
Acta Cybernetica 18 (2008) 427–450.

Pebble Alternating Tree-Walking Automata and

Their Recognizing Power∗

Loránd Muzamel
†

Abstract

Pebble tree-walking automata with alternation were first investigated by
Milo, Suciu and Vianu (2003), who showed that tree languages recognized by
these devices are exactly the regular tree languages. We strengthen this by
proving the same result for pebble automata with “strong pebble handling”
which means that pebbles can be lifted independently of the position of the
reading head and without moving the reading head. Then we make a com-
parison among some restricted versions of these automata. We will show that
the deterministic and non-looping pebble alternating tree-walking automata
are strictly less powerful than their nondeterministic counterparts, i.e., they
do not recognize all the regular tree languages. Moreover, there is a proper
hierarchy of recognizing capacity of deterministic and non-looping n-pebble
alternating tree-walking automata with respect to the number of pebbles,
i.e., for each n ≥ 0, deterministic and non-looping (n + 1)-pebble alternating
tree-walking automata are more powerful than their n-pebble counterparts.

1 Introduction

The concept of a tree-walking automaton (twa) was introduced in [1] for mod-
eling the syntax-directed translation from strings to strings. A twa A, obeying
its state-behaviour, walks on the edges of the input tree s and accepts s if the
(only) accepting state qyes is accessed. Every tree language recognized by a twa
is regular. It was an open problem for more than 30 years whether twa can be
determinized or whether twa can recognize all regular tree languages. The answer
for these two questions were provided in [4] and [3] saying that (1) twa cannot
be determinized and (2) twa do not recognize all regular tree languages. Hence
dTWA ⊂ TWA ⊂ REG , where dTWA and TWA denote the tree language classes
recognized by deterministic twa and twa, respectively, and REG is the class of
regular tree languages.

∗Research of the author was partially supported by German Research Foundation (DFG) under
GrantGK 334/3 during his stay in the period February-April 2005 at TU Dresden, and also was
supported by the Hungarian Scientific Foundation (OTKA) under Grant T 030084.

†Department of Computer Science, University of Szeged, Árpád tér 2., H-6720 Szeged, Hungary,
E-mail: muzamel@inf.u-szeged.hu

428 Loránd Muzamel

The generalization of twa with nested pebbles came recently, by two independent
motivations: On the one hand, with the advancement of XML theory, finite state
recognizers (with name n-pebble tree automata) were used in [21] to show that the
XML typechecking problem is decidable. On the other hand, the concept of n-
pebble tree-walking automata (n-ptwa) were defined in [9] to recognize first-order
logic on trees. Later, in [10] n-ptwa were extended with a more general pebble
handling. In the present paper we will consider tree recognizers along the line of
[10].

An n-ptwa A is equipped with a pointer (or reading head), and n different
pebbles, which are denoted by 1, . . . , n. The pointer of A walks on the edges of an
input tree s, while the pebbles can be dropped at and lifted from a node of s in a
stack-like fashion which means the following:

Dropping of pebbles: If there are l < n pebbles on s, then pebble l + 1 can
be dropped at the node pointed by the pointer.

Lifting of pebbles: There are two different approaches.

weak pebble handling: If there are l > 0 pebbles on s, then pebble l can be
lifted iff it is placed at the node pointed by the pointer.

strong pebble handling: If there are l > 0 pebbles on s, then pebble l can be
lifted independently of the position of the pointer.

The automaton A computes on s as follows. Initially, A is in the initial state
q0, its pointer points to the root of s, and no pebbles are placed on s. Then –
applying its rules – A moves along the edges of the input tree, drops, and lifts
pebbles in a stack-like fashion (with strong or weak pebble handling, depending on
the definition). Each step depends on (1) the current state, (2) the presence of the
pebbles on the input tree, and (3) the position of the pointer. A accepts s, if the
(only) accepting state qyes is accessed. Otherwise, A rejects s. We say that L is
the tree language recognized by A, if L contains exactly the trees accepted by A.

Originally, the n-ptwa was defined in [9] with weak pebble handling. In the the
present paper we are interested in the more general strong pebble handling, which
was used in [10, 22, 5].

In [10] it was proved that tree languages recognized by ptwa are regular. In [5] it
was shown that there is a proper hierarchy of the recognizing power of n-ptwa with
respect to n, moreover, there is a regular tree language which cannot be recognized
by any ptwa. Formally,

TWA ⊂ 1-PTWA ⊂ 2-PTWA ⊂ . . . ⊂ PTWA ⊂ REG ,
where n-PTWA denotes the class of tree languages recognized by n-ptwa, for

n ≥ 0, and PTWA =
⋃

n≥0 n-PTWA.
It was also an interesting and surprising result of [5] that ptwa with strong peb-

ble handling have the same recognizing power as those with weak pebble handling.
Alternation was introduced in [7] as a natural generalization of nondetermin-

ism for Turing machines, finite automata, and pushdown automata. Due to the
generality of the concept, it is obvious how to define alternation for other types of
sequential automata. For various kinds of (sequential) tree automata, alternation

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 429

was first investigated in [23]. In [10] it was left as an open problem, whether the
tree languages recognized by n-ptwa with alternation and strong pebble handling
are regular or not.

In the remainder of this paper we will consider pebble tree-walking devices only
with strong pebble handling. Moreover, the definition of n-patwa in the present
paper will follow the line of the definition of n-pebble tree transducers of [11].

A computation of an n-pebble alternating tree-walking automaton (n-patwa) A
on an input tree s starts in the initial state with the pointer at the root node, and
there are no pebbles on s. Depending on the applicable rules it generates new par-
allel computations (such that each has its own copy of s with the current position of
the pointer, and the pebbles). The automaton A accepts s if all the computations
spawned from the initial configuration terminate in the (only) accepting state qyes .
We say that L is the tree language recognized by A if L contains exactly the trees
accepted by A. In case n = 0, we write alternating tree-walking automaton (atwa)
for 0-patwa. We denote the tree language class recognized by n-patwa, determin-
istic n-patwa, atwa, and deterministic atwa by n-PATWA, n-dPATWA, ATWA,
and dATWA, respectively. The unions

⋃

n≥0 n-PATWA and
⋃

n≥0 n-dPATWA are
denoted by PATWA and dPATWA, respectively.

As main result of this paper, we answer the open problem raised at page 18
of [10] and prove that for all n ≥ 0, n-patwa recognize exactly the regular tree
languages, i.e., n-PATWA = REG .

Roughly speaking, an n-patwa A is looping if there is an input tree s such that
one of the computations of A on s gets into an infinite loop. Otherwise A is non-
looping. We denote the non-looping version of the above tree language classes by
subscripting an ‘nl’ to their names e.g. dTWAnl, dATWAnl, n-dPATWAnl, etc.

In the second part of this paper we investigate the recognizing power of deter-
ministic non-looping subclasses of the above tree language classes and show that
these subclasses do not recognize all the regular tree languages, moreover the fol-
lowing proper inclusion hierarchy holds:

dTWA ⊂ dATWAnl ⊂ 1-dPATWAnl ⊂ 2-dPATWAnl . . . ⊂ dPATWAnl ⊂ REG .
(∗)

The paper is organized as follows. In Section 2 we define the necessary concepts.
In Section 3 we give the formal definition of an n-patwa and define the looping
property for them. In Section 4 we present our main result and prove that n-patwa
recognize the regular tree languages. In Section 5 we prove the proper hierarchy
(∗). Finally, in Section 6 we conclude our results and give some future research
topics.

2 Preliminaries

2.1 Sets, strings, and relations

We denote the set of nonnegative integers by N. For every n ∈ N, we let [n] =
{1, . . . , n}.

430 Loránd Muzamel

For a set A, P(A) denotes the power set of A. The empty set is denoted by ∅.
If it does not lead to confusion, we write a for a singleton set {a}.

For a set A, A∗ denotes the set of strings (or: words) over A; the empty string
is denoted by ε. For a string w ∈ A∗, |w| denotes its length. For every n ≥ 0, we
define A≤n = {u ∈ A∗ | |u| ≤ n}. For every u ∈ A∗, and 1 ≤ l ≤ |u|, u(l) denotes
the l-th element of A in u.

