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Factored Value Iteration Converges

István Szita∗ and András Lőrincz†

Abstract

In this paper we propose a novel algorithm, factored value iteration (FVI),
for the approximate solution of factored Markov decision processes (fMDPs).
The traditional approximate value iteration algorithm is modified in two ways.
For one, the least-squares projection operator is modified so that it does not
increase max-norm, and thus preserves convergence. The other modification
is that we uniformly sample polynomially many samples from the (exponen-
tially large) state space. This way, the complexity of our algorithm becomes
polynomial in the size of the fMDP description length. We prove that the
algorithm is convergent. We also derive an upper bound on the difference
between our approximate solution and the optimal one, and also on the error
introduced by sampling. We analyse various projection operators with re-
spect to their computation complexity and their convergence when combined
with approximate value iteration.

Keywords: factored Markov decision process, value iteration, reinforcement
learning

1 Introduction

Markov decision processes (MDPs) are extremely useful for formalising and solv-
ing sequential decision problems, with a wide repertoire of algorithms to choose
from [4, 26]. Unfortunately, MDPs are subject to the ‘curse of dimensionality’ [3]:
for a problem with m state variables, the size of the MDP grows exponentially
with m, even though many practical problems have polynomial-size descriptions.
Factored MDPs (fMDPs) may rescue us from this explosion, because they offer a
more compact representation [17, 5, 6]. In the fMDP framework, one assumes that
dependencies can be factored to several easy-to-handle components.

For MDPs with known parameters, there are three basic solution methods (and,
naturally, countless variants of them): value iteration, policy iteration and linear
programming (see the books of Sutton & Barto [26] or Bertsekas & Tsitsiklis [4]
for an excellent overview). Out of these methods, linear programming is generally

∗Eötvös Loránd University, Hungary, Department of Information Systems, E-mail:

szityu@gmail.com
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616 István Szita and András Lőrincz

considered less effective than the others. So, it comes as a surprise that all effective
fMDPs algorithms, to our best knowledge, use linear programming in one way or
another. Furthermore, the classic value iteration algorithm is known to be divergent
when function approximation is used [2, 27], which includes the case of fMDPs, too.

In this paper we propose a variant of the approximate value iteration algorithm
for solving fMDPs. The algorithm is a direct extension of the traditional value iter-
ation algorithm. Furthermore, it avoids computationally expensive manipulations
like linear programming or the construction of decision trees. We prove that the
algorithm always converges to a fixed point, and that it requires polynomial time
to reach a fixed accuracy. A bound to the distance from the optimal solution is
also given.

In Section 2 we review the basic concepts of Markov decision processes, includ-
ing the classical value iteration algorithm and its combination with linear function
approximation. We also give a sufficient condition for the convergence of approxi-
mate value iteration, and list several examples of interest. In Section 3 we extend
the results of the previous section to fMDPs and review related works in Section 4.
Conclusions are drawn in Section 5.

2 Approximate Value Iteration in Markov Deci-
sion Processes

2.1 Markov Decision Processes

An MDP is characterised by a sixtuple (X, A,R, P,xs, γ), where X is a finite set of
states;1 A is a finite set of possible actions; R : X × A → R is the reward function
of the agent, so that R(x, a) is the reward of the agent after choosing action a in
state x; P : X× A ×X → [0, 1] is the transition function so that P (y | x, a) is the
probability that the agent arrives at state y, given that she started from x upon
executing action a; xs ∈ X is the starting state of the agent; and finally, γ ∈ [0, 1)
is the discount rate on future rewards.

A policy of the agent is a mapping π : X × A → [0, 1] so that π(x, a) tells
the probability that the agent chooses action a in state x. For any x0 ∈ X, the
policy of the agent and the parameters of the MDP determine a stochastic process
experienced by the agent through the instantiation

x0, a0, r0,x1, a1, r1, . . . ,xt, at, rt, . . .

The goal is to find a policy that maximises the expected value of the discounted
total reward. Let the value function of policy π be

V π(x) := E
( ∞∑

t=0

γtrt

∣∣∣ x=x0

)

1Later on, we shall generalise the concept of the state of the system. A state of the system

will be a vector of state variables in our fMDP description. For that reason, we already use the

boldface vector notation in this preliminary description.
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and let the optimal value function be

V ∗(x) := max
π

V π(x)

for each x ∈ X. If V ∗ is known, it is easy to find an optimal policy π∗, for which
V π∗

≡ V ∗. Provided that history does not modify transition probability distri-
bution P (y|x, a) at any time instant, value functions satisfy the famous Bellman
equations

V π(x) =
∑

a

∑

y

π(x, a)P (y | x, a)
(
R(x, a) + γV π(y)

)
(1)

and
V ∗(x) = max

a

∑

y

P (y | x, a)
(
R(x, a) + γV ∗(y)

)
. (2)

Most algorithms that solve MDPs build upon some version of the Bellman equa-
tions. In the following, we shall concentrate on the value iteration algorithm.

2.2 Exact Value Iteration

Consider an MDP (X, A, P,R,xs, γ). The value iteration for MDPs uses the Bell-
man equations (2) as an iterative assignment: It starts with an arbitrary value
function V0 : X → R, and in iteration t it performs the update

Vt+1(x) := max
a

∑

y∈X

P (y | x, a)
(
R(x, a) + γVt(y)

)
(3)

for all x ∈ X. For the sake of better readability, we shall introduce vector no-
tation. Let N := |X|, and suppose that states are integers from 1 to N , i.e.
X = {1, 2, . . . , N}. Clearly, value functions are equivalent to N -dimensional vec-
tors of reals, which may be indexed with states. The vector corresponding to V
will be denoted as v and the value of state x by vx. Similarly, for each a let us
define the N -dimensional column vector ra with entries ra

x = R(x, a) and N × N
matrix P a with entries P a

x,y = P (y | x, a). With these notations, (3) can be written
compactly as

vt+1 := maxa∈A

(
ra + γP avt

)
. (4)

Here, max denotes the componentwise maximum operator.
It is also convenient to introduce the Bellman operator T : RN → RN that

maps value functions to value functions as

T v := maxa∈A

(
ra + γP av

)
.

