these general propria.
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Felix
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4 A possible formalization

As can be seen from the previous discussion, our model of ontology builds basically
on graphs. Consequently, the ontology can be described using a graph description
language. In our preliminary work at describing concepts of common sense, we
began using AVM, which are a common tool in linguistics. However, this choice is,
as yet, arbitrary, and basically any graph description language would be suitable.

An issue that can be raised is how our chosen language (in this case, AVM’s)
relates to description logics —a common tool used in ontologies.

Comparing DL and our model, one issue that arises is that while even the most
basic Description Logics include the negation or complement operator, implement-
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ing negation is not so straightforward in our model. AVM’s used in linguistics
usually prohibit negation and disjunction (however, see e.g., [6], [11]), and it may
be argued that these operators are not needed when creating common-sense on-
tologies.

Another difference that sets our model and DL apart is that Description Log-
ics that do not use role chains have a considerable deficiency in describing some
complex concepts that make reference to the token identity of two concepts stand-
ing in a certain relation to the given concept. To give a very simple example, the
mother-in-law of a man is identical to the mother of his wife. This can only be
translated to a DL if it includes role-value-maps and the concept agreement op-
erator (cf. [1]). However, these versions of DL are only decidable if they restrict
the roles in the role-value-maps to functional roles. (RF is a functional role iff
{(a, b), (a, c)} ⊆ RF → b = c.) Models using AVM’s usually assume attributes
to be functional attributes, but when building an ontology, this restriction may
cause some problems. The generic and mereological relations can hardly be de-
fined as functions, and the description of some domains could easily need some
non-functional relations as well.

On the other hand, the generic and mereological relations are special relations
that have a distinguished role in ontologies, not to mention the fact that the generic
relation is not part of the description language, but is a second-order relation be-
tween concepts.

The issue of formalization, as can be seen, is not yet fully resolved, and further
research is necessary in this area. Currently, AVM’s seem a suitable candidate for
the role of representing dependency relations in general.

5 Summary

In this study, we have — rather roughly —presented an architecture for a general
ontology. The central concept of this architecture is the dependency relation be-
tween types and the dependency graph representing it. Type relations like this con-
stitute the horizontal structure of the ontology. The highest and most abstract level
of the vertical organization of ontology comprises descriptions of “strong”, logical–
metaphysical kinds of dependencies. These graphs define few, but very general
constraints on possible beings without tolerating exceptions. Weaker (“profession-
dependent”) modalities, as well as propria characterizing a given type in our world
appear on the next level. Finally, on the level of individual concepts, values that
have so far been underspecified will receive specification.
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