An alphabet is a finite nonempty set. Let A be an alphabet and L ⊆ A∗ a finite,
nonempty set. We write the strings of L∗ in the form [u1; . . . ;ul], where l ≥ 0 and
u1, . . . , ul ∈ L. The empty string over L is denoted by [].

Let ρ ⊆ H ×H be a binary relation. The fact that (a, b) ∈ ρ for some a, b ∈ H

is also denoted by a ρ b. For every l ≥ 0, the l-th power of ρ is denoted by ρl, the
transitive closure, and the reflexive, transitive closure of ρ are denoted by ρ+ and
ρ∗, respectively.

2.2 Trees and tree languages

A ranked set is an ordered pair (Σ, rankΣ), where Σ is a set and rankΣ is a mapping
of type Σ → N. If Σ is an alphabet, then (Σ, rankΣ) is a ranked alphabet. If
rankΣ(σ) = k for σ ∈ Σ and k ≥ 0, then the rank of σ is k and we indicate this fact
also by writing σ(k). For every k ≥ 0, we define Σ(k) = {σ ∈ Σ | rankΣ(σ) = k}.
If Σ is clear from the context, we write rank instead of rankΣ, moreover, we drop
rankΣ and write a ranked set as Σ.

We denote by maxrank(Σ) the maximum of ranks of symbols of Σ, i.e.,
maxrank(Σ) = max{rank(σ) | σ ∈ Σ}.

Let Σ be a ranked set. The set of trees over Σ, denoted by TΣ, is the smallest
set of strings T ⊆ (Σ ∪ {(,)} ∪ {, })∗ such that Σ(0) ⊆ T and whenever k ≥ 1,
σ ∈ Σ(k), and t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T . Certainly, TΣ 6= ∅ if and only
if Σ(0) 6= ∅.

For every tree s ∈ TΣ, we define the set pos(s) ⊆ [maxrank(Σ)]∗ of the nodes of
s as follows. We let pos(s) = {ε} if s ∈ Σ(0), and pos(s) = {iu | 1 ≤ i ≤ k, u ∈
pos(si)} if s = σ(s1, . . . , sk) for some k ≥ 1, σ ∈ Σ(k) and s1, . . . , sk ∈ TΣ.

Now, for a tree s ∈ TΣ and a node u ∈ pos(s), we define lab(s, u) ∈ Σ, i.e., the
label of s at node u, by induction:

(i) if s ∈ Σ(0) (which implies u = ε), then lab(s, u) = s;

(ii) if s = σ(s1, . . . , sk) for some k ≥ 1, σ ∈ Σ(k) and trees s1, . . . , sk ∈ TΣ, then

- if u = ε, then lab(s, u) = σ,

- if u = iu′, where 1 ≤ i ≤ k, and u′ ∈ pos(si), then lab(s, u) = lab(si, u
′).

For every s ∈ TΣ and u ∈ pos(s) we define the parent of u, denoted by parent(u)
and the child number of u, denoted by childno(u) as follows:

(i) if u = ε, then childno(u) = 0 and parent(u) is undefined,

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 431

(ii) if u = u′j for some u′ ∈ pos(s) and j ∈ N, then childno(u) = j and
parent(u) = u′.

If Σ is a ranked alphabet, then any subset L ⊆ TΣ is a tree language. The
complement of L is the tree language L = TΣ −L. If L is a class of tree languages,
then co-L = {L | L ∈ L}.

We will need a tree recognizer concept called top-down tree automaton. The
unfamiliar reader can consult with [17, 18] for this concept, although they called it
root-to-frontier automaton. A tree language is regular, if it can be recognized by a
top-down tree automaton. We denote the class of regular tree languages by REG .
The following classical result saying that regular tree languages are closed under
complementation will be needed later.

Proposition 2.1 REG = co-REG .

2.3 MSO logic for trees

Monadic second order (MSO) logic was originally proposed to describe properties
of strings in [6]. MSO logic can be extended for trees, see [24, 8, 2]. We will recall
the syntax and the semantics of this logic over a ranked alphabet Σ.

Syntax:

We define the language MSOL(Σ) of MSO formulas (over Σ). This language is
built up from the following symbols.

node variables: x, y, x1, x2, We denote the set of node variables by VAR1.
node-set variables: X,X1,X2, We denote the set of node-set variables by

VAR2.
other symbols: ¬, ∧, ∃, (,)
Atomic formulas are strings of one of the following types:

• labσ(x), where σ ∈ Σ, and x ∈ VAR1,

• child i(x1, x2), where 1 ≤ i ≤ maxrank(Σ), and x1, x2 ∈ VAR1,

• x ∈ X, where x ∈ VAR1, and X ∈ VAR2.

The language of MSO formulas over Σ is the smallest set MSOL(Σ) satisfying
the following conditions.

(i) Each atomic formula is a formula of MSOL(Σ).

(ii) Let φ1, φ2 ∈ MSOL(Σ), x ∈ VAR1, and X ∈ VAR2. Then (¬φ1), (φ1 ∧
φ2), ∃x(φ1), ∃X(φ1) ∈ MSOL(Σ).

Let φ ∈ MSOL(Σ) be an MSO formula and x (X) a node (node-set) variable in
φ. Then an occurrence of x (X) in φ is said to be free in φ, if x (X) is not in the
scope of ∃x (∃X), otherwise that occurrence is bound in φ. The formulas without
free occurrences of node and node-set variables are the closed formulas.

432 Loránd Muzamel

Semantics:

The truth value of a formula is considered through structures. A structure (over
Σ) is a triple (s,Π1,Π2), where

• s ∈ TΣ,

• Π1 : VAR1 → pos(s), and

• Π2 : VAR2 → P(pos(s)).

Now, let (s,Π1,Π2) be a structure and φ ∈ MSOL(Σ) a formula. We define that
the structure (s,Π1,Π2) models φ ∈ MSOL(Σ), or φ is true in (s,Π1,Π2) (denoted
by (s,Π1,Π2) |= φ) by formula induction on φ as follows.

(i)/a If φ = labσ(x), then (s,Π1,Π2) |= φ iff the label of the node Π1(x) is σ.

(i)/b If φ = child i(x1, x2), then (s,Π1,Π2) |= φ iff node Π1(x2) is the parent of
node of Π1(x1) and childno(Π1(x1)) = i.

(i)/c If φ = x ∈ X, then (s,Π1,Π2) |= φ iff Π1(x) ∈ Π2(X).

(ii)/a If φ = (¬φ1), then (s,Π1,Π2) |= φ iff (s,Π1,Π2) 6|= φ1.

(ii)/b If φ = (φ1 ∧ φ2), then (s,Π1,Π2) |= φ iff (s,Π1,Π2) |= φ1, and (s,Π1,Π2) |=
φ2.

(ii)/c If φ = ∃x(φ1), then (s,Π1,Π2) |= φ iff there is a node u ∈ pos(s) and a
structure (s,Π′

1,Π2), such that for every y ∈ VAR1, we have

Π′
1(y) =

{
u if y = x,
Π1(y) if y 6= x,

and (s,Π′
1,Π2) |= φ1.

(ii)/d If φ = ∃X(φ1), then (s,Π1,Π2) |= φ iff there is a node set U ⊆ pos(s) and a
structure (s,Π1,Π

′
2), such that for every Y ∈ VAR2, we have

Π′
2(Y) =

{
U if Y = X,
Π2(Y) if Y 6= X,

and (s,Π1,Π
′
2) |= φ1.

To improve the readability of a formula, we omit the outer brackets. Moreover,
we will use the standard shorthand φ1 ∨ φ2 for ¬φ1 ∧ ¬φ2, φ1 → φ2 for ¬φ1 ∨ φ2,
∀xφ for ¬∃x¬φ, and ∀Xφ for ¬∃X¬φ.