As it is well known, T is a max-norm contraction with contraction factor γ: for
any v,u ∈ RN , ‖T v−T u‖∞ ≤ γ‖v−u‖∞. Consequently, by Banach’s fixed point
theorem, exact value iteration (which can be expressed compactly as vt+1 := T vt)
converges to an unique solution v∗ from any initial vector v0, and the solution v∗

satisfies the Bellman equations (2). Furthermore, for any required precision ǫ > 0,
‖vt−v∗‖∞ ≤ ǫ if t ≥ log ǫ

log γ
‖v0−v∗‖∞. One iteration costs O(N2 · |A|) computation

steps.



618 István Szita and András Lőrincz

2.3 Approximate value iteration

In this section we shall review approximate value iteration (AVI) with linear func-
tion approximation (LFA) in ordinary MDPs. The results of this section hold for
AVI in general, but if we can perform all operations effectively on compact repre-
sentations (i.e. execution time is polynomially bounded in the number of variables
instead of the number of states), then the method can be directly applied to the
domain of factorised Markovian decision problems, underlining the importance of
our following considerations.

Suppose that we wish to express the value functions as the linear combination
of K basis functions hk : X → R (k ∈ {1, . . . ,K}), where K << N . Let H be the
N × K matrix with entries Hx,k = hk(x). Let wt ∈ RK denote the weight vector
of the basis functions at step t. We can substitute vt = Hwt into the right hand
side (r.h.s.) of (4), but we cannot do the same on the left hand side (l.h.s.) of the
assignment: in general, the r.h.s. is not contained in the image space of H, so there
is no such wt+1 that

Hwt+1 = maxa∈A

(
ra + γP aHwt

)
.

We can put the iteration into work by projecting the right-hand side into w-space:
let G : RN → RK be a (possibly non-linear) mapping, and consider the iteration

wt+1 := G
[
maxa∈A

(
ra + γP aHwt

)]
(5)

with an arbitrary starting vector w0.

Lemma 1. If G is such that HG is a non-expansion, i.e., for any v,v′ ∈ RN ,

‖HGv − HGv′‖∞ ≤ ‖v − v′‖∞,

then there exists a w∗ ∈ RK such that

w∗ = G
[
maxa∈A

(
ra + γP aHw∗

)]

and iteration (5) converges to w∗ from any starting point.

Proof. We can write (5) compactly as wt+1 = GT Hwt. Let v̂t = Hwt. This
satisfies

v̂t+1 = HGT v̂t. (6)

It is easy to see that the operator HGT is a contraction: for any v,v′ ∈ RN ,

‖HGT v − HGT v′‖∞ ≤ ‖T v − T v′‖∞ ≤ γ‖v − v′‖∞

by the assumption of the lemma and the contractivity of T . Therefore, by Banach’s
fixed point theorem, there exists a vector v̂∗ ∈ RN such that v̂∗ = HGT v̂∗ and
iteration (6) converges to v̂∗ from any starting point. It is easy to see that w∗ =
GT v̂∗ satisfies the statement of the lemma.

Note that if G is a linear mapping with matrix G ∈ RK×N , then the assumption
of the lemma is equivalent to ‖HG‖∞ ≤ 1.
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2.4 Examples of Projections, Convergent and Divergent

In this section, we examine certain possibilities for choosing projection G. Let
v ∈ RN be an arbitrary vector, and let w = Gv be its G-projection. For linear
operators, G can be represented in matrix form and we shall denote it by G.

Least-squares (L2-)projection. Least-squares fitting is used almost exclu-
sively for projecting value functions, and the term AVI is usually used in the sense
“AVI with least-squares projection”. In this case, w is chosen so that it minimises
the least-squares error:

w := arg min
w

‖Hw − v‖2
2.

This corresponds to the linear projection G2 = H+ (i.e., w = H+v), where H+ is
the Moore-Penrose pseudoinverse of H. It is well known, however, that this method
can diverge. For an example on such divergence, see, e.g. the book of Bertsekas &
Tsitsiklis [4]. The reason is simple: matrix HH+ is a non-expansion in L2-norm,
but Lemma 1 requires that it should be an L∞-norm projection, which does not
hold in the general case. (See also Appendix A.1 for illustration.)

Constrained least-squares projection. One can enforce the non-expansion
property by expressing it as a constraint: Let w be the solution of the constrained
minimisation problem

w := arg min
w

‖Hw − v‖2
2, subject to ‖Hw‖∞ ≤ ‖v‖∞,

which defines a non-linear mapping Gc
2. This projection is computationally highly

demanding: in each step of the iteration, one has to solve a quadratic programming
problem.

Max-norm (L∞-)projection. Similarly to L2-projection, we can also select
w so that it minimises the max-norm of the residual:

w := arg min
w

‖Hw − v‖∞.