It is straightforward that for a closed formula φ ∈ MSOL(Σ), and structure
(s,Π1,Π2), the mappings Π1 and Π2 do not influence the fact that (s,Π1,Π2) |= φ

or not. Hence for a closed formula φ, we will write s |= φ for (s,Π1,Π2) |= φ.
Let φ ∈ MSOL(Σ) be a closed formula. The tree language defined by φ is the

tree language L(φ) = {s ∈ TΣ | s |= φ}. A tree language L ⊆ TΣ is MSO-definable,
if there is a closed formula φ ∈ MSOL(Σ), where L = L(φ). The following classical
result from [8, 24] states that the MSO-definable tree languages are exactly the
regular tree languages.

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 433

Proposition 2.2 A tree language is MSO-definable if and only if it is regular. ⋄

3 Pebble alternating tree-walking automata

3.1 Syntax and semantics

In this section we introduce the concept of an n-pebble alternating tree-walking
automaton. For this, we define the set of instructions.

Definition 3.1 For every integer d ≥ 0, let
Id = {stay , up, drop, lift , down1, down2, . . . , downd}.

The elements of Id are called instructions.
For a ranked alphabet Σ, symbol σ ∈ Σ, n ≥ 0, bit vector b ∈ {0, 1}≤n, and

j ∈ {0, 1, . . . ,maxrank(Σ)}, let Iσ,b,j,n ⊆ Irank(σ) be the smallest set satisfying the
following conditions:

(i) stay ∈ Iσ,b,j,n,

(ii) if j 6= 0, then up ∈ Iσ,b,j,n,

(iii) for every 1 ≤ i ≤ rank(σ) we have downi ∈ Iσ,b,j,n,

(iv) if |b| < n, then drop ∈ Iσ,b,j,n,

(v) if b 6= ε, then lift ∈ Iσ,b,j,n.

If n is clear from the context, then we write Iσ,b,j for Iσ,b,j,n. ⋄

Definition 3.2 For n ≥ 0, an n-pebble alternating tree-walking automaton (shortly
n-patwa) is a system A = (Q,Σ, q0, qyes , R), where

• Q is a finite nonempty set, the set of states, which is partitioned into pairwise
disjoint subsets Q0, Q1, . . . , Qn,

• Σ is a ranked alphabet, the input alphabet,

• q0 ∈ Q0 is a distinguished state, the initial state,

• qyes 6∈ Q is a new state, the accepting state,

• R is a finite set of rules, which is partitioned into pairwise disjoint subsets
R0, R1, . . . , Rn, such that for each 0 ≤ i ≤ n, the set Ri consists of

– accepting rules of the form 〈q, σ, b, j〉 → 〈qyes , stay〉,

– pebble tree-walking rules of the form 〈q, σ, b, j〉 → 〈p, ϕ〉, and

– alternating rules of the form 〈q, σ, b, j〉 → {〈p1, stay〉, 〈p2, stay〉},

434 Loránd Muzamel

where q ∈ Qi, σ ∈ Σ, b ∈ {0, 1}i, 0 ≤ j ≤ maxrank(Σ), p1, p2 ∈ Qi, ϕ ∈ Iσ,b,j ,
moreover

p ∈







Qi if ϕ ∈ {stay , up, down1, down2, . . .},
Qi+1 if ϕ = drop, and
Qi−1 if ϕ = lift .

⋄

By a pebble alternating tree-walking automaton (patwa) we mean an n-patwa
for some n.

A tree s ∈ TΣ is called an input tree to A or just an input tree. In the remainder
of this section A stands for the n-patwa A = (Q,Σ, q0, qyes , R).

We say that A is deterministic, if, for every q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n,
and j ∈ {0, 1, . . . ,maxrank(Σ)}, there is at most one rule of R with left-hand side
〈q, σ, b, j〉. Next we introduce further syntactic restrictions for patwa.

Definition 3.3 A is

• an alternating tree-walking automaton (shortly atwa), if A is a 0-patwa.

• an n-pebble tree-walking automaton (shortly n-ptwa)[10], if there are no alter-
nating rules in R.

• a tree-walking automaton (shortly twa)[1], if A is a 0-ptwa. ⋄

By a pebble tree-walking automaton (ptwa) we mean an n-ptwa for some n. Next
we make some preparation for defining the semantics of a patwa. First we define
the concept of an n-pebble configuration.

Definition 3.4 For an input tree s ∈ TΣ, an n-pebble configuration (or: pebble
configuration) over s (and A) is a pair h = (u, π), where u ∈ pos(s) is a node of s
and π ∈ (pos(s))≤n, i.e., π is a string over pos(s) of length at most n. The set of
pebble configurations over s and A is denoted by PCA,s. ⋄

A pebble configuration h = (u, π) ∈ PCA,s, with the string of strings π =
[u1; . . . ;ul] contains the information that the node being scanned by A (the current
node) of the input tree s is u and A put l = |π| pebbles on the nodes u1, . . . , ul of
s. Note that more than one pebble can be put on the same node.

We define a mapping that tests a pebble configuration and returns a triple,
which will influence the computation relation.

Definition 3.5 Let s ∈ TΣ be an input tree and h = (u, π) ∈ PCA,s a pebble
configuration. Then tests(h) = (σ, b, j), where

• σ = lab(s, u),

• b ∈ {0, 1}∗ is a string (bit vector) of length l = |π|, where, for every 1 ≤ i ≤ l,

b(i) =

{
1 if π(i) = u

0 if π(i) 6= u,

(Note, it follows from Definition 3.4 that l ≤ n.)

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 435

• j = childno(u). ⋄

If s is clear from the context, then we write test(h) for tests(h). Next we define
how an instruction can be executed on a configuration.

Definition 3.6 Let s ∈ TΣ be an input tree and h = (u, π) ∈ PCA,s an n-pebble
configuration over s with π = [u1; . . . ;ul]. Let test(h) = (σ, b, j) and take an
instruction ϕ ∈ Itest(h) = Iσ,b,j . The execution of ϕ on h is the pebble configuration
ϕ(h) defined in the following way.

ϕ(h) = ϕ((u, π)) =







(u, π) if ϕ = stay ,
(parent(u), π) if ϕ = up,
(ui, π) if ϕ = downi,

(u, [u1; . . . ;ul;u]) if ϕ = drop,
(u, [u1; . . . ;ul−1]) if ϕ = lift .

⋄

Now we define the concept of a configuration of A.

Definition 3.7 Let s ∈ TΣ be an input tree. A configuration of A (over s) is a
pair 〈q, h〉, where q ∈ Q ∪ {qyes} and h ∈ PCA,s. ⋄

Roughly speaking, a configuration is a snapshot of the computation, storing the
current state, the node pointed at by the pointer, and the positions of the dropped
pebbles. The set of configurations of A over s is denoted by CA,s.

Due to alternation, A is capable to do arbitrary many parallel computations
(threads) while processing s and hence, the computation relation works over the
subsets of CA,s. We turn to introduce this computation relation.

Definition 3.8 Let s ∈ TΣ be an input tree. Then ⊢A,s⊆ P(CA,s)×P(CA,s) is the
computation relation of A on s, where for all configuration sets H1,H2 ∈ P(CA,s)
we have H1 ⊢A,s H2 if and only if there is a configuration 〈q, h〉 ∈ H1, such that
one of the following is true.

(1) There is an accepting rule 〈q, σ, b, j〉 → 〈qyes , stay〉 in R such that test(h) =
(σ, b, j) and H2 = (H1 − {〈q, h〉}) ∪ {〈qyes , h〉}.

(2) There is a pebble tree-walking rule 〈q, σ, b, j〉 → 〈p, ϕ〉 inR such that test(h) =
(σ, b, j) and H2 = (H1 − {〈q, h〉}) ∪ {〈p, ϕ(h)〉}.

(3) There is an alternating rule 〈q, σ, b, j〉 → {〈p1, stay〉, 〈p2, stay〉} in R such that
test(h) = (σ, b, j) and H2 = (H1 − {〈q, h〉}) ∪ {〈p1, h〉, 〈p2, h〉}. ⋄

We note that the role of the alternating rules is to spawn two parallel com-
putations (threads) from one computation, such that the two new computations
start out to work from the current pebble configuration. Moreover, each parallel
computation has its own copy of the input tree and an own pebble configuration,
which cannot be modified by other computations.

436 Loránd Muzamel

Pebble tree-walking rules are responsible for the sequential steps of a compu-
tation (moving on the edges, dropping and lifting of pebbles), and accepting rules
are for terminating and accepting a computation.