The computation of w can be transcribed into a linear programming task and that
defines the non-linear mapping G∞. However, in general, ‖HG∞v‖∞ � ‖v‖∞, and
consequently AVI using iteration

wt+1 := arg min
w

‖Hw − T Hwt‖∞

can be divergent. Similarly to L2 projection, one can also introduce a constrained
version Gc

∞ defined by

Gc
∞v := arg min

w
‖Hw − v‖∞, subject to ‖Hw‖∞ ≤ ‖v‖∞,

which can also be turned into a linear program.
It is insightful to contrast this with the approximate linear programming method

of Guestrin et al. [14]: they directly minimise the max-norm of the Bellman error,
i.e., they solve the problem

w∗ := arg min
w

‖Hw − T Hw‖∞,
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which can be solved without constraints.
L1-norm projection. Let GL1

be defined by

G1v := arg min
w

‖Hw − v‖1.

The L1-norm projection also requires the solution of a linear program, but inter-
estingly, the projection operator G1 is a non-expansion (the proof can be found in
Appendix A.1).

AVI-compatible operators considered so far (Gc
2, G

c
∞ and G1) were non-linear,

and required the solution of a linear program or a quadratic program in each step of
value iteration, which is clearly cumbersome. On the other hand, while G2v = H+v
is linear, it is also known to be incompatible with AVI [2, 27]. Now, we shall focus
on operators that are both AVI-compatible and linear.

Normalised linear mapping. Let G be an arbitrary K × N matrix, and
define its normalisation N (G) as a matrix with the same dimensions and entries

[N (G)]ij =
Gij

‖[HG]i,∗‖∞
.

that is, N(G) is obtained from G by dividing each element with the norm of the
corresponding row of HG. All (absolute) row sums of H · N (G) are equal to 1.
Therefore, (i) ‖H · N (G)‖∞ = 1, and (ii) H · N(G) is maximal in the sense that if
the absolute value of any element of N (G) increased, then for the resulting matrix
G′, ‖H · G′‖∞ > 1.

Probabilistic linear mapping. If all elements of H are non-negative and all
the row-sums of H are equal, then N (HT ) assumes a probabilistic interpretation.
This interpretation is detailed in Appendix A.2.

Normalised least-squares projection. Among all linear operators, H+ is
the one that guarantees the best least-squares error, therefore we may expect that
its normalisation, N (H+) plays a similar role among AVI-compatible linear projec-
tions. Unless noted otherwise, we will use the projection N (H+) subsequently.

2.5 Convergence properties

Lemma 2. Let v∗ be the optimal value function and w∗ be the fixed point of the
approximate value iteration (5). Then

‖Hw∗ − v∗‖∞ ≤
1

1 − γ
‖HGv∗ − v∗‖∞.

Proof. For the optimal value function, v∗ = T v∗ holds. On the other hand, w∗ =
GT Hw∗. Thus,

‖Hw∗ − v∗‖∞ = ‖HGT Hw∗ − T v∗‖∞

≤ ‖HGT Hw∗ − HGT v∗‖∞ + ‖HGT v∗ − T v∗‖∞

≤ ‖T Hw∗ − T v∗‖∞ + ‖HGv∗ − v∗‖∞

≤ γ‖Hw∗ − v∗‖∞ + ‖HGv∗ − v∗‖∞,
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from which the statement of the lemma follows. For the transformations we have
applied the triangle inequality, the non-expansion property of HG and the contrac-
tion property of T .

According to the lemma, the error bound is proportional to the projection error
of v∗. Therefore, if v∗ can be represented in the space of basis functions with small
error, then our AVI algorithm gets close to the optimum. Furthermore, the lemma
can be used to check a posteriori how good our basis functions are. One may
improve the set of basis functions iteratively. Similar arguments have been brought
up by Guestrin et al. [14], in association with their LP-based solution algorithm.

3 Factored value iteration

MDPs are attractive because solution time is polynomial in the number of states.
Consider, however, a sequential decision problem with m variables. In general,
we need an exponentially large state space to model it as an MDP. So, the num-
ber of states is exponential in the size of the description of the task. Factored
Markov decision processes may avoid this trap because of their more compact task
representation.

3.1 Factored Markov decision processes

We assume that X is the Cartesian product of m smaller state spaces (corresponding
to individual variables):

X = X1 × X2 × . . . × Xm.

For the sake of notational convenience we will assume that each Xi has the same
size, |X1| = |X2| = . . . = |Xm| = n. With this notation, the size of the full state
space is N = |X| = nm. We note that all derivations and proofs carry through to
different size variable spaces.

A naive, tabular representation of the transition probabilities would require
exponentially large space (that is, exponential in the number of variables m). How-
ever, the next-step value of a state variable often depends only on a few other
variables, so the full transition probability can be obtained as the product of sev-
eral simpler factors. For a formal description, we introduce several notations:

For any subset of variable indices Z ⊆ {1, 2, . . . ,m}, let X[Z] := ×
i∈Z

Xi, fur-

thermore, for any x ∈ X, let x[Z] denote the value of the variables with indices in
Z. We shall also use the notation x[Z] without specifying a full vector of values x,
in such cases x[Z] denotes an element in X[Z]. For single-element sets Z = {i} we
shall also use the shorthand x[{i}] = x[i].

A function f is a local-scope function if it is defined over a subspace X[Z] of the
state space, where Z is a (presumably small) index set. The local-scope function
f can be extended trivially to the whole state space by f(x) := f(x[Z]). If |Z|
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is small, local-scope functions can be represented efficiently, as they can take only
n|Z| different values.

Suppose that for each variable i there exist neighbourhood sets Γi such that the
value of xt+1[i] depends only on xt[Γi] and the action at taken. Then we can write
the transition probabilities in a factored form

P (y | x, a) =

n∏

i=1

Pi(y[i] | x[Γi], a) (7)

for each x,y ∈ X, a ∈ A, where each factor is a local-scope function

Pi : X[Γi] × A × Xi → [0, 1] (for all i ∈ {1, . . . ,m}). (8)

We will also suppose that the reward function is the sum of J local-scope functions:

R(x, a) =

J∑

j=1

Rj(x[Zj ], a), (9)

with arbitrary (but preferably small) index sets Zj , and local-scope functions

Rj : X[Zj ] × A → R (for all j ∈ {1, . . . , J}). (10)

To sum up, a factored Markov decision process is characterised by the param-

eters
(
{Xi : 1 ≤ i ≤ m};A; {Rj : 1 ≤ j ≤ J}; {Γi : 1 ≤ i ≤ n}; {Pi : 1 ≤ i ≤

n};xs; γ
)
, where xs denotes the initial state.

Functions Pi and Ri are usually represented either as tables or dynamic Bayesian
networks. If the maximum size of the appearing local scopes is bounded by some
constant, then the description length of an fMDP is polynomial in the number of
variables n.

3.1.1 Value functions

The optimal value function is an N = nm-dimensional vector. To represent it effi-
ciently, we should rewrite it as the sum of local-scope functions with small domains.
Unfortunately, in the general case, no such factored form exists [14].

However, we can still approximate V ∗ with such an expression: let K be the
desired number of basis functions and for each k ∈ {1, . . . ,K}, let Ck be the domain
set of the local-scope basis function hk : X[Ck] → R. We are looking for a value
function of the form

Ṽ (x) =

K∑

k=1

wk · hk(x[Ck]). (11)

The quality of the approximation depends on two factors: the choice of the basis
functions and the approximation algorithm. Basis functions are usually selected by
the experiment designer, and there are no general guidelines how to automate
this process. For given basis functions, we can apply a number of algorithms to
determine the weights wk. We give a short overview of these methods in Section 4.
Here, we concentrate on value iteration.
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3.2 Exploiting factored structure in value iteration

For fMDPs, we can substitute the factored form of the transition probabilities (7),
rewards (9) and the factored approximation of the value function (11) into the AVI
formula (5), which yields

K∑

k=1

hk(x[Ck]) · wk,t+1 ≈ max
a

∑

y∈X

( m∏

i=1

Pi(y[i] | x[Γi], a)
)
·

·
( J∑

j=1

Rj(x[Zj ], a) + γ

K∑

k′=1

hk′(y[Ck′ ]) · wk′,t

)
.

By rearranging operations and exploiting that all occurring functions have a local
scope, we get

K∑

k=1

hk(x[Ck]) · wk,t+1 = Gk max
a

[
J∑

j=1

Rj(x[Zj ], a)

+γ
K∑

k′=1

∑

y[C
k′ ]∈X[C

k′ ]

( ∏

i∈C
k′

Pi(y[i] | x[Γi], a)
)
hk′(y[Ck′ ]) · wk′,t

]
(12)

for all x ∈ X. We can write this update rule more compactly in vector notation.
Let

wt := (w1,t, w2,t, . . . , wK,t) ∈ RK ,

and let H be an |X| × K matrix containing the values of the basis functions. We
index the rows of matrix H by the elements of X:

Hx,k := hk(x[Ck]).

Further, for each a ∈ A, let Ba be the |X| ×K value backprojection matrix defined
as

Ba
x,k :=

∑

y[Ck]∈X[Ck]

( ∏

i∈Ck

Pi(y[i] | x[Γi], a)
)
hk(y[Ck])

and for each a, define the reward vector ra ∈ R|X| by

ra
x :=

nr∑

j=1

Rj(x[Zj ], a).

Using these notations, (12) can be rewritten as

wt+1 := Gmaxa∈A

(
ra + γBawt

)
. (13)

Now, all entries of Ba, H and ra are composed of local-scope functions, so
any of their individual elements can be computed efficiently. This means that the



624 István Szita and András Lőrincz

time required for the computation is exponential in the sizes of function scopes,
but only polynomial in the number of variables, making the approach attractive.
Unfortunately, the matrices are still exponentially large, as there are exponentially
many equations in (12). One can overcome this problem by sampling as we show
below.

3.3 Sampling

To circumvent the problem of having exponentially many equations, we select a
random subset X̂ ⊆ X of the original state space so that |X̂| = poly(m), con-
sequently, solution time will scale polynomially with m. On the other hand, we
will select a sufficiently large subset so that the remaining system of equations is
still over-determined. The necessary size of the selected subset is to be determined
later: it should be as small as possible, but the solution of the reduced equation
system should remain close to the original solution with high probability. For the
sake of simplicity, we assume that the projection operator G is linear with matrix
G. Let the sub-matrices of G, H, Ba and ra corresponding to X̂ be denoted by Ĝ,
Ĥ, B̂a and r̂a, respectively. Then the following value update

wt+1 := Ĝ · maxa∈A

(
r̂a + γB̂awt

)
(14)

can be performed effectively, because these matrices have polynomial size. Now we
show that the solution from sampled data is close to the true solution with high
probability.

Theorem 1. Let w∗ be the unique solution of w∗ = GT Hw∗ of an FMDP, and
let w′ be the solution of the corresponding equation with sampled matrices, w′ =
ĜT Ĥw′. Suppose that the projection matrix G has a factored structure, too. Then
iteration (14) converges to w′, furthermore, for a suitable constant Ξ (depending
polynomially on nz, where z is the maximum cluster size), and for any ǫ, δ > 0,
‖w∗ − w′‖∞ ≤ ǫ holds with probability at least 1 − δ, if the sample size satisfies

N1 ≥ Ξ
m2

ǫ2
log

m

δ
.