The n-patwa A works as follows on an input tree s. It starts out in the initial
configuration set {〈q0, (ε, [])〉} (i.e., only one thread, initial state, pointer at the root
node, and no pebbles dropped on s). Then, applying ⊢A,s step by step, it computes
further configuration sets. The goal is that each parallel computation spawned
from the initial configuration should be accepting, in other words, to terminate in
a special configuration set H ∈ P(CA,s), such that the state-component of each
configuration of H is qyes . In that case H is an accepting configuration set. It is
easy to see that there is no computation step from an accepting configuration set.

Let ACCA,s = {qyes}×PCA,s be the largest accepting configuration set. Thus
the tree language recognized by A is defined as follows.

Definition 3.9 The tree language recognized by A is

L(A) = {s ∈ TΣ | 〈q0, (ε, [])〉 ⊢
∗
A,s H, for some H ⊆ ACCA,s}. ⋄

The classes of tree languages computed by n-patwa, atwa, n-ptwa, and twa
are denoted by n-PATWA, ATWA, n-PTWA, and TWA, respectively. The unions
⋃

n≥0 n-PATWA, and
⋃

n≥0 n-PTWA are denoted by PATWA, and PTWA, respec-
tively. The deterministic subclasses of the above tree language classes are denoted
by prefixing a letter ‘d’ in front of their names, e.g., n-dPATWA, dATWA.

It should be clear that with the growing number of pebbles, the recognizing
power of patwa and ptwa do not decrease, i.e., n-PATWA ⊆ (n+ 1)-PATWA, and
n-PTWA ⊆ (n+ 1)-PTWA for every n ≥ 0.

3.2 Looping and non-looping patwa

Now we turn to the looping property of patwa. Roughly speaking, A is looping, if
it has an infinite computation on an input tree.

We introduce the looping property for patwa similarly as the circularity concept
was introduced for attributed grammars [20, 19], attributed tree transducers [12,
16], and pebble (macro) tree transducers [11, 14, 15].

We say that 〈q, h〉 ∈ CA,s is a looping configuration, if there is a configuration
set H ⊆ CA,s, such that 〈q, h〉 ∈ H and 〈q, h〉 ⊢+

A,s H. Moreover, A is looping, if
there is an input tree s ∈ TΣ, a configuration set H ⊆ CA,s such that

• H contains a looping configuration and

• 〈q0, (ε, [])〉 ⊢
∗
A,s H.

Otherwise, A is non-looping.

The looping property for pebble macro tree transducers appear in [15] by name
“strong circularity”. Let us denote the non-looping version of the above tree lan-
guage classes by n-PATWAnl, n-dPATWAnl, etc.

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 437

3.3 Patwa with general alternating rules

When using alternation in a patwa, sometimes it is convenient not to be restricted
to the forms of the possible right-hand sides of alternating rules of Definition 3.2. It
should be clear that we can allow not only two, but arbitrary many state-instruction
pairs for the right-hand sides of the alternating rules. Moreover, in the right-hand
side of an alternating rule we allow not only stay , but arbitrary instructions. A
general alternating rule is a rule of the form 〈q, σ, b, j〉 → {〈q1, ϕ1〉, . . . , 〈qm, ϕm〉}
with m ≥ 1, 〈q1, ϕ1〉, . . . , 〈qm, ϕm〉 ∈ Q×Iσ,b,j . Moreover, we assume that the state
set is not partitioned, and q1, . . . , qm can be arbitrary states of Q ∪ {qyes}.

An n-patwa with general alternating rules is a tuple A = (Q,Σ, q0, qyes , R),
where R is a finite set of general alternating rules (and the rest is as for an n-
patwa). For A, the notion ‘deterministic’, and the concept of ‘configuration’ are
defined in the same way as for an n-patwa.

For defining the computation relation of A we remove point (1) and (2) and
modify point (3) in Definition 3.8 in the following way.

(3) There is a general alternating rule 〈q, σ, b, j〉 → {〈p1, ϕ1〉, . . . , 〈pm, ϕm〉}
in R such that test(h) = (σ, b, j) and H2 = (H1 − {〈q, h〉}) ∪
{〈p1, ϕ1(h)〉, . . . , 〈pm, ϕm(h)〉}.

Finally, the tree language L(A) recognized by A is defined in the same way as in
Definition 3.9, and the looping property of A can be defined similarly as in section
3.2.

We leave the proof of the following lemma to the reader.

Lemma 3.10 For every n ≥ 0, and n-patwa A with general alternating rules, we
can construct an n-patwa A′, such that

• L(A) = L(A′),

• A is deterministic iff A′ is deterministic, and

• A is non-looping iff A′ is non-looping. ⋄

3.4 Some notes about alternation and patwa

The idea of extending Turing machines and automata with alternation comes from
[7]. The term “alternation” means the mixture of existential nondeterminism and
universal nondeterminism.

Existential nondeterminism is the classical nondeterminism concept, i.e., a con-
figuration will be accepting, if there is at least one accepting computation which
starts out from that configuration. On the other hand, universal nondeterminism
means, that a configuration is accepting, if all possible computations which start
out of that configuration lead to acceptance.

438 Loránd Muzamel

The mixture of existential and universal nondeterminism is solved in the folklore
by partitioning the state set Q into QOR (existential states), and QAND (univer-
sal states), moreover the configurations with states from QOR (resp. QAND) are
regarded with existential nondeterminism (resp. universal nondeterminism).

Our definition of patwa differs from the usual alternating devices, because the
present form of patwa is sometimes more handable in this paper. In our context,
each state is existential. The universal nondeterminism for patwa is due to the
alternating rules which spawn parallel computations, such that all of those compu-
tations should be accepting in order to accept the input.

However, it is easy to show that the definition of patwa with classical alternation
(with existential, universal states and without alternating rules) would yield tree
recognizers with the same recognizing power as patwa of the present paper have.

4 The recognizing power of patwa

In this section we show that the tree languages recognized by patwa are exactly the
regular tree languages. We closely follow the ideas in the proof of Theorem 4.7 of
[21].

It is easy to see that each top-down tree automaton can be simulated by a
0-patwa. To prove the converse, we will give a closed MSO formula φ for every
patwa A, such that L(φ) = L(A). Then using Proposition 2.2, we will obtain
that each tree language recognized by a patwa is regular. To make the proof more
understandable, we will need some abbreviations of MSOL(Σ) formulas, which are
listed bellow. Let d = maxrank(Σ) and 0 ≤ i ≤ d an arbitrary number.

• x1 = x2 ≡ ∀X(x1 ∈ X ↔ x2 ∈ X) (that is true in (s,Π1,Π2), if node Π1(x1)
equals node Π1(x2)),

• child(x1, x2) ≡ child1(x1, x2)∨ . . .∨ childd(x1, x2) (that is true in (s,Π1,Π2),
if Π1(x1) is a child of Π1(x2)),

• root(x) ≡ ∀x1(¬child(x, x1)) (that is true in (s,Π1,Π2), if Π1(x) is the root
node)

• root ∈ X ≡ ∀x(root(x) → x ∈ X) (that is true in (s,Π1,Π2), if the root node
is in Π2(X)),

• chnoi(x) ≡

{
root(x) if i = 0
∃x1(child i(x, x1)) if i > 0

(that is true in (s,Π1,Π2), if the child number of Π1(x) is i), and

• true ≡ ∀x(x = x) (which is a valid formula).

In the remainder of this section let n ≥ 0, A = (Q,Σ, q0, qyes , R) an n-patwa,
and s ∈ TΣ an input tree to A. We enumerate the states in Q such that Q =

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 439

{q0, . . . , qm}, and Q0 = {qm0
= q0, . . . , qm1−1}, Q1 = {qm1

, . . . , qm2−1}, . . . , Qn =
{qmn

, . . . , qmn+1−1 = qm}. Let us observe that mn+1 = m+ 1.
Next we give an alternative way to define that A accepts or rejects a tree s. In

fact, we will define the acceptance through node sets S0, . . . , Sm ⊆ pos(s), where for
each 0 ≤ i ≤ m, node set Si is associated with state qi of A. Note that for 0 ≤ l ≤ n,
the node sets concerned with the states of Ql are Sml

, . . . , Sml+1−1, since Ql =
{qml

, . . . , qml+1−1}. Then, we show that the alternative definition of acceptance
described below can be expressed by an MSO formula. Hence, by Proposition 2.2,
it follows that the tree language accepted by A is regular.