The proof of Theorem 1 can be found in Appendix A.3. The derivation is
closely related to the work of Drineas and colleagues [11, 12] with the important
exception we use the infinity-norm instead of the L2-norm. The resulting factored
value iteration algorithm is summarised in Algorithm 1.

4 Related work

The exact solution of factored MDPs is infeasible. The idea of representing a large
MDP using a factored model was first proposed by Koller & Parr [17] but similar
ideas appear already in the works of Boutilier, Dearden, & Goldszmidt [5, 6]. More
recently, the framework (and some of the algorithms) was extended to fMDPs with
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Algorithm 1 Factored value iteration with a linear projection matrix G.

% inputs:
% factored MDP, M =

(
{Xi}m

i=1;A; {Rj}J
j=1; {Γi}m

i=1; {Pi}m
i=1;xs; γ

)

% basis functions, {hk}
K
k=1

% required accuracy, ǫ
N1 := number of samples
X̂ := uniform random N1-element subset of X
create Ĥ and Ĝ
create B̂a = P̂ aH and r̂a for each a ∈ A
w0 = 0, t := 0
repeat

wt+1 := Ĝ · max
a∈A

(
r̂a + γB̂awt

)

∆t := ‖wt+1 − wt‖∞
t := t + 1

until ∆t ≥ ǫ
return wt

hybrid continuous-discrete variables [18] and factored partially observable MDPs
[23]. Furthermore, the framework has also been applied to structured MDPs with
alternative representations, e.g., relational MDPs [13] and first-order MDPs [24].

4.1 Algorithms for solving factored MDPs

There are two major branches of algorithms for solving fMDPs: the first one ap-
proximates the value functions as decision trees, the other one makes use of linear
programming.

Decision trees (or equivalently, decision lists) provide a way to represent the
agent’s policy compactly. Koller & Parr [17] and Boutilier et al. [5, 6] present
algorithms to evaluate and improve such policies, according to the policy iteration
scheme. Unfortunately, the size of the policies may grow exponentially even with
a decision tree representation [6, 20].

The exact Bellman equations (2) can be transformed to an equivalent linear
program with N variables {V (x) : x ∈ X} and N · |A| constraints:

maximise:
∑

x∈X

α(x)V (x)

subject to V (x) ≤ R(x, a) + γ
∑

x′∈X

P (x′ | x, a)V (x′), (∀x ∈ X, a ∈ A).

Here, weights α(x) are free parameters and can be chosen freely in the following
sense: the optimum solution is V ∗ independent of their choice, provided that each
of them is greater than 0. In the approximate linear programming approach, we
approximate the value function as a linear combination of basis functions (11),



626 István Szita and András Lőrincz

resulting in an approximate LP with K variables {wk : 1 ≤ k ≤ K} and N · |A|
constraints:

maximise:

K∑

k=1

∑

x∈X

wk · α(x)hk(x[Ck]) (15)

subject to

K∑

k=1

wk · hk(x[Ck]) ≤

≤ R(x, a) + γ
K∑

k′=1

wk′

∑

x′∈X

P (x′ | x, a) · hk′(x′[Ck′ ]).

Both the objective function and the constraints can be written in compact forms,
exploiting the local-scope property of the appearing functions.

Markov decision processes were first formulated as LP tasks by Schweitzer and
Seidmann [25]. The approximate LP form is due to de Farias and van Roy [7].
Guestrin et al. [14] show that the maximum of local-scope functions can be com-
puted by rephrasing the task as a non-serial dynamic programming task and elim-
inating variables one by one. Therefore, (15) can be transformed to an equivalent,
more compact linear program. The gain may be exponential, but this is not nec-
essarily so in all cases: according to Guestrin et al. [14], “as shown by Dechter
[9], [the cost of the transformation] is exponential in the induced width of the cost
network, the undirected graph defined over the variables X1; . . . ;Xn, with an edge
between Xl and Xm if they appear together in one of the original functions fj . The
complexity of this algorithm is, of course, dependent on the variable elimination
order and the problem structure. Computing the optimal elimination order is an
NP-hard problem [1] and elimination orders yielding low induced tree width do
not exist for some problems.” Furthermore, for the approximate LP task (15), the
solution is no longer independent of α and the optimal choice of the α values is not
known.

The approximate LP-based solution algorithm is also due to Guestrin et al. [14].
Dolgov and Durfee [10] apply a primal-dual approximation technique to the linear
program, and report improved results on several problems.

The approximate policy iteration algorithm [17, 14] also uses an approximate
LP reformulation, but it is based on the policy-evaluation Bellman equation (1).
Policy-evaluation equations are, however, linear and do not contain the maximum
operator, so there is no need for the second, costly transformation step. On the
other hand, the algorithm needs an explicit decision tree representation of the
policy. Liberatore [20] has shown that the size of the decision tree representation
can grow exponentially.

4.1.1 Applications

Applications of fMDP algorithms are mostly restricted to artificial test problems
like the problem set of Boutilier et al. [6], various versions of the SysAdmin task
[14, 10, 21] or the New York driving task [23].
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Guestrin, Koller, Gearhart and Kanodia [13] show that their LP-based solution
algorithm is also capable of solving more practical tasks: they consider the real-
time strategy game FreeCraft. Several scenarios are modelled as fMDPs, and solved
successfully. Furthermore, they find that the solution generalises to larger tasks
with similar structure.

4.1.2 Unknown environment

The algorithms discussed so far (including our FVI algorithm) assume that all
parameters of the fMDP are known, and the basis functions are given. In the
case when only the factorisation structure of the fMDP is known but the actual
transition probabilities and rewards are not, one can apply the factored versions of
E3 [16] or R-max [15].