We begin with some preparation. Namely, we define the closed, and the strongly
closed properties for node sets S0, . . . , Sm.

Definition 4.1 Let 0 ≤ l ≤ n, u1, . . . , ul ∈ pos(s), and S0, . . . , Sml−1,
Sml

, . . . , Sml+1−1 ⊆ pos(s). We define the node sets Sml
, . . . , Sml+1−1 to be l-

closed with respect to A, s, u1, . . . , ul, and S0, . . . , Sml−1 by a downward induction
on l as follows. (Note that the base of the induction is l = n.)

(i) If l = n, then the following statements hold.

(1) For every ml ≤ µ ≤ ml+1 − 1 and u ∈ pos(s), if 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s

〈qyes , (u, [u1; . . . ;ul])〉, then u ∈ Sµ.

(2) For every ml ≤ µ, ν ≤ ml+1−1 and u, u′ ∈ pos(s), if 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s

〈qν , (u
′, [u1; . . . ;ul])〉, and u′ ∈ Sν , then u ∈ Sµ.

(3) For every ml ≤ µ, ν1, ν2 ≤ ml+1 − 1 and u ∈ pos(s), if
〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s {〈qν1

, (u, [u1; . . . ;ul])〉, 〈qν2
, (u, [u1; . . . ;ul])〉}, u ∈

Sν1
, and u ∈ Sν2

, then u ∈ Sµ.

(4) For every ml ≤ µ ≤ ml+1 − 1, ml−1 ≤ ν ≤ ml − 1 (provided that l > 0), and
u ∈ pos(s), if 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s 〈qν , (u, [u1; . . . ;ul−1])〉 and u ∈ Sν ,
then u ∈ Sµ.

(ii) Let l < n. Then (1)-(4) hold, moreover:

(5) For every ml ≤ µ ≤ ml+1 − 1, ml+1 ≤ ν ≤ ml+2 − 1, and u ∈ pos(s),
if 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s 〈qν , (u, [u1; . . . ;ul;u])〉, and for all node sets
Sml+1

, . . . , Sml+2−1 that are (l + 1)-closed with respect to A, s, u1, . . . , ul, u,
and S0, . . . Sml+1−1, we have u ∈ Sν , then u ∈ Sµ. ⋄

Definition 4.2 Let 0 ≤ l ≤ n, S0, . . . , Sml+1−1 ⊆ pos(s), and u1, . . . , ul ∈ pos(s).
We say that S0, . . . , Sml+1−1 are strongly l-closed with respect to A, s, and u1, . . . , ul,
if

S0, . . . , Sm1−1 are 0-closed with respect to A and s,
Sm1

, . . . , Sm2−1 are 1-closed with respect to A, s, u1, and S0, . . . , Sm1−1,
...

Sml
, . . . , Sml+1−1 are l-closed with respect to A, s, u1, . . . , ul, and

S0, . . . , Sml−1. ⋄

440 Loránd Muzamel

In case l = 0 we make the following observation.

Observation 4.3 S0, . . . , Sm1−1 are strongly 0-closed if and only if S0, . . . , Sm1−1

are 0-closed with respect to A and s. ⋄

Lemma 4.4 Let u1, . . . , un ∈ pos(s) be arbitrary nodes. Define the node sets
T0, . . . , Tm ⊆ pos(s) such that for each 0 ≤ l ≤ n, ml ≤ µ ≤ ml+1 − 1, and
u ∈ pos(s), we have u ∈ Tµ iff there is an accepting configuration set H ⊆ ACCA,s

such that 〈qµ, (u, [u1; . . . ;ul])〉 ⊢
+
A,s H.

Then T0, . . . , Tm are strongly n-closed with respect to A, s, and u1, . . . , un.

Proof. Let 0 ≤ l ≤ n. It suffices to prove that Tml
, . . . , Tml+1−1 are l-closed with

respect to A, s, u1, . . . , ul, and T0, . . . , Tml−1. We prove by induction on l. (Note
that the induction base is l = n.)

(i) Let l = n. It is easy to see that properties (1) - (4) of Definition 4.1 hold for
Tmn

, . . . , Tmn+1−1 with respect to A, s, u1, . . . , un, and T0, . . . , Tmn−1.
(ii) Let l < n. Then, we can also easily see that properties (1) - (4) hold for

Tml
, . . . , Tml+1−1 with respect to A, s, u1, . . . , ul, and T0, . . . , Tml−1. Now we prove

that property (5) of Definition 4.1 holds for Tml
, . . . , Tml+1−1 with respect to A, s,

u1, . . . , ul, and T0, . . . , Tml−1 as follows.
Let ml ≤ µ ≤ ml+1 − 1, ml+1 ≤ ν ≤ ml+2 − 1, and u ∈ pos(s), assume that

(*) 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s 〈qν , (u, [u1; . . . ;ul;u])〉, and

(**) u ∈ Sν for all node sets Sml+1
, . . . , Sml+2−1, that are (l+1)-closed with respect

to A, s, u1, . . . , ul, u, and T0, . . . , Tml+1−1.

Moreover, we define the node sets T ′
ml+1

, . . . , T ′
ml+2−1 ⊆ pos(s), such that for

each ml+1 ≤ η ≤ ml+2 − 1, and v ∈ pos(s), we have v ∈ T ′
η iff there is an accepting

configuration set H ⊆ ACCA,s such that 〈qη, (v, [u1; . . . ;ul;u])〉 ⊢
+
A,s H.

We make the following observations.
a) By the induction hypothesis, the node sets T ′

ml+1
, . . . , T ′

ml+2−1 are (l + 1)-
closed with respect to A, s, u1, . . . , ul, u, and T0, . . . , Tml+1−1.

b) Then, by (**) and a) we obtain that u ∈ T ′
ν .

c) By the definition of T ′
ml+1

, . . . , T ′
ml+2−1 and b), we obtain that there is an

accepting configuration set H ⊆ ACCA,s, such that 〈qν , (u, [u1; . . . ;ul;u])〉 ⊢
+
A,s H.

d) By (*) and c) we obtain that 〈qµ, (u, [u1; . . . ;ul])〉 ⊢
+
A,s H.

Thus, u ∈ Tµ, which confirms property (5) of Definition 4.1 for node sets
Tml

, . . . , Tml+1−1 with respect to A, s, u1, . . . , ul, and T0, . . . , Tml−1. With this,
we have finished the proof of this lemma. ⋄

In the following we show that the acceptance of A can be described in an
alternative but equivalent way in terms of closed node sets.

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 441

Lemma 4.5 Let 0 ≤ l ≤ n, u, u1, . . . , ul ∈ pos(s), and ml ≤ µ ≤ ml+1 − 1. The
following statements are equivalent.

(a) There is a set of accepting configurations H ⊆ ACCA,s, such that
〈qµ, (u, [u1; . . . ;ul])〉 ⊢

∗
A,s H.

(b) For every S0, . . . , Sml+1−1 ⊆ pos(s), if the node sets S0, . . . , Sml+1−1 are
strongly l-closed with respect to A, s, and u1, . . . , ul, then u ∈ Sµ.

Proof. (direction ”(a) ⇒ (b)”:) Let k ≥ 1 and suppose that
〈qµ, (u, [u1; . . . ;ul])〉 ⊢

k
A,s H and that S0, . . . , Sml+1−1 ⊆ pos(s) are strongly l-closed

with respect to u1, . . . , ul. We prove by induction on k.
(i) Let k = 1. Then obviously, H is singleton and 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s

〈qyes , (u, [u1; . . . ;ul])〉 = H. By property (1) of Definition 4.1 we obtain that u ∈ Sµ.
(ii) Let k > 1. Then we consider the following cases.
case 1: 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s 〈qν , (u

′, [u1; . . . ;ul])〉 ⊢
k−1
A,s H, where ml ≤ ν ≤

ml+1 − 1. Then, by the induction hypothesis u′ ∈ Sν . Hence, by property (2) of
Definition 4.1 we obtain that u ∈ Sµ.

case 2: 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s {〈qν1
, (u, [u1; . . . ;ul])〉, 〈qν2

, (u, [u1; . . . ;ul])〉}
⊢k−1

A,s H, where ml ≤ ν1, ν2 ≤ ml+1 − 1. Then, it is obvious that there are ac-
cepting configuration sets H1,H2 ⊆ ACCA,s and numbers k1, k2 < k such that

〈qν1
, (u, [u1; . . . ;ul])〉 ⊢

k1

A,s H1 and 〈qν2
, (u, [u1; . . . ;ul])〉 ⊢

k2

A,s H2. By the induction
hypothesis u ∈ Sν1

and u ∈ Sν2
. Hence, by property (3) of Definition 4.1 we obtain

that u ∈ Sµ.
case 3: l ≥ 1 and 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s 〈qν , (u, [u1; . . . ;ul−1])〉 ⊢k−1

A,s H,
where ml−1 ≤ ν ≤ ml − 1. Then, by the induction hypothesis u ∈ Sν . Hence, by
property (4) of Definition 4.1, we obtain that u ∈ Sµ.

case 4: l < n and 〈qµ, (u, [u1; . . . ;ul])〉 ⊢A,s 〈qν , (u, [u1; . . . ;ul;u])〉 ⊢k−1
A,s H,

where ml+1 ≤ ν ≤ ml+2 − 1. Let Sml+1
, . . . , Sml+2−1 ⊆ pos(s) be arbitrary l + 1-

closed node sets with respect to A, s, u1, . . . , ul, u, and S0, . . . , Sml+1−1. Then, by
the induction hypothesis u ∈ Sν . Hence, by property (5) of Definition 4.1 we obtain
that u ∈ Sµ.

(direction ”(b) ⇒ (a)”:)
Let ul+1, . . . , un ∈ pos(s) be arbitrary dummy nodes, and T0, . . . , Tm ⊆ pos(s)

the node sets defined in the same way as in Lemma 4.4. By that lemma, T0, . . . , Tm

are strongly n-closed with respect to A, s, and u1, . . . , un. From this fact and
Definition 4.2 we obtain the following statement.

Statement: The node sets T0, . . . , Tml+1−1 are strongly l-closed with respect to
A, s, and u1, . . . , ul.

Now, assume that (b) holds. By (b) and our Statement we get that u ∈ Tµ.
It follows that there is an accepting configuration set H ⊆ ACCA,s, such that
〈qµ, (u, [u1; . . . ;ul])〉 ⊢

+
A,s H, and with this, we have finished the proof. ⋄

442 Loránd Muzamel

Corollary 4.6 s ∈ L(A) if and only if for all 0-closed node sets S0, . . . , Sm1−1, we
have that ε ∈ S0.

Proof.
s ∈ L(A)

(Definition 3.9)
⇐⇒ ∃H ⊆ ACCA,s such that 〈q0, (ε, [])〉 ⊢

∗
A,s H

(Lemma 4.5)
⇐⇒ for all strongly 0-closed node sets S0, . . . , Sm1−1,

we have ε ∈ S0

(Observation 4.3)
⇐⇒ for all 0-closed node sets S0, . . . , Sm1−1,

we have ε ∈ S0. ⋄
Now we are ready to prove the main result of this section.

Theorem 4.7 For every n ≥ 0, n-patwa recognize exactly the regular tree lan-
guages. Formally, REG = n-PATWA.

Proof. Clearly, already 0-patwa are capable to simulate classical top-down tree
automata, hence each regular tree language is recognizable by an n-patwa for n ≥ 0,
i.e., REG ⊆ n-PATWA for n ≥ 0. For the converse, it suffices to prove that L(A)
is a regular tree language (since A is picked as an arbitrary n-patwa).

Now we construct an MSO-formula defining L(A). The thorough reader will
find this formula almost literally the same as the one in the proof of Theorem 4.7
of [21].

Let b ∈ {0, 1}≤n be a bitvector of length l. We define a predicate
pebblesb(x, x1, . . . , xl) with free variables x, x1, . . . , xl which is true in a struc-
ture (s,Π1,Π2), if the presence of pebbles at node Π1(x) agrees with b, assum-
ing that l pebbles are on the input tree and the positions of pebbles 1, . . . , l are
Π1(x1), . . . ,Π1(xl), respectively. The predicate pebblesb(x) is defined by induction
on l.

(i) If l = 0, then pebblesb(x) = pebblesε(x) = true.
(ii) If l > 0, then

pebblesb(x, x1, . . . , xl) =

{
pebblesb′(x, x1, . . . , xl−1) ∧ (xl = x) if b = b′1
pebblesb′(x, x1, . . . , xl−1) ∧ ¬(xl = x) if b = b′0

For every σ ∈ Σ, b ∈ {0, 1}≤n, where |b| = l, and 0 ≤ j ≤ maxrank(Σ) let
θσ,b,j(x) = labσ(x) ∧ pebblesb(x, x1, . . . , xl) ∧ chnoj(x)

be the formula with free first-order variables x, x1, . . . , xl, which is true
in a structure (s,Π1,Π2) iff the test result of the pebble configuration
(Π1(x), [Π1(x1); . . . ; Π1(xl)]) is (σ, b, j), see Definition 3.5.

For each 0 ≤ l ≤ n and ml ≤ µ ≤ ml+1 − 1, we give the formula φ
(l)
µ as follows.

φ
(l)
µ =







∀X0 . . . ∀Xm1−1

(

0-closed → root ∈ Xµ

)

if l = 0

∀Xml
. . . ∀Xml+1−1

(

l-closed → xl ∈ Xµ

)

if l > 0,

where
l-closed =

∧

r∈Rl

ψr,

and ψr’s are defined as follows.

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 443

(1) If r is an accepting rule of the form 〈qµ, σ, b, j〉 → 〈qyes , stay〉, where qµ ∈ Ql,
0 ≤ l ≤ n, and σ ∈ Σ, b ∈ {0, 1}l, 0 ≤ j ≤ maxrank(Σ), then

ψr = ∀xl+1

(

θσ,b,j(xl+1) → xl+1 ∈ Xµ

)

.

(2) If r is of the form 〈qµ, σ, b, j〉 → 〈qν , stay〉, where qµ, qν ∈ Ql, 0 ≤ l ≤ n,
σ ∈ Σ, b ∈ {0, 1}l, and 0 ≤ j ≤ maxrank(Σ), then

ψr = ∀xl+1

(

(θσ,b,j(xl+1) ∧ xl+1 ∈ Xν) → xl+1 ∈ Xµ

)

.

(3) If r is of the form 〈qµ, σ, b, j〉 → 〈qν , up〉, where qµ, qν ∈ Ql, 0 ≤ l ≤ n, σ ∈ Σ,
b ∈ {0, 1}l, and 0 ≤ j ≤ maxrank(Σ), then

ψr = ∀xl+1∀y
(

(θσ,b,j(xl+1) ∧ child(xl+1, y) ∧ y ∈ Xν) → xl+1 ∈ Xµ

)

.

(4) If r is of the form 〈qµ, σ, b, j〉 → 〈qν , downi〉, where qµ, qν ∈ Ql, 0 ≤ l ≤ n,
σ ∈ Σ, b ∈ {0, 1}l, and 0 ≤ j ≤ maxrank(Σ), then

ψr = ∀xl+1∀y
(

(θσ,b,j(xl+1) ∧ child i(y, xl+1) ∧ y ∈ Xν) → xl+1 ∈ Xµ

)

.

(5) If r is an alternating rule of the form 〈qµ, σ, b, j〉 → {〈qν1
, stay〉, 〈qν2

, stay〉},
where qµ, qν1

, qν2
∈ Ql, 0 ≤ l ≤ n, σ ∈ Σ, b ∈ {0, 1}l, and 0 ≤ j ≤

maxrank(Σ), then

ψr = ∀xl+1

(

(θσ,b,j(xl+1) ∧ xl+1 ∈ Xν1
∧ xl+1 ∈ Xν2

) → xl+1 ∈ Xµ

)

.