Few attempts exist that try to obtain basis functions or the structure of the
fMDP automatically. Patrascu et al. [21] select basis functions greedily so that the
approximated Bellman error of the solution is minimised. Poupart et al. [22] apply
greedy selection, too, but their selection criteria are different: a decision tree is
constructed to partition the state space into several regions, and basis functions
are added for each region. The approximate value function is piecewise linear in
each region. The metric they use for splitting is related to the quality of the LP
solution.

4.2 Sampling

Sampling techniques are widely used when the state space is immensely large.
Lagoudakis and Parr [19] use sampling without a theoretical analysis of perfor-
mance, but the validity of the approach is verified empirically. De Farias and van
Roy [8] give a thorough overview on constraint sampling techniques used for the
linear programming formulation. These techniques are, however, specific to linear
programming and cannot be applied in our case.

The work most similar to ours is that of Drineas et al. [12, 11]. They investi-
gate the least-squares solution of an overdetermined linear system, and they prove
that it is sufficient to keep polynomially many samples to reach low error with
high probability. They introduce a non-uniform sampling distribution, so that the
variance of the approximation error is minimised. However, the calculation of the
probabilities requires a complete sweep through all equations.

5 Conclusions

In this paper we have proposed a new algorithm, factored value iteration, for the
approximate solution of factored Markov decision processes. The classical approx-
imate value iteration algorithm is modified in two ways. Firstly, the least-squares
projection operator is substituted with an operator that does not increase max-
norm, and thus preserves convergence. Secondly, polynomially many samples are
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sampled uniformly from the (exponentially large) state space. This way, the com-
plexity of our algorithm becomes polynomial in the size of the fMDP description
length. We prove that the algorithm is convergent and give a bound on the differ-
ence between our solution and the optimal one. We also analysed various projec-
tion operators with respect to their computation complexity and their convergence
when combined with approximate value iteration. To our knowledge, this is the
first algorithm that (1) provably converges in polynomial time and (2) avoids linear
programming.
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A Proofs

A.1 Projections in various norms

We wish to know whether w0 = arg minw ‖Hw−v‖p implies ‖Hw0‖∞ ≤ ‖v‖∞ for
various values of p. Specifically, we are interested in the cases when p ∈ {1, 2,∞}.
Fig. 1 indicates that the implication does not hold for p = 2 or p = ∞, only for the
case p = 1. Below we give a rigorous proof for these claims.

Consider the example v = [1, 1]T ∈ R2, H = [1, 2]T , w ∈ R1. For these values
easy calculation shows that ‖H[w0]L2

‖∞ = 6/5 and ‖H[w0]L∞
‖∞ = 4/3, i.e.,

‖Hw0‖∞ � ‖v‖∞ for both cases. For p = 1, we shall prove the following lemma:

Lemma 3. If w0 = arg minw ‖Hw − v‖1, then ‖Hw0‖∞ ≤ ‖v‖∞.

Proof. Let z := Hw0 ∈ RN . If there are multiple solutions to the minimisation
task, then consider the (unique) z vector with minimum L2-norm. Let r := ‖z−v‖1

and let S(v, r) be the L1-sphere with centre v and radius r (this is an N -dimensional
cross polytope or orthoplex, a generalisation of the octahedron).

Suppose indirectly that ‖z‖∞ > ‖v‖∞. Without loss of generality we may
assume that z1 is the coordinate of z with the largest absolute value, and that
it is positive. Therefore, z1 > ‖v‖∞. Let ei denote the ith coordinate vector
(1 ≤ i ≤ N), and let zδ = z− δe1. For small enough δ, S(zδ, δ) is a cross polytope
such that (a) S(zδ, δ) ⊂ S(v, r), (b) ∀z′ ∈ S(zδ, δ), ‖z′‖∞ > ‖v‖∞, (c) ∀ǫ > 0
sufficiently small, (1 − ǫ)z ∈ S(zδ, δ). The first two statements are trivial. For the
third statement, note that z is a vertex of the cross polytope S(zδ, δ). Consider the
cone whose vertex is z and its edges are the same as the edges of S(zδ, δ) joining
z. It is easy to see that the vector pointing from z to the origo is contained in this
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Figure 1: Projections in various norms. The vector v is projected onto the image
space of H, i.e., the subspace defined by u = Hw. Consider the smallest sphere
around v (in the corresponding norm) that touches the subspace u = Hw (shown
in each figure). The radius r0 of this sphere is the distance of v from the subspace,
and the tangent point v0 (which is not necessarily unique for L1 projection) is the
projection of v. For this point, v0 = Hw0 holds. The shaded region indicates
the region {u : ‖u‖∞ ≤ ‖v‖∞}. To ensure the convergence of FVI, the projected
vector v0 must fall into the shaded region.

cone: for each 1 < i ≤ N , |zi| ≤ z1 (as z1 is the largest coordinate). Consequently,
for small enough ǫ, z − ǫz ∈ S(zδ, δ).

Fix such an ǫ and let q = (1 − ǫ)z. This vector is (a) contained in the image
space of H because H[(1 − ǫ)w] = q; (b) ‖q − v‖1 ≤ ‖z − v‖1 = r. The vector
z was chosen so that it has the smallest L1-norm in the image space of H, so the
inequality cannot be sharp, i.e., ‖q−v‖1 = r. However, ‖q‖2 = (1− ǫ)‖z‖2 < ‖z‖2

with strict inequality, which contradicts our assumption about z, thus completing
the proof.

A.2 Probabilistic interpretation of N(HT )

Definition 1. The basis functions {hk}
nb

k=1 have the uniform covering (UC) prop-
erty, if all row sums in the corresponding H matrix are identical:

nb∑

k=1

Hx,k = B for all x ∈ X,

and all entries are non-negative. Without loss of generality we may assume that all
rows sum up to 1, i.e., H is a stochastic matrix.