Moreover:

(6) If r is of the form 〈qµ, σ, b, j〉 → 〈qν , lift〉, where qµ ∈ Ql, 1 ≤ l ≤ n, σ ∈ Σ,
b ∈ {0, 1}l, 0 ≤ j ≤ maxrank(Σ), and qν ∈ Ql−1, then

ψr = ∀xl+1

(

(θσ,b,j(xl+1) ∧ xl+1 ∈ Xν) → xl+1 ∈ Xµ

)

.

(7) If r is of the form 〈qµ, σ, b, j〉 → 〈qν , drop〉, where qµ ∈ Ql, 0 ≤ l ≤ n − 1,
σ ∈ Σ, b ∈ {0, 1}l, 0 ≤ j ≤ maxrank(Σ), and qν ∈ Ql+1, then

ψr = ∀xl+1

(

(θσ,b,j(xl+1) ∧ φ
(l+1)
ν) → xl+1 ∈ Xµ

)

.

We make the following observations concerning the formula φ
(l)
µ .

a) φ
(l)
µ has free node-set variables X0, . . . ,Xml−1, and free node variables

x1, . . . , xl.

(In particular, φ
(0)
µ is a closed formula.)

b) The subformula l-closed of φ
(l)
µ has free node-set variables Xml

, . . . ,Xml+1−1,
in addition to the free variables above, and l-closed is true in a structure
(s,Π1,Π2) if and only if Π2(Xml

), . . . ,Π2(Xml+1−1) are l-closed with respect to
A, s, Π1(x1), . . . ,Π1(xl) and Π2(X0), . . . ,Π2(Xml−1).

Note that the conjunction of formulas of type (1)-(7) expresses Definition 4.1
for node sets Π2(Xml

), . . . ,Π2(Xml+1−1) (with respect to A, s, Π1(x1), . . . ,Π1(xl)
and Π2(X0), . . . ,Π2(Xml−1)).

444 Loránd Muzamel

c) Hence, φ
(l)
µ is true in a structure (s,Π1,Π2) if for all node-sets

Sml
, . . . , Sml+1−1 ⊆ pos(s), l-closed with respect to A, s, Π1(x1), . . . ,Π1(xl), and

Π2(X0), . . . ,Π2(Xml−1), we have that

• root ∈ Sµ, if l = 0, or

• Π1(xl) ∈ Sµ, if l > 0.

Thus, by Corollary 4.6, we obtain that s ∈ L(A) if and only if s |= φ
(0)
0 . Hence,

L(A) = L(φ
(0)
0) and this concludes that the tree language recognized by A is MSO-

definable, and thus it is regular. ⋄

5 Inclusion results for patwa

In this section we investigate the recognizing power of deterministic and non-looping
patwa with and without pebbles. First we collect the preliminary results, which
are necessary for this section.

Theorem 1 of [4] says that deterministic tree-walking automata are less powerful
than their nondeterministic counterparts. Formally, dTWA ⊂ TWA. We note
that the separating tree language treated by [4] (which cannot be recognized by a
deterministic twa) can be recognized already by a nondeterministic and non-looping
twa. Thus, dTWAnl ⊂ TWAnl, and moreover, by Proposition 1 of [22] (saying that
dTWA = dTWAnl), we obtain the following “non-looping version” of the above
proper inclusion result.

Proposition 5.1 dTWA ⊂ TWAnl. ⋄

Theorem 1. of [22] states that deterministic twa are closed under complemen-
tation.

Proposition 5.2 dTWA = co-dTWA. ⋄

One of the main results of [5] is Theorem 1.1 saying that ptwa do not recognize
all the regular tree languages, formally, PTWA ⊂ REG . Using the obvious fact
that PTWAnl ⊆ PTWA, we obtain the following proposition.

Proposition 5.3 PTWAnl ⊂ REG . ⋄

Moreover Theorem 1.2 of [5] says, that the expressive power of n-patwa is strictly
less than the expressive power of (n+1)-patwa for each n ≥ 0, formally, n-PTWA ⊂
(n + 1)-PTWA. We note that Theorem 1.2 of [5] refines Theorem 2 of [3], which
says that TWA ⊂ REG . However, we wish to obtain the “non-looping version” of
the proper inclusion n-PTWA ⊂ (n + 1)-PTWA. For this we make the following
observations.

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 445

(1) In the preceding paragraph of Theorem 3 of [22] it was shown that for each
n-ptwa A with weak pebble handling we can construct a non-looping n-ptwa
A′ with weak pebble handling, such that L(A) = L(A′).

(2) It was shown in Lemma 5.1 of [5] that for each n-ptwa A we can construct
an n-ptwa A′ with weak pebble handling, such that L(A) = L(A′).

(3) By Theorem 1.2 of [5], n-PTWA ⊂ (n+ 1)-PTWA.

We note that the “weak pebble handling” property for ptwa is discussed in the
Introduction. By (1)-(3) we conclude the following proposition.

Proposition 5.4 For each n ≥ 0, n-PTWAnl ⊂ (n+ 1)-PTWAnl. ⋄

Now we prove that the complements of the tree languages of n-dPATWAnl form
exactly the tree language class n-PTWAnl.

Lemma 5.5 For each n ≥ 0, co-n-dPATWAnl = n-PTWAnl.

Proof. co-n-dPATWAnl ⊆ n-PTWAnl: Let A = (Q,Σ, q0, qyes , R) be a determin-
istic and non-looping n-patwa. We construct the (nondeterministic, non-looping)
n-ptwa A′ = (Q,Σ, q0, qyes , R

′) where R′ is the smallest set of rules satisfying the
following conditions.

• For each q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, . . . ,maxrank(Σ)}, if
there is no rule in R with left-hand side 〈q, σ, b, j〉, then the accepting rule
〈q, σ, b, j〉 → 〈qyes , stay〉 is in R′.

• For each pebble tree-walking rule 〈q, σ, b, j〉 → 〈p, ϕ〉 of R it is also in R′.

• For each alternating rule 〈q, σ, b, j〉 → {〈p1, stay〉, 〈p2, stay〉}, the pebble tree-
walking rules 〈q, σ, b, j〉 → 〈p1, stay〉 and 〈q, σ, b, j〉 → 〈p2, stay〉 are in R′.

Since M is non-looping, it is obvious that also M ′ is non-looping. The proof of
L(A′) = L(A) is straightforward, hence we omit it.

n-PTWAnl ⊆ co-n-dPATWAnl: Let A = (Q,Σ, q0, qyes , R) be a non-looping
(nondeterministic) ptwa. We construct the deterministic patwa with general al-
ternating rules A′ = (Q′,Σ, q0, q

′
yes , R

′) (by Lemma 3.10 we are allowed to use
general alternating rules) as follows.

• Q′ = Q ∪ {qyes}, and

• R′ is the smallest set of rules satisfying the following conditions.

– For each q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, . . . ,maxrank(Σ)}, if
there is no rule in R with left-hand side 〈q, σ, b, j〉, then the accepting
rule 〈q, σ, b, j〉 → 〈q′yes , stay〉 is in R′.

446 Loránd Muzamel

– For each q ∈ Q, σ ∈ Σ, b ∈ {0, 1}≤n, and j ∈ {0, . . . ,maxrank(Σ)},
if {〈q1, ϕ1〉, . . . , 〈qm, ϕm〉} is the set of state-instruction pairs that are
the right-hand sides of rules with left-hand side 〈q, σ, b, j〉, then the rule
〈q, σ, b, j〉 → {〈q1, ϕ1〉, . . . , 〈qm, ϕm〉} is in R′.

Again, it is obvious that A′ is deterministic, non-looping, and we leave the proof
L(M) = L(M ′) to the reader. ⋄

Now we prove the following proper inclusion result.

Theorem 5.6 dTWA ⊂ dATWAnl.

Proof. We prove by contradiction. Let us assume that dTWA = dATWAnl. Then
we make the following observations.

a) Obviously, co-dTWA = co-dATWAnl.
b) By Proposition 5.2, dTWA = co-dATWAnl.
c) By Lemma 5.5, dTWA = TWAnl, which contradicts Proposition 5.1.
With this, we have proved this theorem. ⋄
Next we prove that with the deterministic and non-looping n-patwa are strictly

weaker than deterministic and non-looping (n+ 1)-patwa are.

Theorem 5.7 For each n ≥ 0, n-dPATWAnl ⊂ (n+ 1)-dPATWAnl.

Proof. The inclusion n-dPATWAnl ⊆ (n + 1)-dPATWAnl is obvious. We prove
the proper inclusion by contradiction. Let us assume that n-dPATWAnl = (n +
1)-dPATWAnl. Then, applying operation ‘co’ to both sides of the equation we get
that co-n-dPATWAnl = co-(n + 1)-dPATWAnl. By Lemma 5.5 we obtain that
n-PTWAnl = (n+ 1)-PTWAnl, which contradicts Proposition 5.4. ⋄

Finally, we prove, that deterministic and non-looping patwa do not recognize
all the regular tree languages.

Theorem 5.8 dPATWAnl ⊂ REG .

Proof. dPATWAnl ⊆ REG comes from Theorem 4.7 The proper inclusion is proved
by contradiction. Let us assume that dPATWAnl = REG . Then we make the
following observations.

a) Applying the operation ‘co’ to both sides, we obtain that co-dPATWAnl =
co-REG .

b) By Proposition 2.1 we obtain that co-dPATWAnl = REG .
c) By Lemma 5.5 we get that PTWAnl = REG , which contradicts Proposition

5.3. ⋄

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 447

REG = PATWA

dTWA

Th. 4.7

...

TWAnl

1-PTWAnl

2-PTWAnl

PTWAnl

dATWAnl

1-dPATWAnl

2-dPATWAnl

...

dPATWAnl

[5]

︷
︸
︸

︷

︸
︷
︷

︸

Th. 5.7

[5] Th. 5.8

Th. 5.6
[4]

Figure 1: Inclusion diagram of some subclasses of PATWA. The continuous lines
represent proper inclusions.

6 Conclusions

In this paper we gave a formal definition for pebble tree-walking automata extended
with alternation [23] and have answered the open problem raised at page 18 in [10],
which asked, whether the patwa recognize the class of regular tree languages. Our
answer is yes, i.e., PATWA = REG .

In the remainder of this paper we have investigated the recognizing power of
some subclasses of PATWA. We have come to the conclusion that

dTWA ⊂ dATWAnl ⊂ 1-dPATWAnl ⊂ . . . ⊂ dPATWAnl ⊂ REG .
However, it is still an open problem, whether n-dPATWA ⊂ (n+ 1)-dPATWA.
The most important known and new results are summarized in Figure 1.
We can find the relation between patwa and pebble tree transducers. It is trivial

that the domain of each n-pebble tree transformation of [11] can be recognized by
an n-patwa with weak pebble handling, i.e., pebbles can be lifted only from a node
pointed at by the pointer. We can extend the pebble tree transducers of [11],
such that the pebble in the input tree with the highest number can be lifted even
from a node not pointed at by the pointer. This is the strong pebble handling (see

448 Loránd Muzamel

[10, 22, 5]), which is also used throughout the present paper. Then we can easily see
that the domains of n-pebble tree transformations are exactly the tree languages
recognized by n-patwa, i.e., the regular tree languages. Using the results of this
paper, we obtain that

• dom(n-PTT) = REG , where n ≥ 0, and

• dTWA ⊂ dom(0-dPTTnl) ⊂ dom(1-dPTTnl) ⊂ . . . ⊂ dom(dPTTnl) ⊂
REG ,

assuming that n-PTT is the class of n-pebble tree transformations, PTT =
⋃

n≥0 n-PTT (the prefix ‘d’, and the subscription ‘nl’ denote the deterministic
and non-looping subclasses), and for a tree transformation τ , the notation dom(τ)
means the domain tree language of τ .

Another application of the inclusion result dATWAnl ⊂ 1-dPATWAnl ⊂ REG
is, that deterministic and non-looping atwa (0-patwa) are exactly the tree-walking
automata in universal acceptance mode of [13], where it was proved that these
automata recognize exactly the domains of partial attributed tree transformations
[12]. It is straightforward that the non-looping version for this result also holds,
i.e., non-looping tree-walking automata in universal acceptance mode recognize
exactly the tree languages recognized by non-looping deterministic atwa, that are
the domains of non-looping partial attributed tree transformations. Hence, we
obtain that dTWA ⊂ dom(ATTnl) ⊂ 1-dPATWAnl ⊂ REG , where ATTnl is the
class of non-looping partial attributed tree transformations.

Acknowledgments

I thank Zoltán Fülöp for giving me a lot of useful advice. Moreover, I am
grateful to the anonymous referee for his/her valuable ideas and suggestions which
have rised the quality of this paper substantially.

References

[1] A. V. Aho and J. D. Ullman. Translations on a context–free grammar. Inform.
Control, 19:439–475, 1971.

[2] R. Bloem and J. Engelfriet. Characterization of properties and relations de-
fined in monadic second order logic on the nodes of trees. Technical Report
Technical Report 97-03, Leiden University, August 1997.

[3] M. Bojańczyk and T. Colcombet. Tree-walking automata do not recognize
all regular languages. In STOC ’05: Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 234–243, New York, NY,
USA, 2005. ACM Press.

[4] M. Bojańczyk and T. Colcombet. Tree-walking automata cannot be deter-
minized. Theoretical Computer Science, 350:164–173, 2006.

Pebble Alternating Tree-Walking Automata and Their Recognizing Power 449

[5] M Bojańczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expressive
power of pebble automata. In ICALP’06: Proceedings of 33rd Interna-
tional Colloquium on Automata, Languages and Programming, pages 157–168.
Springer Berlin / Heidelberg, 2006.

[6] J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

[7] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

[8] J. Doner. Tree acceptors and some of their applications. J. Comput. System
Sci., 4:406–451, 1970.

[9] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In Jewels
are Forever, Contributions on Theoretical Computer Science in Honor of Arto
Salomaa, pages 72–83, London, UK, 1999. Springer-Verlag.

[10] J. Engelfriet and Hendrik Jan Hoogeboom. Automata with nested pebbles
capture first-order logic with transitive closure. Technical Report 05-02, Leiden
University, The Netherlands, April 2005.

[11] J. Engelfriet and S. Maneth. A Comparison of Pebble Tree Transducers with
Macro Tree Transducers. Acta Informatica, 39:613–698, 2003.

[12] Z. Fülöp. On attributed tree transducers. Acta Cybernet., 5:261–279, 1981.

[13] Z. Fülöp and S. Maneth. Domains of partial attributed transducers. Inform.
Process. Letters, 73:175–180, 2000.

[14] Z. Fülöp and L. Muzamel. Decomposition Results for Pebble Macro Tree
Transducers. Technical Report TUD-FI05-13, Technical University of Dresden,
2005.

[15] Z. Fülöp and L. Muzamel. Circularity and Decomposition Results for Pebble
Macro Tree Transducers. submitted, 2006.

[16] Z. Fülöp and H. Vogler. Syntax-Directed Semantics — Formal Models Based on
Tree Transducers. Monographs in Theoretical Computer Science, An EATCS
Series. Springer-Verlag, 1998.

[17] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[18] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 1–68. Springer-Verlag,
1997.

[19] D. E. Knuth. Semantics of context-free languages: Correction. Math. Systems
Theory, 5(1):95–96, 1971. Errata of [20].

450 Loránd Muzamel

[20] D.E. Knuth. Semantics of context–free languages. Math. Systems Theory,
2:127–145, 1968.

[21] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. of
Comp. Syst. Sci., 66:66–97, 2003.

[22] A. Muscholl, M. Samualides, and L. Segoufin. Complementing deterministic
tree-walking automata. Information Processing Letters, 99:33–39, 2006.

[23] G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305–
318, 1985.

[24] J. W. Thatcher and J.B. Wright. Generalized finite automata theory with
application to a decision problem of second-order logic. Math. Systems Theory,
2(1):57–81, 1968.