We shall introduce an auxiliary MDP M such that exact value iteration in M
is identical to the approximate value iteration in the original MDP M. Let S be
an K-element state space with states s1, . . . , sK . A state s is considered a discrete
observation of the true state of the system, x ∈ X.

The action space A and the discount factor γ are identical to the corresponding
items of M, and an arbitrary element s0 ∈ S is selected as initial state. In order to
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obtain the transition probabilities, let us consider how one can get from observing
s to observing s′ in the next time step: from observation s, we can infer the hidden
state x of the system; in state x, the agent makes action a and transfers to state
x′ according to the original MDP; after that, we can infer the probability that
our observation will be s′, given the hidden state x′. Consequently, the transition
probability P (s′ | s, a) can be defined as the total probability of all such paths:

P (s′ | s, a) :=
∑

x,x′∈X

Pr(x | s) Pr(x′ | x, a) Pr(s′ | x).

Here the middle term is just the transition probability in the original MDP, the
rightmost term is Hx,s, and the leftmost term can be rewritten using Bayes’ law
(assuming a uniform prior on x):

Pr(x | s) =
Pr(s | x) Pr(x)∑

x′′∈X Pr(s | x′′) Pr(x′′)
=

Hx,s ·
1

|X|∑
x′′∈X Hx′′,s ·

1
|X|

=
Hx,s∑

x′′∈X Hx′′,s

.

Consequently,

P (s′ | s, a) =
∑

x,x′∈X

Hx,s∑
x′′∈X Hx′′,s

P (x′ | x, a)Hx,s =
[
N (H)T P aH

]
s,s′

.

The rewards can be defined similarly:

R(s, a) :=
∑

x∈X

Pr(x | s)R(x, a) =
[
N (H)T ra

]
s
.

It is easy to see that approximate value iteration in M corresponds to exact value
iteration in the auxiliary MDP M.

A.3 The proof of the sampling theorem (theorem 1)

First we prove a useful lemma about approximating the product of two large ma-
trices. Let A ∈ Rm×n and B ∈ Rn×k and let C = A · B. Suppose that we sample
columns of A uniformly at random (with repetition), and we also select the corre-

sponding rows of B. Denote the resulting matrices with Â and B̂. We will show
that A · B ≈ c · Â · B̂, where c is a constant scaling factor compensating for the
dimension decrease of the sampled matrices. The following lemma is similar to
Lemma 11 of [11], but here we estimate the infinity-norm instead of the L2-norm.

Lemma 4. Let A ∈ Rm×N , B ∈ RN×k and C = A ·B. Let N ′ be an integer so that
1 ≤ N ′ ≤ N , and for each i ∈ {1, . . . , N ′}, let ri be an uniformly random integer

from the interval [1, N ]. Let Â ∈ Rm×N ′

be the matrix whose ith column is the ri
th

column of A, and denote by B̂ the N ′ × k matrix that is obtained by sampling the
rows of B similarly. Furthermore, let

Ĉ =
N

N ′
Â · B̂ =

N

N ′

N ′∑

i=1

A∗,ri
Bri,∗.
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Then, for any ǫ, δ > 0, ‖Ĉ−C‖∞ ≤ ǫN‖A‖∞‖BT ‖∞ with probability at least 1−δ,

if the sample size satisfies N ′ ≥ 2m2

ǫ2
log 2km

δ
.

Proof. We begin by bounding individual elements of the matrix Ĉ: consider the
element

Ĉpq =
N

N ′

N ′∑

i=1

Ap,ri
Bri,q.

Let Cpq be the discrete probability distribution determined by mass points {Ap,i ·

Bi,q | 1 ≤ i ≤ N}. Note that Ĉpq is essentially the sum of N ′ random variables
drawn uniformly from distribution Cpq. Clearly,

|ApiBiq| ≤ max
ij

|Aij |max
ij

|Bij | ≤ max
i

∑

j

|Aij |max
i

∑

j

|Bij | = ‖A‖∞‖B‖∞,

so we can apply Hoeffding’s inequality to obtain

Pr
(∣∣∣∣∣

∑N ′

i=1 Ap,ri
Bri,q

N ′
−

∑N
j=1 Ap,jBj,q

N

∣∣∣∣∣ > ǫ1

)
< 2 exp

(
−

N ′ǫ21
2‖A‖2

∞‖B‖2
∞

)
,

or equivalently,

Pr
(∣∣∣∣

N

N ′
[ÂB̂]pq − [AB]pq

∣∣∣∣ > Nǫ1

)
< 2 exp

(
−

N ′ǫ21
2‖A‖2

∞‖B‖2
∞

)
,

where ǫ1 > 0 is a constant to be determined later. From this, we can bound the
row sums of Ĉ − C:

Pr
( m∑

p=1

∣∣∣Ĉpq − Cpq

∣∣∣ > m · Nǫ1

)
< 2m exp

(
−

N ′ǫ21
2‖A‖2

∞‖B‖2
∞

)
,

which gives a bound on ‖Ĉ − C‖∞. This is the maximum of these row sums:

Pr
(
‖Ĉ − C‖∞ > mNǫ1

)
= Pr

(
max

q

m∑

p=1

∣∣∣Ĉpq − Cpq

∣∣∣ > mNǫ1

)

< 2km exp
(
−

N ′ǫ21
2‖A‖2

∞‖B‖2
∞

)
.

Therefore, by substituting ǫ1 = ǫ‖A‖∞‖B‖∞/m, the statement of the lemma is

satisfied if 2km exp
(
−N ′ǫ2

2m2

)
≤ δ, i.e, if N ′ ≥ 2m2

ǫ2
log 2km

δ
.

If both A and B are structured, we can sharpen the lemma to give a much
better (potentially exponentially better) bound. For this, we need the following
definition:

For any index set Z, a matrix A is called Z-local-scope matrix, if each column
of A represents a local-scope function with scope Z.
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Lemma 5. Let AT and B be local-scope matrices with scopes Z1 and Z2, and let
N0 = n|Z1|+|Z2|, and apply the random row/column selection procedure of the pre-

vious lemma. Then, for any ǫ, δ > 0, ‖Ĉ −C‖∞ ≤ ǫN0‖A‖∞‖B‖∞ with probability

at least 1 − δ, if the sample size satisfies N ′ ≥ 2m2

ǫ2
log 2km

δ
.

Proof. Fix a variable assignment x[Z1 ∪ Z2] on the domain Z1 ∪ Z2 and consider
the rows of A that correspond to a variable assignment compatible to x[Z1 ∪ Z2],
i.e., they are identical to it for components Z1 ∪ Z2 and are arbitrary on

W := {1, 2, . . . ,m} \ (Z1 ∪ Z2).

It is easy to see that all of these rows are identical because of the local-scope
property. The same holds for the columns of B. All the equivalence classes of
rows/columns have cardinality

N1 := n|W | = N/N0.

Now let us define the m×N0 matrix A′ so that only one column is kept from each
equivalence class, and define the N0 × k matrix B′ similarly, by omitting rows.
Clearly,

A · B = N1A
′ · B′,

and we can apply the sampling lemma to the smaller matrices A′ and B′ to get

that for any ǫ, δ > 0 and sample size N ′ ≥ 2m2

ǫ2
log 2km

δ
, with probability at least

1 − δ,

‖Â′ · B′ − A′ · B′‖∞ ≤ ǫN0‖A
′‖∞‖B′‖∞.

Exploiting the fact that the max-norm of a matrix is the maximum of row norms,
‖A′‖∞ = ‖A‖∞/N1 and ‖B′‖∞ = ‖B‖∞, we can multiply both sides to get

‖N1Â′ · B′ − A · B‖∞ ≤ ǫN0N1‖A‖∞/N1‖B‖∞ = ǫN0‖A‖∞‖B‖∞,

which is the statement of the lemma.

Note that if the scopes Z1 and Z2 are small, then the gain compared to the
previous lemma can be exponential.

Lemma 6. Let A = A1 + . . . + Ap and B = B1 + . . . + Bq where all Ai and Bj

are local-scope matrices with domain size at most z, and let N0 = nz. If we apply
the random row/column selection procedure, then for any ǫ, δ > 0, ‖Ĉ − C‖∞ ≤
ǫN0pq maxi ‖Ai‖∞ maxj ‖Bj‖∞ with probability at least 1 − δ, if the sample size

satisfies N ′ ≥ 2m2

ǫ2
log 2km

δ
.

Proof.

‖Ĉ − C‖∞ ≤

p∑

i=1

q∑

j=1

‖Âi · Bj − Ai · Bj‖∞.

For each individual product term we can apply the previous lemma. Note that we
can use the same row/column samples for each product, because independence is
required only within single matrix pairs. Summing the right-hand sides gives the
statement of the lemma.
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Now we can complete the proof of Theorem 1:

Proof.

‖w∗ − w′‖∞ = ‖GT Hw∗ − ĜT Ĥw′‖∞

≤ ‖GT Hw∗ − ĜT Ĥw∗‖∞ + ‖ĜT Ĥw∗ − ĜT Ĥw′‖∞

≤ ‖GT Hw∗ − ĜT Ĥw∗‖∞ + γ‖w∗ − w′‖∞,

i.e., ‖w∗ − w′‖∞ ≤ 1
1−γ

‖GT Hw∗ − ĜT Ĥw∗‖∞. Let π0 be the greedy policy
with respect to the value function Hw∗. With its help, we can rewrite T Hw∗ as
a linear expression: T Hw∗ = rπ0 + γPπ0Hw∗. Furthermore, T is a component-
wise operator, so we can express its effect on the downsampled value function as

T Ĥw∗ = r̂π0 + γP̂π0Hw∗. Consequently,

‖GT Hw∗ − ĜT Ĥw∗‖∞ ≤ ‖Grπ0 − Ĝr̂π0‖∞ + γ‖GPπ0H − ĜP̂π0H‖∞‖w∗‖∞

Applying the previous lemma two times, we get that with probability greater than

1 − δ1, ‖Grπ0 − Ĝr̂π0‖∞ ≤ ǫ1C1 if N ′ ≥ 2m2

ǫ2
1

log 2m
δ1

and with probability greater

than 1 − δ2, ‖GPπ0H − ĜP̂π0H‖∞ ≤ ǫ2C2 if N ′ ≥ 2m2

ǫ2
2

log 2m2

δ2

; where C1 and

C2 are constants depending polynomially on N0 and the norm of the component
local-scope functions, but independent of N .

Using the notation M = 1
1−γ

(
C1 + γC2‖w

∗‖∞
)
, ǫ1 = ǫ2 = ǫ/M , δ1 = δ2 = δ/2

and Ξ = M2 proves the theorem.

Informally, this theorem tells that the required number of samples grows quad-
ratically with the desired accuracy 1/ǫ and logarithmically with the required cer-
tainty 1/δ, furthermore, the dependence on the number of variables m is slightly
worse than quadratic. This means that even if the number of equations is expo-
nentially large, i.e., N = O(em), we can select a polynomially large random subset
of the equations so that with high probability, the solution does not change very
much.
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